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Abstract: LCN2, a member of the lipocalin family, is associated with various tumors and
inflammatory conditions. Despite the availability of known inhibitors, none have been
approved for clinical use. In this study, marine compounds were screened for their abil-
ity to inhibit LCN2 using pharmacophore models. Six compounds were optimized for
protein binding after being docked against the positive control Compound A. Two com-
pounds showed promising results in ADMET screening. Molecular dynamics simulations
were utilized to predict binding mechanisms, with Compound 69081_50 identified as a
potential LCN2 inhibitor. MM-PBSA analysis revealed key amino acid residues that are
involved in interactions, suggesting that Compound 69081_50 could be a candidate for
drug development.

Keywords: marine natural compounds; LCN2; pharmacophore modeling; scaffold hopping;
virtual screening; molecular dynamics simulation

1. Introduction
Lipocalin-2, also known as siderocalin or neutrophil gelatinase-associated lipocalin

(NGAL), is a flexible soluble protein that is involved in various biological functions. It
helps in the movement of hydrophobic molecules across cell membranes, regulates the
immune response to bacterial infections, promotes the differentiation of epithelial cells, and
regulates iron levels. This complex protein was first discovered in the specific granules of
human neutrophils [1,2]. LCN2, part of the renowned lipocalin superfamily, is named for
its striking similarity in structure to other members of the lipocalin family. This superfamily
is known for its tertiary structural features that are similar to lipid transport proteins,
consisting of eight reverse-parallel β-sheets organized to create a cup-shaped cavity that
acts as a binding site for small lipophilic molecules [3]. LCN2 is expressed in various
cells such as hepatocytes, activated lymphocytes, different epithelial cells, and osteoblasts.
However, it is believed that white adipose tissue is the main source of LCN2.

LCN2 is involved in various important physiological and pathological processes. It
helps to regulate cellular iron levels, can either promote or inhibit apoptosis, and influ-
ences the immune response. Research has shown that LCN2 is expressed abnormally in
diseases such as endometrial cancer, liver fibrosis, epilepsy, and pulmonary hypertension,
suggesting a potential role in their development [4–13]. Studies have shown that LCN2
has the ability to stimulate vascular endothelial growth factor production, promote angio-
genesis, induce EMT, and facilitate cell migration and invasion [4]. Additionally, LCN2 is
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implicated in numerous signaling pathways, including PI3K/AKT/NF-κB, HIF-1α/Erk,
and MafG/MYH9-LCN2 [4,10,14]. Notably, the silencing of LCN2 has been shown to
ameliorate inflammatory activation [8]. The development of therapeutic agents target-
ing LCN2 is likely to be clinically significant for treating various diseases. While several
LCN2-related chemicals have been identified, the lengthy drug development process and
complex procedures for chemical extraction and synthesis have made it challenging to
find inhibitor molecules with clear clinical benefits. Therefore, it is important to invest
more resources in discovering efficient and stable inhibitors that can aid in drug screening
against LCN2 targets.

In recent years, there has been a noticeable increase in scientific research dedicated to
marine life forms such as algae, sponges, corals, and sea squirts. This surge is driven by the
desire to uncover the diverse array of natural products found in these organisms. The focus
has shifted towards exploring the unique chemical structures, impressive biological activi-
ties, and promising medicinal properties of marine secondary metabolites [15]; numerous
investigations have confirmed that compounds sourced from marine organisms possess
remarkable antitumor, antithrombotic, antibacterial, and anti-inflammatory properties,
exhibiting potent bioactivities [16]. This has sparked the potential to explore and screen for
inhibitors of LCN2 activity, featuring innovative structural scaffolds [17–19]. In order to
enhance the scope of our marine compound sourcing, we have combined three databases
dedicated to marine natural products, thereby expanding our pool of resources. Specifically,
we have integrated the Marine Natural Products Database (MNPD), the Comprehensive
Marine Natural Products Database (CMNPD), and the Seaweed Metabolism Database
(SWMD) for this study, each contributing to the strength of our data compilation. Our
goal is to utilize the vast resources of the ocean to conduct a screening process for new
LCN2 inhibitors.

The aim of this study was to discover new and powerful inhibitors of LCN2. To
achieve this goal, we first gathered a list of LCN2 inhibitors and then evaluated and
selected two pharmacophore models based on receptor–ligand complexes using Discovery
Studio 2019. These models were used to screen and assess candidates from a large marine
combinatorial library. Following this, a structure-based virtual screening was carried out
using two different molecular docking programs, Schrödinger Maestro 11.8 and Discovery
Studio 2019. The top 40 compounds with the highest docking scores in both programs
were selected for further analysis. Fragment substitution was performed on six small
molecules, and the resulting compounds were compared through molecular docking. Two
compounds, Compound 69081_38 and Compound 69081_50, were found to have favorable
ADMET properties. Molecular dynamics simulations and MM-PBSA calculations were
then conducted on these two candidate compounds to assess their interactions and stability.
Ultimately, it was determined that Compound 69081_50 shows promise as an effective
LCN2 inhibitor.

2. Results
2.1. Establishment and Validation of Pharmacophore Modeling

Pharmacophore refers to the “pharmacophore elements” and their spatial arrangement
in the active molecule of a drug, which play an important role in the activity. Pharma-
cophore elements maintains the structural characteristics required for the activity of the
compound [20]. There are seven main types of pharmacophore elements, including hydro-
gen bond donors, hydrogen bond acceptors, positive and negative charge centers, aromatic
ring centers, hydrophobic groups, hydrophilic groups, and geometric conformational vol-
ume impulses. In order to verify the reliability of the constructed pharmacophore model,
the ROC curve was applied to verify that the pharmacophore model of the two established
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in this study has a good ability to differentiate between active and inactive molecules before
performing the database screening. The subject operating characteristic curve (ROC curve
for short) is also known as the sensitivity curve. The ROC curve graph is a curve that
reflects the relationship between sensitivity and specificity. The X-axis of the horizontal
coordinate is the 1-specificity, also known as the false-positive rate (specificity), and, the
closer the X-axis is to zero, the higher the accuracy; the Y-axis of the vertical coordinate is
known as the sensitivity, also known as the true-positive rate (sensitivity), and, the larger
the Y-axis is, the higher the accuracy. The entire graph is divided into two parts based on
the position of the curve. The area under the curve is called the AUC (area under the curve)
and is used to indicate the accuracy of the prediction. The higher the AUC value, the larger
the area under the curve, indicating that, the higher the prediction result, the higher the
accuracy. The closer the curve is to the upper left corner (the smaller the X, the larger the
Y), the higher the accuracy of the prediction.

Using the Discovery Studio platform, we constructed 10 pharmacophore models
based on the acceptor-ligand complexes based on the 3D structure of LCN2 protein (PDBID:
5NKN) and its proto-ligand. After the validation of the pharmacophore models, among
these 10 pharmacophore models, 6 had better results, namely, RL_5, RL_6, RL_7, RL_8,
RL_9, and RL_10, as shown in Figure 1. The synthesized validation results, as shown in
Table 1, selected the pharmacophore with sensitivity, specificity, and ROC curve scores
all greater than 0.8 and better results in Feature Set and Sensitivity Score; the above six
pharmacophores were qualified. RL_5, RL_7, and RL_9’s Feature Sets were all AHHR, and
the Feature Sets of RL_6, RL_8, and RL_10 were all AHHH; we selected one pharmacophore
from each of the above two groups for virtual screening. We put the 17 active small
molecules collected previously into the pharmacophore for fitness comparison, and using
Ligand Profiler in Discovery Studio. In the group with Feature Set of AHHR, RL_5 has the
highest fitness, as in Figure 1d; in the group with Feature Set of AHHH, RL_8 has the highest
fitness, as in Figure 2d. Therefore, we selected RL_5 and RL_8 as the pharmacophores for
virtual screening.
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Figure 1. Hydrophobic group features are represented by blue spheres, aromatic ring features are
represented by orange spheres, and hydrogen bond donor features are represented by green spheres.
(a) RL_5, RL_7, and RL_9 pharmacophores. (b) Pharmacophore of RL_5. (c) ROC curve of RL_5.
(d) Comparative fitness plots of active small molecules of RL_5, RL_7, and RL_9.

Table 1. Constructing 10 receptor–ligand complex-based pharmacophore models based on the
number of features, feature composition, sensitivity, specificity, ROC curve.

Pharmacophore Number of Features Feature Set Sensitivity Specificity Roc Curve

RL_1 5 AHHHR 0.47059 1 0.735
RL_2 5 AHHHH 0.29412 1 0.647
RL_3 4 HHHR 0.47059 1 0.735
RL_4 4 HHHH 0.47059 1 0.735
RL_5 4 AHHR 0.88235 1 0.941
RL_6 4 AHHH 0.82353 1 0.912
RL_7 4 AHHR 0.88235 1 0.941
RL_8 4 AHHH 0.88235 1 0.941
RL_9 4 AHHR 0.88235 1 0.941
RL_10 4 AHHH 0.82353 1 0.912
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Figure 2. Hydrophobic group features are indicated by blue spheres and hydrogen bond donor fea-
tures are indicated by green spheres. (a) RL_6, RL_8, and RL_10 pharmacophores. (b) RL_8 phar-
macophore. (c) ROC curve of RL_8. (d) Comparative fitness plots of active small molecules of RL_6, 
RL_8, and RL_10. 
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compounds were previously pre-processed, utilizing the Ligand Pharmacophore Map-
ping module in Discovery Studio 2019. First, the marine natural compound library was 
screened using RL_5, resulting in 9349 remaining small molecules. Then, RL_8 was uti-
lized to screen the remaining molecules, and the final 4922 small molecules were used for 
the next step. 

2.3. Docking 

Molecular docking is the ideal technique for investigating the optimal binding mode 
of a compound to a target. Therefore, in order to further screen compounds with good 
target inhibitory activity, we used the Ligand Docking module of Schrodinger Maestro 

Figure 2. Hydrophobic group features are indicated by blue spheres and hydrogen bond donor
features are indicated by green spheres. (a) RL_6, RL_8, and RL_10 pharmacophores. (b) RL_8
pharmacophore. (c) ROC curve of RL_8. (d) Comparative fitness plots of active small molecules of
RL_6, RL_8, and RL_10.

2.2. Pharmacophore-Based Virtual Screening

RL_5 and RL_8 were imported into Discovery Studio, and 52,765 marine natural
compounds were previously pre-processed, utilizing the Ligand Pharmacophore Mapping
module in Discovery Studio 2019. First, the marine natural compound library was screened
using RL_5, resulting in 9349 remaining small molecules. Then, RL_8 was utilized to screen
the remaining molecules, and the final 4922 small molecules were used for the next step.

2.3. Docking

Molecular docking is the ideal technique for investigating the optimal binding mode
of a compound to a target. Therefore, in order to further screen compounds with good
target inhibitory activity, we used the Ligand Docking module of Schrödinger Maestro
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11.8 and the Libdock module of Discovery Studio to screen 4922 small molecules with
promising potentials for drug discovery against LCN2 protein (PDB ID: 5NKN).

The Schrödinger docking results demonstrated that 4883 small molecules could be
successfully docked, of which 230 compounds exhibited superior docking results compared
to the positive control Compound A (LibDockScore = −10.994). Based on the principle that
lower Schrödinger docking result scores corresponded to better activity, we selected the
top 40 compounds with the best docking scores, among which the best score was −14.382
and the lowest score was −12.319.

The Discovery Studio docking results demonstrated that 4922 small molecules could
be successfully docked, of which 1230 compounds exhibited superior docking results
compared to the positive control Compound A (LibDockScore = 108.36). According to the
principle that the higher score for Discovery Studio docking results corresponds to better
activity, we selected the top 40 compounds with the best docking scores, among which the
best score was 171.933 and the lowest score was 146.222.

By screening the top 40 compounds with the best docking scores from the 2 software
programs, it was found that only 6 compounds could pass the docking analysis of the
2 different docking programs at the same time, as shown in Table 2, namely, Compound
50616, Compound 50617, Compound 50618, Compound 44879, Compound 46563, and
Compound 69081. Thus, these six compounds have great potential to be LCN2 inhibitors.

Table 2. Docking scores for six candidate compounds.

Compound Schrödinger Discovery Studio

44879 −13.595 151.966
46563 −12.384 150.88
50616 −12.881 158.605
50617 −12.41 156.421
50618 −12.943 156.766
69081 −12.976 146.947

positive control A −10.994 108.36

2.4. Fragment Optimization

Skeleton jumping involves the substitution of the central skeleton of a ligand with a
new moiety that possesses comparable functionalities, aimed at improving the properties
of an existing compound or discovering entirely unprecedented compounds exhibiting
similar functions. By applying this method, based on a full consideration of activity, it is
possible to design completely new drug molecules that break through patent protection,
have novel structures, and may improve pharmacokinetic properties.

According to the analysis of docking results, 2-methylpropan-1-amine
(2-methylpropan-1-amine) in Compound 44879 did not form hydrogen bonding with the
receptor and the fragment was small, so we replaced this fragment, as shown in Figure 3a.
After the replacement, a total of three new small molecules were generated.

According to the analysis of docking results, 3,6-dimethoxy-2-methyltetrahydro-2H-
pyran-4-ol (3,6-dimethoxy-2-methyltetrahydro-2H-pyran-4-ol) in Compound 46563 formed
an unfavorable collision with ARG130, so we replaced this fragment, as shown in Figure 3b.
After the replacement, a total of 18 new small molecules were generated.

According to the analysis of docking results, 1,1-dimethyl-3-propylguanidine
(1,1-dimethyl-3-propylguanidine) in Compound 50616 formed an unfavorable collision
with GLY40, but it also formed hydrogen bonding interactions with PHE133 and ASN39,
so we did not select this fragment for replacement. Among them, isopentane (isopentane)
forms fewer interactions with the receptor and has no hydrogen bonding interactions, so
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we selected isopentane (isopentane) for replacement, as shown in Figure 3c. After the
replacement, a total of 96 new small molecules were generated.
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Mar. Drugs 2025, 23, 24 8 of 21

According to the analysis of docking results, (Z)-2-methyl-1-propylguanidine ((Z)-
2-methyl-1-propylguanidine) in Compound 50617 formed an unfavorable collision with
GLY40, so we selected this fragment for replacement, as shown in Figure 3d. After the
replacement, a total of 98 new small molecules were generated.

According to the analysis of docking results, 1,1-dimethyl-3-propylguanidine in Com-
pound 50618 formed one unfavorable collision with GLY40, so we selected this fragment
for replacement, as shown in Figure 3e. After the replacement, a total of 98 new small
molecules were generated.

According to the analysis of docking results, 3-methoxy-5-methylphenol (3-methoxy-
5-methylphenol) in Compound 69081 formed one unfavorable collision with GLN69, so
we selected this fragment for replacement, as shown in Figure 3f. After the replacement, a
total of 97 new small molecules were generated.

In summary, the backbone leaping of the six candidate compounds, with the desire
to find compounds with better interactions with protein LCN2, yielded 420 results. These
compounds were visually inspected and all had better interaction with protein LCN2;
compounds labeled as HIT were retrieved and stored for further evaluation.

2.5. Docking

Molecular docking tools play a pivotal role in structure-based screening and the
examination of interaction forces between protein and ligands. In order to further verify
the reliability of our chosen structures, we used Schrödinger 11.8 and Discovery Studio
2019 software for docking, docked 420 small molecules obtained after backbone jump
to LCN2, and a total of 420 docking results were obtained. The compounds with better
docking scores than those before skeleton jump were screened out, and there were three
results, namely, Compound 44879_4, Compound 69081_38, and Compound 69081_50; the
skeleton jump subplots of these three compounds are shown in Tables 3 and 4. By analyzing
the two-dimensional interaction diagrams of these five complexes, it can be found that
these five compounds are able to form a certain number of hydrogen bonds as well as
hydrophobic interactions, etc., with the residues of the LCN2 protein. It is obvious that
the abundant types of interactions between these three compounds and proteins make
the docking effect better than that of the original compounds. The docking results are
deemed reliable based on the interaction analysis, and the selected compounds can thus be
subjected to further analysis. This will provide a theoretical basis for the drug development
of LCN2.

Table 3. Compound 44879 with Compound 44879_4 structures and Libdock Score.

Compound Structure Discovery Studio Schrödinger

44879

Mar. Drugs 2025, 23, x  8 of 23 
 

 

According to the analysis of docking results, (Z)-2-methyl-1-propylguanidine ((Z)-2-
methyl-1-propylguanidine) in Compound 50617 formed an unfavorable collision with 
GLY40, so we selected this fragment for replacement, as shown in Figure 3d. After the 
replacement, a total of 98 new small molecules were generated. 

According to the analysis of docking results, 1,1-dimethyl-3-propylguanidine in 
Compound 50618 formed one unfavorable collision with GLY40, so we selected this frag-
ment for replacement, as shown in Figure 3e. After the replacement, a total of 98 new small 
molecules were generated. 

According to the analysis of docking results, 3-methoxy-5-methylphenol (3-methoxy-
5-methylphenol) in Compound 69081 formed one unfavorable collision with GLN69, so 
we selected this fragment for replacement, as shown in Figure 3f. After the replacement, 
a total of 97 new small molecules were generated. 

In summary, the backbone leaping of the six candidate compounds, with the desire 
to find compounds with better interactions with protein LCN2, yielded 420 results. These 
compounds were visually inspected and all had better interaction with protein LCN2; 
compounds labeled as HIT were retrieved and stored for further evaluation. 

2.5. Docking 

Molecular docking tools play a pivotal role in structure-based screening and the ex-
amination of interaction forces between protein and ligands. In order to further verify the 
reliability of our chosen structures, we used Schrödinger 11.8 and Discovery Studio 2019 
software for docking, docked 420 small molecules obtained after backbone jump to LCN2, 
and a total of 420 docking results were obtained. The compounds with better docking 
scores than those before skeleton jump were screened out, and there were three results, 
namely, Compound 44879_4, Compound 69081_38, and Compound 69081_50; the skele-
ton jump subplots of these three compounds are shown in Tables 3 and 4. By analyzing 
the two-dimensional interaction diagrams of these five complexes, it can be found that 
these five compounds are able to form a certain number of hydrogen bonds as well as 
hydrophobic interactions, etc., with the residues of the LCN2 protein. It is obvious that 
the abundant types of interactions between these three compounds and proteins make the 
docking effect better than that of the original compounds. The docking results are deemed 
reliable based on the interaction analysis, and the selected compounds can thus be sub-
jected to further analysis. This will provide a theoretical basis for the drug development 
of LCN2. 

Table 3. Compound 44879 with Compound 44879_4 structures and Libdock Score. 

Compound Structure Discovery Studio Schrodinger 

44879 

 

151.966 -13.595 

44879_4 154.759 -15.704 

151.966 −13.595

44879_4

Mar. Drugs 2025, 23, x  8 of 23 
 

 

According to the analysis of docking results, (Z)-2-methyl-1-propylguanidine ((Z)-2-
methyl-1-propylguanidine) in Compound 50617 formed an unfavorable collision with 
GLY40, so we selected this fragment for replacement, as shown in Figure 3d. After the 
replacement, a total of 98 new small molecules were generated. 

According to the analysis of docking results, 1,1-dimethyl-3-propylguanidine in 
Compound 50618 formed one unfavorable collision with GLY40, so we selected this frag-
ment for replacement, as shown in Figure 3e. After the replacement, a total of 98 new small 
molecules were generated. 

According to the analysis of docking results, 3-methoxy-5-methylphenol (3-methoxy-
5-methylphenol) in Compound 69081 formed one unfavorable collision with GLN69, so 
we selected this fragment for replacement, as shown in Figure 3f. After the replacement, 
a total of 97 new small molecules were generated. 

In summary, the backbone leaping of the six candidate compounds, with the desire 
to find compounds with better interactions with protein LCN2, yielded 420 results. These 
compounds were visually inspected and all had better interaction with protein LCN2; 
compounds labeled as HIT were retrieved and stored for further evaluation. 

2.5. Docking 

Molecular docking tools play a pivotal role in structure-based screening and the ex-
amination of interaction forces between protein and ligands. In order to further verify the 
reliability of our chosen structures, we used Schrödinger 11.8 and Discovery Studio 2019 
software for docking, docked 420 small molecules obtained after backbone jump to LCN2, 
and a total of 420 docking results were obtained. The compounds with better docking 
scores than those before skeleton jump were screened out, and there were three results, 
namely, Compound 44879_4, Compound 69081_38, and Compound 69081_50; the skele-
ton jump subplots of these three compounds are shown in Tables 3 and 4. By analyzing 
the two-dimensional interaction diagrams of these five complexes, it can be found that 
these five compounds are able to form a certain number of hydrogen bonds as well as 
hydrophobic interactions, etc., with the residues of the LCN2 protein. It is obvious that 
the abundant types of interactions between these three compounds and proteins make the 
docking effect better than that of the original compounds. The docking results are deemed 
reliable based on the interaction analysis, and the selected compounds can thus be sub-
jected to further analysis. This will provide a theoretical basis for the drug development 
of LCN2. 

Table 3. Compound 44879 with Compound 44879_4 structures and Libdock Score. 

Compound Structure Discovery Studio Schrodinger 

44879 

 

151.966 -13.595 

44879_4 154.759 -15.704 154.759 −15.704



Mar. Drugs 2025, 23, 24 9 of 21

Table 4. Compound 69081, Compound 69081_38, Compound 69081_50 structures and Libdock Score.

Compound Structure Discovery Studio Schrödinger

69081
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2.6. Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) Analysis

Predictions of the biological activity and toxicity of the five compounds from the initial
screening were performed using the online tool SwissADME, as shown in Table 5. The
table shows only some of the properties of the five compounds obtained from the screening.
Of the five compounds selected, all compounds were non-blood–brain barrier penetrating.
The Lipinski rule for the evaluation of durability consists of 5 main principles that should
be met if a compound is considered to have good formulation properties: relative molecular
mass less than 500, number of hydrogen bond donors less than 5, number of hydrogen bond
acceptors less than 10, lipid–water partition coefficient less than 5, and number of rotatable
bonds less than or equal to 10 [21]. Among the five compounds selected for ADME property
analysis, only Compound 69081_38 and Compound 69081_50 met the above five rules and
had good gastrointestinal absorption, as shown in Table 5. Compound 69081_38 has a
relative molecular mass of 404.41, 4 hydrogen bond donors, 8 hydrogen bond acceptors,
5 rotatable bonds, 5 iLOBs, and 5 rotatable bonds. Compound 69081_38 has a relative
molecular mass of 404.41, 4 hydrogen bond donors, 8 hydrogen bond acceptors, 5 rotatable
bonds in the compound, an iLOGP value of 2.16, and an ESOL value of −2.83. Compound
69081_50 has a relative molecular mass of 404.41, 4 hydrogen bond donors, 8 hydrogen
bond acceptors, 5 rotatable bonds in the compound, an iLOGP value of 2.20, and an ESOL
value of −2.83. The two compounds above showed good ADME properties, and, therefore,
the ADME screened Compound 69081_50 was found to be good for ADME. The above two
compounds showed good ADME properties, so ADME screening resulted in Compound
69081_38 and Compound 69081_50 having good drug-forming properties, as shown in
Figure 4, which can be used for the next step of analysis.
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Table 5. Three compounds ADME results.
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molecular dynamics simulations. The RMSF of protein residues quantifies the average 
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Figure 4. Hexagonal range distribution of ADME properties of candidate Compounds 44879_4,
69081_38, and 69081_50. (a) Distribution of ADME properties of Compound 44879_4; (b) Dis-
tribution of ADME properties of Compound 69081_38; (c) Distribution of ADME properties of
Compound 69081_50.
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2.7. Molecular Dynamics

RMSD quantifies the deviation of atoms from their mean positions and the extent
of their displacement. The root-mean-square deviation (RMSD) of ligands relative to the
protein is illustrated in Figure 5a. The RMSD of 69081_50 began to stabilize after 10 ns. The
average RMSD from 10 ns to 100 ns was 0.48689. The RMSD of 69081_38 and the RMSD
of positive control Compound A are less stable. They all show large fluctuations in 100 ns
molecular dynamics simulations. The RMSF of protein residues quantifies the average
displacement of these residues from their mean positions within the protein conformation,
providing insights into their degree of mobility and thus reflecting the atomic degrees of
freedom. As shown in Figure 5b, the RMSF values for complexes ranged from 0.0547 nm to
1.8203 nm. Overall, the RMSF trends were generally consistent, but Compound 69081_50
had higher RMSF values than Compound 69081_38 and positive control Compound A. The
RMSD and RMSF data showed an excellent stability of Compound 69081_50 to the protein.
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Figure 5. Results of the molecular dynamics simulations of protein–ligand complexes. (a) RMSD
diagram of protein–ligand complex. (b) RMSF diagram of protein–ligand complex. (c) Radius of
gyration (Rg) graph for complexes with respect to 100 ns of molecular dynamics. (d) The hydrogen
bond of protein with Compound 69081_38. (e) The hydrogen bond of protein with Compound
69081_50. (f) The hydrogen bond of protein with Compound A.

The radius of gyration (Rg) parameter indicates the rigidity and compactness of the
complex structures. The g_gyrate tool was used to assess protein compactness for two
inhibitors. As depicted in Figure 5c, the protein–ligand complex Rg variation of the three is
similar, confined in the range of 1.54413 nm to 1.64644 nm.

Hydrogen bonds are crucial for the stability of protein–ligand complexes and represent
the strongest non-covalent interactions. A 100 ns molecular dynamics simulation revealed
that LCN2-69081_38 and LCN2-69081_50 displayed a greater count of hydrogen bonds
when compared to LCN2-A, in a comparative analysis of hydrogen bond formation in
protein–ligand and protein–positive compound complexes. As shown in Figure 5d–f, the
average number of hydrogen bonds for LCN2-69081_38 was 1.43071 and 1.42372 for LCN2-
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69081_50. LCN2-A has the lowest number of hydrogen bonds, with an average of 0.20816.
Based on the above analysis, we chose 69081_50 for further research.

2.8. MM-PBSA

To authenticate the binding affinity predicted by docking and molecular dynamics
simulations, an assessment of the complex’s binding free energy was undertaken. The
Poisson–Boltzmann Surface Area (MM-PBSA) methodology serves as an efficacious and
trustworthy approach for delving into the intricacies of molecular mechanics, enabling
precise computations of the binding free energy in complex systems. The lower the free
energy resulting from protein and compound binding, the better the ligand binds to the
protein. Based on the results obtained in Table 6, we can observe that all the ligands have
negative values. Ligand 69081_50 has a binding energy of −102.785 kJ/mol, which results
in a better value compared to A of −76.511 kJ/mol. This is largely influenced by the van der
Waals force. Compound 69081_50 is embedded in the pocket of the target active residue,
forming more interaction forces with the receptor, further enhancing the binding with
the target body. Specifically, the target–ligand interactions are mainly hydrogen-bonding
interactions. PHE41, PHE68, PHE71, MET73, TRP106, PHE123, and PHE134 are all critical
H-bond residues.

Table 6. Binding free energies of two ligands.

Compound Van Der Waals
Energy

Electrostattic
Energy

Polar Solvation
Energy SASA Energy SAV Energy WCA Energy Binding Energy

69081_50 −154.108 ± 17.988 −12.725 ± 12.112 76.153 ± 52.103 −12.105 ± 9.125 0.000 ± 0.000 0.000 ± 0.000 −102.785 ± 96.703
A −159.237 ± 91.219 −23.169 ± 12.274 121.520 ± 56.482 −15.625 ± 8.974 0.000 ± 0.000 0.000 ± 0.000 −76.511 ± 68.704

Compound 69081_50, as shown in Figure 6, is anchored at residues VAL33, GLY38-
PHE41, MET51, THR54, TYR56, VAL66, PHE68-PHE71, TRP106, PHE123, ASP132-PHE134,
THR136, and TYR138, which form in the target active pocket. As can be observed from
the three-dimensional structure of the complexes, Compound 69081_50 is substantially
embedded in the pocket of the target active residues, which leads to the formation of more
van der Waals interactions with the receptor, further enhancing binding to the target. In
particular, the interactions between the ligand and the target were predominantly hydrogen
bonding interactions, Pi–Pi Stacked, and Alkyl.

It has been mentioned in the literature that LCN2 has a highly similar eight-stranded
antiparallel symmetric β-barrel folded structure to lipocalin-type PGD2 synthase protein
(L-PGDS), a member of the lipofuscin family, human α1-microglobulin (A1M), and retinol-
binding protein 4 (RBP4) [22]. To prevent the potential inhibitor Compound 69081_50
from possibly binding to these compounds and thus causing off-target effects, we docked
Compound 69081_50 with the other proteins mentioned above. First, the protein structures
of L-PGDS (PDBID: 4ORS), A1M (PDBID: 3QKG), and RBP4 (PDBID: 2WQ9) were down-
loaded from the PDB website (https://www.rcsb.org/, accessed on 14 December 2024).
Then, Discovery Studio was applied to LibDock the Compound 69081_50 to the above
three proteins. As shown in Table 7, the docking scores of the potential inhibitor 69081_50
with LCN2 were significantly higher than those of other lipofuscin family members, which
indicated the specificity of Compound 69081_50 as an inhibitor of LCN2.

https://www.rcsb.org/
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Figure 6. (a) Three-dimensional binding pattern of Compound 69081_50 to LCN2 protein. Carbon–
hydrogen bonds are shown by pale green dashed lines, hydrogen bonds are shown by green dashed
lines, alkyl bonds are shown by pink dashed lines, and Pi interactions are shown by magenta dashed
lines. (b) The small green molecule is Compound 69081_50, showing the binding of Compound
69081_50 to the LCN2 protein pocket. (c) Schematic of the two-dimensional interaction of Compound
69081_50 with the LCN2 protein.

Table 7. LibDock docking scores of the small molecule 69081_50 with lipocalin 2 (LCN2), lipocalin-
type PGD2 synthase protein (L-PGDS), human α1-microglobulin (A1M), and retinol-binding
protein 4 (RBP4).

Protein LibDockScore

LCN2 158.5340
L-PGDS 123.9620

A1M 96.1472
RBP4 78.9032

3. Discussion
LCN2 is a human lipocalcin 2, also referred to as neutrophil gelatinase-associated

lipocalcin. Numerous biological processes have been shown to involve it, encompassing
iron and fatty acid transport, cellular migration and survival, inflammatory reactions, and
the triggering of apoptosis. LCN2 is also a key factor in various signaling pathways such
as PI3K/AKT/NF-κB, HIF-1α/Erk. and MafG/MYH9-LCN2, which create conditions
for tumorigenesis and progression [4,10]. This has prompted further research into LCN2
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inhibitors. In 2020, LCN2 inhibitors designed with doxorubicin as a scaffold based on a
molecular docking approach were reported. These inhibitors have inhibited the progression
of LCN2-associated diseases [23]. Despite the existence of numerous LCN2-inhibitory
compounds that have been granted approval for experimental use, there is currently a lack
of clinically therapeutic LCN2 molecules. Consequently, there is a need for the identification
of additional options and possibilities at any given time. The advent of rapid computer
technology has facilitated the extensive utilization of computer-aided drug design (CADD)
for the expeditious identification of molecules with favorable target binding potential
from a vast array of compounds [24]. This has led to notable cost savings on an array of
experimental consumables [25]. In light of the aforementioned factors, the present study
was conducted with the primary objective of implementing large-scale virtual screening
based on molecular structure.

In this study, we first constructed a receptor–ligand complex-based pharmacophore
model and selected RL_5 with Feature Set AHHR and RL_8 with Feature Set AHHH for
the virtual screening of 52,765 compounds by analyzing the subject operating characteristic
(ROC) curves of the pharmacophore model and comparing the fitness. The molecular
docking scores were next screened to obtain the six best-scoring compounds, which helps
to quickly screen molecules with potential enzyme binding activity from a large number of
compounds, thus reducing the cost of subsequent identification. To obtain the structures
of the compounds that interacted better with the LCN2 protein, backbone leaps were
performed. The three compounds with the best binding effect were subjected to ADMET
(Absorption, Distribution, Metabolism, Excretion, and Toxicity) characterization to predict
their drug-forming properties. Following years of development, ADME technology has
become a significant approach for the high-throughput virtual prediction and design
of new drug candidates. It offers the benefits of greater convenience and reduced cost
compared to the traditional method of utilizing animal experiments for ADME property
studies. For example, one study used the ADME technique to explore the screening of
three HIT compounds that showed better predictions of biological activity and toxicity
than positive control compounds [26]. Another study used ADME technique to evaluate
toxicological parameters to further screen molecules closer to the drug [18]. In our study,
two compounds were identified in ADME characterization as having more desirable drug-
forming properties and higher gastrointestinal absorption with some potential for drug
formation. Finally, in order to assess the stability of these two candidate molecules in
binding to proteins, we performed molecular dynamics calculations, in which the trajectory
analysis of the RMSD and RMSF of Compound 69081_50 showed that the compound
was able to remain in the protein pocket with minimal fluctuations and stable hydrogen
bonding interactions during 100 ns simulations, which indicated that the compound has
better stability. This further confirms that Compound 69081_50 has better binding ability to
LCN2 protein. Subsequent MM-PBSA calculations also showed that Compound 69081_50
is largely affected by van der Waals forces and its binding free energy results are in good
agreement with the expected stability. In addition, docking analyses show that Compound
69081_50 binds other structurally similar members of the lipofuscin family significantly
less well than LCN2, making the potential inhibitor Compound 69081_50 specific as an
inhibitor of LCN2.

In summary, we successfully pinpointed a promising inhibitor of LCN2 among a vast
library of 52,765 diverse and highly bioactive marine natural products, leveraging the
power of computer-assisted virtual screening to streamline our search. This will provide a
new template for the future optimization of LCN2-associated tumor therapeutic structures.
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4. Materials and Methods
4.1. Protein Preparation

The 3D structure of the LCN2 protein was selected and downloaded from the PDB
website (https://www.rcsb.org/, accessed 5 April 2024) at a resolution of 2.20 Å (PDBID:
5NKN). This was then imported into Schrödinger Maestro 11.8 for preliminary protein
processing. Specifically, the protein structure was processed for the addition of hydrogen
and missing side chains. To refine the protein structure, the PROKA prediction tool was
utilized to optimize the protonation state of residues at pH 7.0, enhancing hydrogen
bonding capabilities. Additionally, the heavy atoms of the protein were aligned to achieve
an RMSD of 0.3 Å, followed by minimization using the OPLS_2005 force field, promoting
relaxation throughout the entire structural framework. The protein minimization process,
inclusive of all atoms and pure hydrogen, utilizes a conditional termination criterion,
dependent on the root-mean-square deviation of heavy atoms from their starting positions.
Simultaneously, during the minimization phase, all water molecules are removed while
optimizing hydrogen bonding and retaining essential water molecules. Following this, the
refined protein molecules are employed for screening LCN2 inhibitors.

4.2. Small Molecule Preparation

In this study, the downloaded LCN2 protein (PDBID: 5NKN) was isolated from the
small molecule ligands, which were also extracted from the Seaweed Metabolite Database
(SWMD) (http://www.swmd.co.in, accessed on 5 April 2024), the Comprehensive Marine
Natural Products Database (CMNPD) (https://www.cmnpd.org/, accessed on 5 April
2024), and the Marine Natural Products Database (MNP) (http://docking.umh.es/, ac-
cessed on 5 April 2024). A total of 527,650 marine natural compounds were collected and
their 3D structures were imported into Schrödinger Maestro 11.8 for further molecular
preparation using the Ligprep module. At a pH range of 7.0 ± 2.0, an ionizer was utilized
to generate the protonated and ionized configurations of diverse stereoisomers, analogs,
and ligands. Subsequently, the energy of the ligands was minimised using the OPLS2005
force field.

To collect the inhibitors of LCN2, we used the large database ChEMBL
(https://www.ebi.ac.uk/chembl/g/#search_results/all/query=LCN2, accessed on 10
April 2024) to find them and collected six active small molecules. Due to the small number
of active small molecules, we collected 11 more LCN2 inhibitors in the literature [23], which
were downloaded from the database PubChem (https://pubchem.ncbi.nlm.nih.gov/, ac-
cessed on 10 April 2024) for the next study. The isolation of small molecule ligands
from LCN2 protein (PDBID: 5NKN), and the uploading of small molecule ligands to the
online website DUD-E (http://dude.docking.org/, accessed on 10 April 2024), were per-
formed, and a total of 51 bait molecules in SMILES format were generated. The format
of the small molecules was converted to SDF format by the Openbabel-3.1.1 software for
subsequent work.

4.3. Pharmacophore Models
4.3.1. Establishment and Validation of Pharmacophore Models

A pharmacophore is a model based on pharmacophore characterization elements.
In recent years, the advent of compound databases and the concomitant development
of computer technology has led to the widespread adoption of the virtual screening of
databases with pharmacophore models. This has become one of the most important means
of discovering lead compounds. We imported LCN2 protein (PDBID: 5NKN) into Discovery
Studio 2019, set the position where the ligand small molecule is located in the protein as
the active center, set the radius to 13, and applied Prepare Protein to preprocess the LCN2

https://www.rcsb.org/
http://www.swmd.co.in
https://www.cmnpd.org/
http://docking.umh.es/
https://www.ebi.ac.uk/chembl/g/#search_results/all/query=LCN2
https://pubchem.ncbi.nlm.nih.gov/
http://dude.docking.org/
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complex. In order to generate a receptor–ligand pharmacophore model, the following
settings were applied: Maximum Paracophores = 10, Minimum Features = 4, Maximum
Features = 6, and Water Molecules = False. The parallel processing was set to False, while
the validation was set to True and the unfolded validation was enabled. To achieve the goal
of developing a pharmacophore model rooted in receptor–ligand complexes, we embarked
on a process that involved utilizing 17 LCN2 inhibitors as the active ligands and the
51 bait-set molecules as the inactive counterparts. The resulting model was then validated.

4.3.2. Virtual Screening Based on Pharmacophores

A total of 10 pharmacophores were generated in the above steps, as shown in Figure 7,
and the 2 pharmacophores with better results were selected as RL_5 (with the Feature Set
of AHHR) and RL_8 (with the Feature Set of AHHH) to perform the virtual screening
based on pharmacophores for 52,765 marine natural compounds. We utilized the Ligand
Pharmacophore Mapping module in Discovery Studio 2019, specifically configuring it with
the “Best Mapping Only” option activated, ensuring that “Maximum Omitted Features”
was zeroed, and selecting both the “Fitting Method” and “Parallel Fitting Method” as
“Rigid”, thereby optimizing the process for precision. Furthermore, we opted to disable
the “Parallel Processing” feature, maintaining the default settings for all other parameters,
in order to commence the virtual screening of marine natural compounds, guided by the
pharmacophore model. In the subsequent investigation, a total of 4922 marine natural
compounds underwent extensive screening.
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4.4. Molecular Docking
4.4.1. Molecular Docking Using Maestro

A collection of studies have demonstrated that molecular docking is an effective
method for elucidating the mechanism of target–ligand interaction [27–30]. To further iden-
tify LCN2 inhibitors, ultra-precision docking (XP) was conducted on selected compounds
using the LCN2 structure (PDBID: 5NKN) as a reference. To mitigate the potential influence
of the nonpolar region within the protein receptor, the receptor’s van der Waals radius
scaling factor was calibrated to 1.0, while the partial charge cutoff threshold was adjusted
to 0.25. Furthermore, a receptor lattice of dimensions 13 × 13 was constructed with the
proto-ligand situated at the centre. For the further evaluation of potential inhibitors of
LCN2, the ligand docking tool of the Glide module for Maestro 11.8 was used. However,
to ensure the reliability of the structure-based virtual screening process, an additional
precision docking (XP) was conducted on the same LCN2 target protein (PDBID: 5NKN)
at its eutectic ligand binding site. Before starting the actual molecular docking, this was
used to validate the performance of the Glide docking tool. The docked small molecules
were superimposed on the original eutectic ligand, and the root-mean-square deviation
(RMSD) between them was calculated. The tool was deemed to be a reliable molecular
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docking tool if the RMSD value was less than 2.0 Å. The RMSD value of the docked small
molecules was calculated as the RMSD of the original eutectic ligand. During the validation
process, it was found that the re-docked structural attitude is very close to the original
eutectic ligand, as shown in Figure 8a. The initial eutectic ligand is marked in red, whereas
the repositioned ligand is denoted in blue. The marine natural products were subjected
to the next phase of the study upon completion of the validation process. To attenuate
the potential energy of the ligand’s nonpolar segment, the small molecules derived from
marine natural compounds undergoing screening were configured with a scaling factor of
0.80 and a partial charge cut-off threshold of 0.15. For flexible ligand molecules, the protein
engages in further ultra-precise docking (XP) procedures with natural marine compounds.
Furthermore, the proto-ligand of LCN2, designated as Compound A, was employed as a
positive control small molecule for structure-based virtual screening, thereby facilitating
the subsequent phase of virtual screening.
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4.4.2. Molecular Docking Using Discovery Studio

Molecular docking represents a firmly established computational approach, exten-
sively utilized in drug discovery endeavors. Docking emerges as a potent instrument,
proficient in pinpointing innovative therapeutic compounds, anticipating ligand–target
engagements at the molecular level, and elucidating conformation–activity relationships
(SARs), all without any prerequisite knowledge of the chemical makeup of other target
modulators [31,32]. Moreover, molecular docking serves as a framework for designing
pharmaceutical agents, incorporating the receptor’s properties and the receptor–drug in-
teraction patterns. This theoretical simulation approach is extensively utilized to delve
into intermolecular interactions and accurately forecast the mode of binding along with
the associated affinity. Recently, molecular docking has emerged as a key technology in
computer-assisted drug research endeavors. In order to screen efficient LCN2 inhibitors
more accurately, we utilized LibDock docking in Discovery Studio 2019 for the next high-
throughput screening. Firstly, LCN2 protein (PDBID: 5NKN) was imported into Discovery
Studio, the position where the ligand small molecule is located in the protein was set as
the active center, and the radius was set to 13. The Dock Ligands (LibDock) module was
opened; the Number of Hotspots is set to 100, the Docking Tolerance is set to 0.25, Docking
Preferences is set to High Quality, Conformation Method is set to FAST, Minimization
Algorithm is set to Do not minimize, Parallel Processing is set to False, and the rest were
set to default values. Molecular docking was performed on the ligand small molecules
in the proteins and 4922 marine natural compounds screened. Prior to this, to verify the
gap between the redocked ligand small molecule and the original ligand conformation, we
superimposed and calculated the RMSD of the two small molecules, as shown in Figure 8b.
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After the docking was completed, the ligand small molecules in the protein were used as a
positive control to screen the compounds for the next step.

4.5. Fragment Optimization

After analyzing the docking results from both software, six small molecules were
selected for fragment optimization. We first selected the replacement fragments for the
small molecules and then used the default fragment library of Discovery Studio 2019
(1,495,478 fragments in total) to perform the fragment replacement calculation. Open
Replace Fragments in Lead Optimization in Discovery Studio, and, in Fragment Libraries,
select One Attachment (Linear), One Attachment (Cyclic), Two Attachments (Linear),
Two Attachments (Cyclic), Three Attachments (Linear), Three Attachments (Cyclic), then
set Generate Fragment Conformations to False and Minimization to False. Set Generate
Fragment Conformations to False, Minimization to False, Parallel Processing to False,
expand Advanced, Break Small Fragments to False, Number of Attachments to One, Two,
Three, Maximum Number of Atoms to 14, Skip Terminal Bonds False, Prioritize Ligands to
True, Maximum Enumerations to 20,000, and Maximum Out of Plane Angle to 10. After
setting the above parameters, perform fragment substitution for 6 small molecules. After
the substitution was completed, LibDock docking was performed, and the molecules with
better results were taken for the next step in the study.

4.6. ADME

In addition to the capacity of small molecules to bind to the target, the stability of their
metabolic properties in vivo is also a significant indicator of their potential to become a drug.
Consequently, it is imperative to ascertain the ADMET characteristics of the compounds
in question, with a view to eliminating those with an inadequate capacity to form drugs
from the list of alternative compounds. The conventional techniques for evaluating ADME
characteristics are conducted through the utilisation of cellular or animal models. However,
for the assessment of a substantial number of compounds, these methodologies are not
sufficiently efficient or cost-effective [33]. In this study ADME (Absorption, Distribution,
Metabolism, and Excretion) screening was performed using the SwissADME online website
(http://www.swissadme.ch/, accessed on 10 April 2024) [21], which predicts a range of
properties of small molecules by importing smile files of small molecules that include
physicochemical parameters, pharmacokinetic profiles, drug similarity, and medicinal
chemistry. The accuracy of the predictions ranged from 72% to 94%, meaning that this can
help to evaluate the similarity of small molecules and to determine the prospects of small
molecules to become orally active drugs in humans.

4.7. Molecular Dynamics

We conducted molecular dynamics (MD) simulations to evaluate the stability of
the binding between these two molecules and proteins [34,35]. Prior to the simulations,
the system was set up using GROMACS 2019.1, developed by Mark Abraham and his
team at Uppsala University, Stockholm University, and the Royal Institute of Technology in
Sweden [36]. The AMBER99SB-ILDN force field was utilized in the meticulous construction
of the protein’s intricate topological framework. The Bio2byte web server was employed
for the generation of topology files for molecules (https://www.bio2byte.be/, accessed
on 2 July 2024) [37]. The simulation utilized a cubic box with a 1.2 nm radius and the
SPC216 water model to apply periodic boundary conditions (PBCs) [38]. We performed
50,000 steps of energy minimization on the system, simulating it at a temperature of
300 Kelvin to optimize its configuration. Following this, the system underwent a rigorous
conditioning phase, either maintaining a constant temperature and volume (NVT ensemble)
or constant temperature and pressure (NPT ensemble) to ensure stability. Finally, MD

http://www.swissadme.ch/
https://www.bio2byte.be/
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simulations with a duration of 100 ns were carried out. Upon the completion of the
MD simulation, we analyzed the stability and fluctuations of the system by computing
the root-mean-square deviation (RMSD) and the root-mean-square fluctuation of atomic
positions (RMSF) from the extracted trajectory coordinates. Furthermore, the gmx-H-bond
analysis tool was employed to examine intermolecular hydrogen bonds between LCN2
and ligands [39,40].

4.8. MM-PBSA

The MM-PBSA method is a widely employed approach for calculating the free energy
of receptor–ligand binding. This technique involves determining the free energy difference
between the bound and unbound states of two solvated molecules or comparing free
energies among different solvated conformations of a single molecule [41]. The final
10 ns trajectories were extracted from the results of the dynamics simulation for subsequent
calculation. The binding free energy is described by the following equation.

Gbinding = Gcomplex − Gprotein + Gligand

5. Conclusions
Two pharmacophore models (RL_5 with Feature Set AHHR and RL_8 with Feature

Set AHHH) were developed using receptor–ligand complexes to screen a marine com-
pound database for potential drug candidates for targeting LCN2, a promising therapeutic
target for various diseases. A total of 4922 small molecules were selected for molecular
docking, with Compound A used as a positive control. After screening, six compounds
were subjected to skeleton jumping to increase potency. Three optimized compounds were
selected for ADMET property prediction based on molecular docking results. Two com-
pounds underwent 100 ns MD simulations to assess binding stability to LCN2. MM-PBSA
calculations on Compound 69081_50 showed good binding free energy results, suggesting
it as a potential novel covalent LCN2 inhibitor for targeted therapeutic interventions in
LCN2-associated diseases.
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