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Abstract: Fucoidan is a sulfated polysaccharide found in brown seaweed. Due to its
reported biological activities, including antiviral, antibacterial and anti-inflammatory activ-
ities, it has garnered significant attention for potential biomedical applications. However,
the direct relationship between fucoidan extracts’ chemical structures and bioactivities
is unclear, making it extremely challenging to predict whether an extract will possess a
given bioactivity. This relationship is further complicated by a lack of uniformity in the
recent literature in terms of the assessment and reporting of extract properties, yield and
chemical composition (e.g., sulfate, fucose, uronic acid and monosaccharide contents).
These inconsistencies pose significant challenges when directly comparing extraction tech-
niques across studies. This review collected data on extract contents and properties from
a selection of available studies. Where information was unavailable directly, efforts were
made to extrapolate data. This approach enabled a comprehensive examination of the
correlation between extraction techniques and the characteristics of the resulting extracts. A
holistic framework is presented for the selection of fucoidan extraction methods, outlining
key heuristics to consider when capturing the broader context of a seaweed bioprocess.
Future work should focus on developing knowledge within these heuristic categories,
such as the creation of technoeconomic models of each extraction process. This framework
should allow for a robust extraction selection process that integrates process scale, cost and
constraints into decision making. Key quality attributes for biologically active fucoidan
are proposed, and areas for future research are identified, such as studies for specific
bioactivities aimed at elucidating fucoidan’s mechanism of action. This review also sets out
future work required to standardize the reporting of fucoidan extract data. Standardization
could positively enhance the quality and depth of data on fucoidan extracts, enabling the
relationships between physical, chemical and bioactive properties to be identified. Recom-
mendations on best practices for the production of high-quality fucoidan with desirable
yield, characteristics and bioactivity are highlighted.

Keywords: fucoidan; seaweed; extraction; structure; bioactivity

1. Introduction
Fucoidan is a brown seaweed cell wall matrix polysaccharide that makes up approx-

imately 25–30% of brown seaweed’s dry weight [1,2]. Fucoidan’s biological functions
are a source of debate [3,4] including, among others, anti-desiccant and antioxidant roles,
and it is partly responsible for giving seaweed its mechanical strength and flexibility [5].
Fucoidan possesses a number of bioactive properties, which have been reported to span
from antiviral [6] to anti-inflammatory [7], anti-cancer [8] and anticoagulant [9] activities.
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A comprehensive summary of polysaccharides’ biological effects can be found in Fitton
et al. [10]. These bioactivities make fucoidan a molecule of great commercial interest, with
the global fucoidan market being valued at USD 30 million in 2022 [11].

Fucoidan is an anionic and water-soluble polysaccharide [12–14] mainly composed of
fucose monosaccharide units (up to 90%) [15,16]. It can also contain rhamnose, galactose,
xylose and mannose at varying concentrations [17,18], plus uronic acids such as galac-
turonic [19] and glucuronic acids [20]. Two possible structure types are reported in the
literature, mainly varying in the way monosaccharide units link with each other, with
α-(1-3) links in type 1 or alternating α-(1-3) and α-(1-4) links in type 2 [15,21]. Molecular
weights generally range between 10 and 10,000 kDa [19,22–25], corresponding to about
30 to 6000 monosaccharide units in a single molecule. It is a highly sulfated molecule
due to the abundance of sulfate ester groups (6–40%) [26,27], which imbues the molecule
with its characteristic negatively charged behavior. It has been suggested that sulfate
content [28–31] and molecular weight [30,32] are key extract characteristics of biologically
active fucoidans. However, the exact mechanisms behind these characteristics are a source
of debate; this is discussed in depth as part of Section 6.2.

The quality of industrial fucoidan products is heavily affected by an incredibly wide
range of factors, including biological and environmental aspects, as well as process-related
factors (Figure 1).
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Factors associated with preprocessing protocols, extraction methods and their op-
erating conditions (e.g., extraction time, temperature, pH, etc.), as well as purification
procedures, drastically affect the structure, composition and thus the bioactive properties
of extracts [33,34]. However, their precise effects remain unclear.
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Moving up the supply chain, biological and environmental factors directly influence
the seaweed and the profile of its fucoidan content. The most obvious is variation among
seaweed species [30], although similarities are reported among species belonging to the
same genus and/or family. For example, fucose content tabulated by Ponce and Stortz
widely ranged from as low as 34% for Ascophyllum nodosum [35] to well above 90% for vari-
ous Fucus sp. Harvesting location (geographic location) and season can also significantly
affect the seaweed polysaccharide content. Geographic location implies specific local envi-
ronmental factors that the seaweed is exposed to, e.g., shear conditions, water temperature,
salinity, nitrogen content and sunlight access [3]. For instance, seaweeds exposed to high
shear conditions caused by strong ocean currents tend to adapt to increase their mechanical
strength by modulating their polysaccharide profile (e.g., relative quantities of alginate,
laminarin and fucoidan) [36]. In this context, Ptak et al. demonstrated a variation in
sulfur content of about 25% among fucoidans extracted from F. vesiculosus harvested across
different geolocations (Denmark and France) [37]. Harvesting season also has a significant
effect on seaweed’s polysaccharide characteristics, likely associated with different weather
patterns such as solar irradiation and temperature. The same study from Ptak et al. also
analyzed fucoidan extracts from F. vesiculosus, F. serratus and F. evanescens harvested in
April, July and October, revealing a seasonal difference of up to 86% in sulfur content [37].
On the same note, Fletcher et al. [2] collected samples of F. vesiculosus, F. serratus and A.
nodosum every month for a year and analyzed the sulfate and fucose contents of fucoidan
extracts. The results highlighted deviations in fucose content between 13.6 and 21.7% and
of sulfate content between 14.3 and 59% throughout the seasons. Bruhn et al. suggested
that the selection of the correct harvesting time could increase the fucoidan yield by 2 to
2.6 folds [3]. Seaweed maturity has also been demonstrated to considerably affect polysac-
charide content, with more mature seaweeds generally having higher fucoidan contents.
Multiple explanations have been offered to justify this observation, such as prolonged
exposure to free radicals [38] and a higher relative proportion of reproductive tissues [3].

The consistent production of fucoidan products is a key driver of the seaweed-derived
product industry. While quality-controlled farmed seaweed can mitigate the influences of
biological and environmental factors, the variability in process-related factors remains a
major challenge. This variability also makes the comparison of different fucoidan products
from different vendors virtually impossible, hindering the application of fucoidan as a
bioactive substance in the medical field.

Overall, the relationship between extraction technique, the properties of the resulting
fucoidan product and its resultant bioactive properties is poorly established. Jayawardena
et al. [39] collected data to study the link between structure and available extraction tech-
niques, with focus on the anti-inflammatory properties of extracted fucoidans. However,
they could not find a direct correlation between process variables or extraction techniques
and extract contents [39]. Another influential review paper by Mensah et al. covered
the literature on extraction techniques and their implications on structure, but it did not
provide a link between the extraction conditions or the technique chosen and the resulting
fucoidan structure [27]. Luthuli et al. took a different approach by focusing on fucoidan’s
biological applications and their links to polysaccharide structure [21]. Unfortunately, the
implications between extraction technique, structure and bioactivity are rarely discussed
in the literature, as more focus is placed on qualitative discussions around extraction
techniques and their advantages and disadvantages.

The goal of this review is to critically assess all relevant information available on
fucoidan extraction methods, with particular attention on more recent extraction techniques,
and to attempt to draw a link between extraction methods and fucoidan properties. The
current literature landscape will be discussed first to place fucoidan extraction procedures
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into today’s context. Then, the state of the art of fucoidan extraction will be briefly covered,
followed by an in-depth analysis of alternative extraction methods, including their relevant
operating conditions and resulting extract properties. The entire literature available will
then be consolidated to draw out the main trends and characteristics associated with
the properties and quality of the fucoidan products obtained with different alternative
extraction methods. The paper will conclude with a summary of current challenges and
future opportunities to improve fucoidan production in light of the trends uncovered.

2. Bioprocessing for Fucoidan Production
Fucoidan production generally follows a standardized cascade of unit operations

(Figure 2), with some differences depending on the extracts’ desired properties and final
use. Starting from the harvested seaweed as raw input material, the first stage usually
involves a wash to remove dirt and loosen contaminant particulates, after which the
seaweed is usually dried to remove excess water, even though this is not a compulsory
step, and seaweed can be also processed in a partially dried or wet state. The seaweed is
then milled into a powder to increase the surface area-to-volume ratio and increase the
efficiency of the extraction procedure.
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After mechanical processing, a chemical pre-treatment is usually employed to re-
move specific classes of impurities and improve the quality of fucoidan extraction [12].
Traditional pre-treatment procedures are solvent-based, in which the milled seaweed is
soaked in a solvent such as ethanol, methanol or formaldehyde to remove polyphenols and
hydrophobic pigments (mostly chlorophylls) [12,40–43]. More recently, novel methods such
as high hydrostatic pressure and compressional puffing have been developed to lower the
solvent and energy requirements of the pre-treatment stage. Both methods create controlled
pressure shocks that break apart the cell wall of the milled seaweed, allowing for more
efficient impurity removal due to increased mass transfer rates [44,45].
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Two main classes of extraction methods are commonly distinguished (Figure 2). Tradi-
tional extraction approaches (often termed “conventional”) were developed over 100 years
ago and involve soaking seaweed harvests for long periods in harsh conditions, usually
in hot solvents at an extreme pH (either acidic or alkaline), to break apart the cell wall
and allow for the release of fucoidans. However, these methods are energy intensive
and require long extraction times and large amounts of solvents. Alternative methods,
often termed “novel” in the literature, have emerged in the last 30 years in the attempt
to increase the extraction yield and quality of extracted fucoidans while at the same time
reducing the energy and environmental burden associated with conventional extraction.
Alternative methods significantly differ in the physical means employed to break the cell
wall and include enzyme-assisted extraction (EAE), microwave-assisted extraction (MAE),
ultrasound-assisted extraction (UAE) and pressurized liquid extraction (PLE).

Independent of the extraction protocol selected, a complex mixture arises. The main
impurities, listed in Table 1, generally arise from co-extracted molecules, chiefly, polysaccha-
rides. The most abundant contaminant is alginate, an extremely abundant polysaccharide
accounting for 5–40% of seaweed dry weight [44,46]. Cellulose, hemicellulose and laminarin
are other important polysaccharides co-extracted with fucoidan. As well as polysaccharide
contaminants, a range of other compounds, including ions such as iodine, small molecules
such as phenolics and large proteins, are present.

Table 1. Typical monosaccharide and uronic acid contents of the three main seaweed polysaccharides
typically found in fucoidan extracts: fucoidan, alginate and laminarin. [17,47–49].

Extract Contents
Polysaccharide Source

Fucoidan Alginate Laminarin

M
on

os
ac

ch
ar

id
es Fucose ✓

Galactose ✓
Xylose ✓

Mannose ✓
Rhamnose ✓

Glucose ✓ ✓
Mannitol ✓

U
ro

ni
c

A
ci

ds

Glucuronic acid ✓
Galacturonic acid ✓

Guluronic acid ✓
Mannuronic acid ✓

After extraction, alginate (the most abundant contaminant) is usually precipitated by
the addition of calcium chloride, followed by filtration and/or centrifugation to remove
the suspended alginate aggregates [50–52]. A crude fucoidan can then be precipitated
through the addition of ethanol [17,53]. However, to produce a high-quality product,
further purification steps, such as ultrafiltration [32,53–55] and/or anion-exchange chro-
matography [53,56], are required. The fucoidan obtained can undergo additional processes,
such as spray [57] or freeze drying [58], for formulation into the final product. The cascade
of purification units and their operating conditions directly affects the resulting fucoidan
product, ultimately impacting its bioactivity.

The extraction and purification techniques employed, together with their operating
conditions, have the most significant influence on the final fucoidan product in terms of its
composition (e.g., purity and profile of contaminants) and its structure (e.g., branched vs
linear structure, molecular weight, degree of sulfation), ultimately influencing the extract’s
bioactive properties.
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The uronic acid content of a fucoidan extract is often used as an indicator of algi-
nate contamination [22], although this may not be a fair reflection of impurity levels, as
fucoidan also naturally contains uronic acids in the form of glucuronic and galacturonic
acids. However, the use of a colorimetric assay for the determination of total uronic acids
is still widespread in the characterization of fucoidan samples thanks to its simplicity,
rapidity and reduced costs [59,60]. More sophisticated analyses able to detect the different
monosaccharide types and their contents in a fucoidan sample, such as high-performance
anion-exchange chromatography coupled with pulsed amperometric detection (HPAEC-
PAD), should be used to obtain a precise fingerprint of the different uronic acids present
and better identify contaminant carbohydrates [61].

Fucoidan yield, theoretically defined as the amount of fucoidan in the final prod-
uct with respect to the fucoidan originally contained in the raw seaweed, is the single
most significant parameter employed to judge the performance of fucoidan bioprocessing.
Higher yields are generally obtained with harsher extraction conditions, allowing for the
recovery of higher proportions of the fucoidans contained in the seaweed cell wall. On the
other hand, harsher conditions favor the co-extraction of a range of contaminants, leading
to impure fractions that require more complex purification steps, potentially dwarfing
the increased yields obtained in the extraction step. More importantly, harsh conditions
can degrade the fucoidan either by breaking down the polysaccharide backbone or by
removing active groups such as sulfate. As such, it is imperative to holistically consider the
entire bioprocessing train for fucoidan production, including the extraction and purification
methods employed, as well as their operating conditions.

3. Literature Landscape of This Review
In the next sections, focus is placed on alternative techniques due to their reduced

energy and solvent consumption compared to traditional methods. A systematic method of
data collection from the existing literature was employed. First, a broad Scopus search was
conducted using fucoidan and extraction as keywords, followed by filtering to identify all
papers that carried out fucoidan extraction using one of the four alternative extraction tech-
niques here considered. Further, papers selected for this review had to directly or indirectly
state the extraction conditions employed, as well as provide qualitative or quantitative
data of the extracted fucoidan. In instances where data were unclear or missing, reasonable
assumptions were made to allow for data to be extrapolated. This approach allowed for
the collation of a complete and current data set for each of the four extraction methods.
The data collected were tabulated and summarized into boxplots (Section 6.1) to enable
direct the comparison and identification of trends across the different extraction methods,
with emphasis on alternative techniques. Literature data were standardized to specific
descriptors to enable comparison between extraction methods:

• Process properties: yield and purity. Yield was defined as the percentage of crude
fucoidan extract collected per unit mass of starting seaweed material. This is a practical
definition of yield, as the literature commonly uses total seaweed weight as a reference
for this calculation. However, future efforts should be made to define yield relative to
an accurately measured fucoidan content in the seaweed source. Fucoidan purity was
defined as the mass of fucose obtained over the mass of the total sugar extracted.

• Extract properties: sugar, fucose and sulfate content (per unit mass of extract) and
molecular weight (standardized in kDa).

• Extract impurities: uronic acid and phenolic content (per unit mass of extract).
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Figure 3 shows the time distribution of papers considered in this work for the four
alternative extraction techniques. The first paper reported is from 2012, with only one or
two papers initially published every year, rising to five or more per year from 2019 on-
ward. It is also notable that all extraction methods have received similar interest, with no
method clearly dominating over the others, reflecting the current multipronged approach
to developing innovative alternative fucoidan extraction techniques.
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Figure 4 depicts the taxonomical distribution of brown seaweeds in the literature
selected. The orders Fucales and Laminariales dominate the literature landscape due
to a combination of their abundance in nature as well as their relatively high fucoidan
content [62]. Over 50% of the seaweed employed in all different extraction methods belongs
to Fucales. Within this order, three families are represented, again, with their prevalence
closely matching their global distribution: Sargassaceae, followed by Fucaceae and a
small quantity of Himanthaliaceae [63,64]. Laminariales species have also been tested
using most of the extraction methods except for UAE. Two families represent this order,
Laminariaceae and Alariaceae, also aligning with their global prevalence [65]. A small
number of papers used kelps from the orders Dictyotales and Ectocarpales. Despite the
relatively small presence of Dictyotales and Ectocarpales, they have been tested across
the range of alternative extraction techniques. Notably, EAE was applied to virtually all
of the taxonomical orders considered. In short, the selected literature provides a globally
representative snapshot of the various taxonomical orders and families used for fucoidan
extraction. The absence of bias, both in terms of seaweed species considered and in terms
of extraction method employed, strengthens the value of the comparisons and conclusions
that will follow in this review paper.
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4. Traditional Extraction Techniques
Traditional extraction methods, hot water extraction and dilute acid extraction, focus

on breaking the seaweed cell wall down using high temperatures and/or acidic conditions.
These techniques are well established, with hot water extractions dating back to 1915 [66].
Both rely on the fact that fucoidan is a polar and water-soluble macromolecule, for which
water acts as an ideal solvent [67]. In hot water extraction, water is added to milled seaweed
and heated at temperatures between 60 and 100 ◦C [68], typically for long extraction times
of 1 to 8 h [27,69]. These conditions break down the cell wall and release polysaccharides
into solution. After cooling, ethanol is added, causing the fucoidan to precipitate for
collection. Dilute acid extraction works on the same principle, with an acidic solvent
(generally HCl or H2SO4 at a pH of 3 to 5) aiding in the breaking of bonds between
polysaccharide molecules in the cell wall and enhancing fucoidan extraction efficiency. It
employs similar temperatures and extraction times as hot water extraction.

The properties and characteristics of extracts produced using these methods are
dependent on four main process variables: temperature, extraction time, pH and solid-to-
liquid ratio (typical values between 5 and 100 g of seaweed per L of solvent) [70–72].

Typical extract yields vary between 0.1% and 40%, depending on extraction conditions
used [72]. Ponce and Stortz collected literature on fucoidan extracts produced from a wide
variety of seaweed species using traditional extraction methods [35] and reported a sulfate
content of 3% to 38% and uronic acid content of 2% to 29%. Rhein-Knudsen et al. suggested
that the molecular weights of extracts vary between 8 and 2400 kDa for hot water and
50 and 100 kDa for acidic extractions [73].

The main advantage of these methods is simplicity [66]. However, the relatively high
temperatures employed for prolonged periods of time make these processes particularly
energy intensive [67,74]. Also, the harsh conditions used can lead to the degradation of
the fucoidan molecules [66]. For example, acidic conditions can hydrolyze the sulfate ester
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group on the fucoidan molecule, causing a loss of bioactivity [67,75]. Finally, hot water and
dilute acid extraction methods are non-selective, leading to high quantities of impurities in
the extracts, from uronic acids to polyphenols, limiting the ability to obtain a pure product
and requiring increased downstream processing.

5. Alternative Extraction Techniques
Traditional methods require long extraction times using large volumes of solvent with

high energy demands and low yields in a non-selective manner [76]. These significant
drawbacks have led to the development and application of new alternative fucoidan
extraction techniques that aim to address some or all of the limitations. This section will
first describe their working principles and then discuss the main properties of the extracts
obtained in the wider context of the literature selected, concluding with an analysis of their
advantages and future opportunities.

5.1. Enzyme-Assisted Extraction

Enzyme-assisted extraction (EAE) uses enzymes to lyse the seaweed cell wall. Accord-
ing to this method, the pre-treated seaweed is placed in an aqueous environment in the
presence of a mixture of hydrolytic enzymes that catalyze the hydrolysis of the cell wall,
releasing its contents [14,71].

Table 2 presents a summary of the literature published on EAE. A notable observation
is that the extraction conditions in terms of temperature (40–60 ◦C), time (24–48 h), pH (4–6)
are all broadly the same, corresponding to the optimal conditions for maximum catalytic
activity. The characteristics of obtained extracts are also similar, probably due to the same
classes of enzyme cocktails being employed.

Non-specific enzyme mixtures containing cellulases and catalases have been mostly
tested so far in fucoidan extractions [34,77]. Such enzymatic cocktails were originally
developed for plant cells and designed to act on polysaccharides such as starches not found
in seaweed [20]. Despite this non-specificity, EAE generally produces higher yields than
traditional methods due to more targeted cell wall lysis [78]. The careful optimization
of EAE’s operating variables can further increase yields through the adjustment of key
extraction variables such as temperature, time, pH, enzyme concentration and the number
of extraction stages [79].

Nguyen et al. used cellulase and alginate lyase to break down non-fucoidan polysac-
charides in the seaweed cell wall [20]. The effectiveness of the enzymatic procedure was
assessed by comparison with traditional extraction methods. The study found that the
degree of sulfation of the fucoidan obtained through EAE was around 15% higher than that
for hot water extraction, again thanks to the high specificity of enzymatic methods helping
to conserve fucoidan’s structure [20].

As shown in Table 2, the molecular weight of extracts produced using this technique
tends to be on the order of 100 kDa, likely another result associated with the specific
enzymatic cleavage of fucoidan in the cell wall.

Overall, EAE is more sustainable than the traditional method, with significantly lower
energy consumption thanks to the lower temperatures required and lower overall solvent
consumption [68]. In turn, less solvent usage and lower temperatures lead to reduced
hazards associated with the process. Operating costs are further reduced by recovering
the enzymes downstream and recycling them for reuse [79]. Perhaps the most obvious
disadvantage of enzymatic methods, highlighted in Table 2, is the requirement for much
longer processing times (>24 h) in comparison to traditional methods (1–8 h).
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Table 2. Experimental data on fucoidan extraction using the enzyme-assisted extraction (EAE) technique. Operating conditions are reported in terms of extraction
temperature (T), pH, extraction time (t), solid-to-liquid ratio (vSL) and solvent used, as well as enzyme type and concentration ([E]). Results are collated in terms of
process properties (yield and purity), extract characteristics (sugar, fucose, sulfate contents and molecular weight (MW)) and impurities present (uronic acids and
phenolic compounds). Data reported in alphabetical taxonomical order.

Reference
Seaweed Type Extraction Conditions Process Properties Extract Characteristics Extract Impurities

Order Family Species T pH t vSL Solvent Enzyme [E] Yield Purity Sugar Fucose Sulfate MW Uronics Phenolics
(◦C) (h) (g/mL) (mg/mL) (%) (%) (%) (%) (%) (kDa) (%) (%)

Lee et al.
(2024) [80] Dictyotales Dictyotaceae Padina

arborescens 50 4.5 24 100 DI H2O Cellulase 10 26.0 41.6 38.9 16.2 5.4 N.D. N.D. 1.2

Jayawardena
et al. (2020) [81] Dictyotales Dictyotaceae Padina boryana 50 4.5 24 N.S. DI H2O Cellulase N.S. N.D. 39.8 42.1 16.8 b 4.6 N.D. N.D. 1.3

Hans et al.
(2023) [82] Dictyotales Dictyotaceae Padina

tetrastromatica 50 4.5 24 50 0.1 M NaOAc Cellulase 50 3.6 N.C. N.D. N.C. 11.2 N.D. N.D. 7.8 d

Fernando et al.
(2017) [83] Ectocarpales Scytosiphonaceae Chnoospora

minima 50 4.5 24 10 DI H2O Cellulase N.S. N.D. 61.7 68.4 e 42.2 be 28.3 77.5 N.D. 1.0 e

Okolie et al.
(2019) [84] Fucales Fucaceae Ascophyllum nodosum 50 4.5 24 10 NaOAc Cellulase N.S. 3.9 N.C. N.C. 29.1 15.4 3.9–107.7 a 0.4 N.D.

Deniaud-Bouët
(2014) [85] Fucales Fucaceae Ascophyllum nodosum

Stage 1:

N.S. 7 70 N.S.
0.1 M Tris-MES

0.1 M NaCl
20 mM MgCl2

Alginate lyase N.S. 1.4 N.C. N.D. N.C. N.D. N.D. 15.3 N.D.

Stage 2:

60 6.5 24 N.S.
0.1 M NaOAc
5 mM EDTA

5 mM Cysteine
Protease N.S. 18.5 N.C. N.D. N.C. N.D. N.D. 16.7 1.9

Stage 3:
40 N.S 48 N.S. 0.2% NaN3 Cellulase N.S. 19.2 N.C. N.D. N.C. N.D. N.D. 12.7 6.4

Nguyen et al.
(2020) [20] Fucales Fucaceae

Fucus distichus subsp.
evanescens (formerly

F.evanescens)
40 6 24 20 0.1 M HCl

Cellulase 20
9.9 c N.C. N.D. 24.8 21.4 N.D. 72 N.D.Alginate

lyase N.C.

Deniaud-Bouët
(2014) [85] Fucales Fucaceae

Fucus distichus subsp.
evanescens (formerly

F.evanescens)

Stage 1:

N.S. 7 70 N.S.
0.1 M Tris-MES

0.1 M NaCl
20 mM MgCl2

Alginate lyase N.S. 2.9 N.C. N.D. N.C. N.D. N.D. 12.1 N.D.

Stage 2:

60 6.5 24 N.S.
0.1 M NaOAc
5 mM EDTA

5 mM Cysteine
Protease N.S. 15.6 N.C. N.D. N.C. N.D. N.D. 17.0 10.7

Stage 3:
40 N.S 48 N.S. 0.2% NaN3 Cellulase N.S. 21.4 N.C. N.D. N.C. N.D. N.D. 25.0 10.7

Deniaud-Bouët
(2014) [85] Fucales Fucaceae Fucus serratus

Stage 1:

N.S. 7 70 N.S.
0.1 M Tris-MES

0.1 M NaCl
20 mM MgCl2

Alginate lyase N.S. 3.2 N.C. N.D. N.C. N.D. N.D. 12.2 N.D.

Stage 2:

60 6.5 24 N.S.
0.1 M NaOAc
5 mM EDTA

5 mM Cysteine
Protease N.S. 19.4 N.C. N.D. N.C. N.D. N.D. 18.4 2.9

Stage 3:
40 N.S 48 N.S. 0.2% NaN3 Cellulase N.S. 31.7 N.C. N.D. N.C. N.D. N.D. 12.7 34.0

Deniaud-Bouët
(2014) [85] Fucales Fucaceae Pelvetia

canaliculata

Stage 1:

N.S. 7 70 N.S.
0.1 M Tris-MES

0.1 M NaCl
20 mM MgCl2

Alginate lyase N.S. 1.6 N.C. N.D. N.C. N.D. N.D. 7.8 N.D.

Stage 2:

60 6.5 24 N.S.
0.1 M NaOAc
5 mM EDTA

5 mM Cysteine
Protease N.S. 17.4 N.C. N.D. N.C. N.D. N.D. 11.8 1.7

Stage 3:
40 N.S 48 N.S. 0.2% NaN3 Cellulase N.S. 15.6 N.C. N.D. N.C. N.D. N.D. 15.0 7.5
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Table 2. Cont.

Reference
Seaweed Type Extraction Conditions Process Properties Extract Characteristics Extract Impurities

Order Family Species T pH t vSL Solvent Enzyme [E] Yield Purity Sugar Fucose Sulfate MW Uronics Phenolics
(◦C) (h) (g/mL) (mg/mL) (%) (%) (%) (%) (%) (kDa) (%) (%)

Deniaud-Bouët
(2014) [85] Fucales Himanthaliaceae Himanthalia elongata

Stage 1:

N.S. 7 70 N.S.
0.1 M Tris-MES

0.1 M NaCl
20 mM MgCl2

Alginate lyase N.S. 9.9 N.C. N.D. N.C. N.D. N.D. 16.2 N.D.

Stage 2:

60 6.5 24 N.S.
0.1 M NaOAc
5 mM EDTA

5 mM Cysteine
Protease N.S. 4.9 N.C. N.D. N.C. N.D. N.D. 17.0 6.4

Stage 3:
40 N.S. 48 N.S. 0.2% NaN3 Cellulase N.S. 21.9 N.C. N.D. N.C. N.D. N.D. N.D. N.D.

Alboofetileh
et al. (2019) [86] Fucales Sargassaceae Nizamuddinia

zanardinii

50 8 24 N.S. N.S. Alcalase N.S. 5.6 32.9 34.7 11.5 20.1 158.9 a 5.7 N.D.
50 7 24 N.S. N.S. Flavourzyme N.S. 4.4 37.1 36.2 13.4 15.0 127.6 a 13.2 N.D.
50 4.5 24 N.S. N.S. Cellulase N.S. 4.8 46.8 22.3 10.5 13.6 144.9 a 12.7 N.D.
50 4.5 24 N.S. N.S. Viscozyme N.S. 4.3 52.1 20.0 10.4 16.4 120.3 a 12.4 N.D.

Alboofetileh
et al. (2019) [87] Fucales Sargassaceae Nizamuddinia

zanardinii 50 7 24 N.S. DI H2O Alcalase N.S. 5.6 30.8 53.6 16.5 29.6 642.5 a 0.4 N.D.

Alboofetileh
et al. (2019) [88] Fucales Sargassaceae Nizamuddinia

zanardinii

50 8 24 N.S. N.S. Alcalase N.S. 5.6 32.9 34.8 11.5 20.1 158.9 a 5.7 N.D.
50 7 24 N.S. N.S. Flavourzyme N.S. 4.4 37.1 36.2 13.4 15.0 127.6 a 13.2 N.D.
50 4.5 24 N.S. N.S. Cellulase N.S. 4.8 46.8 22.3 10.5 13.6 144.9 a 12.7 N.D.
50 4.5 24 N.S. N.S. Viscozyme N.S. 4.3 52.1 20.0 10.4 16.4 120.3 a 12.4 N.D.

Liyanage et al.
(2022) [89] Fucales Sargassaceae Sargassum coreanum 50 5 8 N.S. DI H2O Cellulase 5 12.3–1.2 * N.C. 64.7–46.0 * N.D. 7.90–20.0 * 50.0–500.0 * N.D. 0.6–1.4 *

Fernando et al.
(2021) [90] Fucales Sargassaceae Sargassum coreanum 50 5 8 N.S. DI H2O Cellulase 5 12.3–1.2 * N.C. 64.7–46.0 * N.D. 7.90–20.0 * 50.0–500.0 * N.D. 0.6–1.4 *

Sanjeewa et al.
(2019) [91] Fucales Sargassaceae Sargassum

horneri 50 4.5 24 50 DI H2O Cellulase N.S. N.D. 36.9 65.0 24.0 b 12.5 N.C. N.D. 3.9

Sanjeewa et al.
(2017) [92] Fucales Sargassaceae Sargassum

horneri

60 4.5 24 1:50 DI H2O Amyloglucosidase N.S. 16.0 N.C. 71.6 N.D. 11.5 N.D. 4.6 N.D.
50 4.5 24 1:50 DI H2O Cellulase N.S. 20.2 N.C. 88.7 N.D. 12.0 N.D. 3.9 N.D.
50 4.5 24 1:50 DI H2O Viscozyme N.S. 21.0 N.C. 74.7 N.D. 11.3 N.D. 3.7 N.D.
50 8 24 1:50 DI H2O Alcalase N.S. 22.2 N.C. 81.3 N.D. 2.2 N.D. 3.4 N.D.

Fernando et al.
(2020) [93] Fucales Sargassaceae Sargassum

polycystum 50 4.5 24 N.S. DI H2O Cellulase N.S. N.D. 47.2 70.2 e 33.2 e 23.3 e N.D. N.D. 0.4 e

Hans et al.
(2023) [82] Fucales Sargassaceae Turbinaria conoides 50 4.5 24 50 0.1 M NaOAc Hemicellulase 50 3.0 N.C. N.D. N.C. 14.4 N.D. N.D. 7.5 d

Jayawardena
et al. (2019) [94] Fucales Sargassaceae Turbinaria conoides 50 4.5 24 10 1 M HCl Cellulase N.S. N.D. 59.0 71.1 e 42.3 e 23.9 e N.D. N.D. 0.3 e

Rhein-Knudsen
et al. (2023) [73] Laminariales Alariaceae Alaria

esculenta 55 5.6 24 10 0.025 M NaOAc Alginate lyase N.S. N.C. N.C. N.D. 35.0–15.0 d 20.0–42.0 d N.D. N.D. N.D.

Oh et al.
(2020) [95] Laminariales Alariaceae Undaria

pinnatifida 50 N.S. 24 20 DI H2O Cellulase N.S. 6.2 52.3 66.8 34.9 30.4 N.D. N.D. N.D.

Tang et al.
(2022) [96] Laminariales Laminariaceae Kjellmaniella

crassifolia 50 4.8 10 50 N.S. Cellulase 4.29 4.7 62.5 76.7 47.9 b 22.8 N.D. N.D. N.D.

Rhein-Knudsen
et al. (2023) [73] Laminariales Laminariaceae Saccharina

latissima 55 5.6 24 10 0.025 M NaOAc Cellulase N.S. N.C. N.C. N.D. 39.0–21.0 d 20.0–45.0 d N.D. N.D. N.D.

Nguyen et al.
(2020) [20] Laminariales Laminariaceae Saccharina

latissima
40 6 24 20 0.1 M HCl

Cellulase 20
3.7 c N.C. N.D. 12.6 15.5 N.D. 79.5 N.D.Alginate lyase N.C.

Mabate and
Pletschke
(2024) [97]

Laminariales Lessoniaceae Ecklonia
maxima 50 5 48 30 0.05 M Citrate Cellulase N.S. 17.6 N.C. 41.3 N.D. 4.1 5.7 1.2 0.7

N.S. not specified. N.D. not determined. N.C. not possible to calculate. * Determined after a purification step. a Molecular weight was calculated as the mean of number average
and weight average molecular weights. b Determined from total sugar content by fucose sugar composition. c Total yield calculated by converting fucose yield using extract fucose
composition. d Value extracted from a graph. e Value calculated as a weighted average of crude extract fractions.
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Numerous opportunities for improvement lie ahead for EAE. The first certainly re-
lates to the development of seaweed-specific enzyme cocktails to overcome the current
limitations associated with the use of non-specific enzymes [98]. The selective hydrolysis
of the cross-linking bonds of fucoidan with alginate and cellulose to aid in the release
of fucoidan from the cell wall not only leads to fucoidan extracts with narrower range
of possible molecular weights and higher sulfate contents; it may also lower processing
costs due to simplified purification steps [20,85,99]. Further, enzymes could be engineered
to tolerate milder conditions, such as even lower temperatures, to provide more process
flexibility [85] and/or to lower their costs and enable their use in the processing of large
volumes of raw seaweed feeds [98]. For this approach to be successful, the engineered
cocktail needs to be compliant with strict regulatory controls on the use of enzymes for the
manufacture of food and pharmaceutical ingredients. Another opportunity is represented
by enzyme immobilization into solid matrices to avoid the current downstream processing
steps for enzyme recycling, with an estimated potential to reduce process costs by around
60% [100–102].

5.2. Ultrasound-Assisted Extraction

Ultrasound-assisted extraction (UAE) applies ultrasound waves to pre-treated sea-
weed suspensions, promoting the rupturing of the seaweed cell wall as a consequence of
bubble cavitation [14]. This refers to micron-sized bubbles formed within the extraction
medium when ultrasound waves are applied. These rapidly collapse soon after formation,
creating shock waves that erode the cell wall [103]. Additionally, as a consequence of the
turbulence created by these shock waves, seaweed particles collide into each other, breaking
apart the cell wall in an attritional process. These two effects combined release the cell
wall contents and improve mass transfer to the aqueous phase [104]. For example, Ummat
et al. compared the traditional solvent extraction and ultrasound-assisted extraction of
phenolic compounds from 11 different species of seaweed. The study found that the yield
increased for all 11 species when exposed to ultrasound, with an increase in fucoidan yield
of 213% for the species Fucus distichus subsp. evanescens (formerly F. evanescens) and the
lowest increase in yield being 46% for Pelvetia canaliculata [105].

Table 3 summarizes the published literature on the UAE of fucoidan. As with all meth-
ods, there are a multitude of variables affecting the extraction success, including extraction
time [68,71,106,107], temperature [68,71,106,107], pressure [68], pH [20,71], solvent and
solid-to-liquid ratio [68,107], as well as ultrasound amplitude [106,107] and frequency [108].
A notable observation is the much lower temperatures (25–70 ◦C) and shorter extraction
times (2 to 59 min) in comparison to traditional methods. There is a relatively high variabil-
ity in ultrasound conditions using typical ultrasound power (150–350 W) and frequency
(0.04–40 kHz). A couple of studies used ultrasound methods as pre-treatments before
subjecting the seaweed to conventional extraction at 80–85 ◦C for 2 to 3.5 h.

In general, extraction yields for UAE vary between 3.6% and 33%. These yields
are similar to or better than those of traditional methods. Additionally, the molecular
weights of extracted fucoidans are in the range of 2.6–1133.9 kDa, slightly misaligned with
values in the literature of 10–10,000 kDa [24], with an average value of 20 kDa [19]. This
may suggest that additional molecules within the seaweed are also extracted under some
extraction conditions, increasing the average molecular weight. This high variability in
extract contents and yields may be partially attributed to the use of different species but is
more likely a consequence of the numerous differences in extraction conditions employed.
This makes it clear that, for this technique to be successful, the extraction conditions must
be optimized with the desired product in mind.
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It has been suggested that exposure to an ultrasound source increases extraction
yields [108]. For example, Hanjabam et al. [66] extracted fucoidan from Sargassum wightii by
exposure to an ultrasound probe for 30 min at 50% amplitude before precipitating the crude
extract with ethanol. The results suggested that the use of ultrasound increased fucoidan
yields by 4%. However, the work of Okolie et al. contrasts these findings, where the use of
traditional extraction produced a 68% higher yield than standalone ultrasound extraction.
It is unlikely that this difference can be solely attributed to external factors such as the
seaweed species selected, which in this study was Ascophyllum nodosum [84]. Further doubt
regarding the suitability of this method was shown by Alboofetileh et al., who tested various
extraction methods (enzyme only, ultrasound only, enzyme and ultrasound combined) for
Nizamuddinia zanardinii seaweed, finding that ultrasound-assisted extraction produced the
lowest yield of 3.6%. However, when coupled with enzyme-assisted extraction, it produced
the highest yield of 7.9% [87]. Therefore, more work is required in this area to understand
what ultrasound conditions lead to greater yields.

The effect of employing ultrasound methods on extract contents remains unclear, as
is demonstrated by the range of fucose (0.004 to 0.432), sulfate (0.036 to 0.904) and uronic
acid (0.001 to 0.353) (Table 3). For example, Dobrinčić et al. compared extracts from Fucus
virsoides (FV) and Gongolaria barbata (GB) obtained through traditional and ultrasound-
assisted methods. In this work, milled seaweed was suspended in solutions of water,
hydrochloric acid or sulfuric acid before being exposed to an ultrasound probe (200 W,
26 kHz, 100% amplitude for 30 min), followed by the precipitation of the extracts using
ethanol. The study revealed that extracts obtained using ultrasound methods contained
significantly higher sulfate contents (FV: 83.4% and GB: 90.4%) than those obtained using
traditional techniques (FV: 28.5% and GB: 35.5%). The ultrasound extracts also contained
far fewer uronic acids (FV: 1.8% and GB: 1.2%) compared to traditional methods (FV: 20.1%
and GB: 15.7%). However, there was no clear trend in fucose content, decreasing by 64.5%
in F. virsoides but increasing in G. barbata by 40.7% when ultrasound was applied [109]. On
the other hand, Okolie et al. observed that extracts produced using standalone ultrasound
extraction techniques had similar fucose and uronic acid contents (27.1%w/w and 0.5%w/w)
to those obtained using traditional methods (27.4%w/w and 0.6%w/w) [84]. Hanjabam et al.
found that the fucose content of UAE extracts was 9.5% lower than that of traditional
extracts. However, the sulfate contents were broadly similar for both methods [66]. Overall,
it is clear that the extraction conditions selected heavily influence the extract contents.

UAE uses reduced extraction times (ranging from two to sixty minutes) [110], as well
as a reduced volume of solvents [111], with respect to traditional methods; UAE therefore
requires less energy than traditional methods [112], with further energy savings possible
when using a pulse mode of operation [113]. A unique additional advantage of UAE is
that it can be incorporated alongside traditional or other alternative methods to offer more
process flexibility.

A notable disadvantage of this method is the potential depolymerization of the polysac-
charide if the treatment time is too long or energy intensive [114,115]. This should be
considered when implementing this technology, and the extraction conditions need to be
optimized to produce an extract with the necessary chemical fingerprint and an acceptable
yield. Further work is required to understand the effects of operating parameters on the
resulting extract.
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Table 3. Experimental data on fucoidan extraction using the ultrasound-assisted extraction (UAE) technique. Operating conditions are reported in terms of extraction
temperature, pH, extraction time (t), solid-to-liquid ratio (vSL) and solvent used, as well as ultrasound power (P), treatment time (tu), current (I), amplitude (A) and
frequency (ƒ). Results are collated in terms of process properties (yield and purity), extract characteristics (sugar, fucose, sulfate contents and molecular weight
(MW)) and impurities present (uronic acids and phenolic compounds). Data are reported in alphabetical taxonomical order.

Reference
Seaweed Type Extraction Conditions Process Properties Extract Characteristics Extract Impurities

Order Family Species T pH t vSL Solvent
P tu I A ƒ Yield Purity Sugar Fucose Sulfate MW Uronics Phenolics

(◦C) (-) (Hour) (g/mL) (W) (min) (A) (%) (kHz) (%) (%) (%) (%) (%) (kDa) (%) (%)
Hans et al.
(2023) [82] Dictyotales Dictyotaceae Padina

tetrastromatica N.S. N.S. N.S. 25 DI H2O N.S. 30 N.S. 50 N.S. 6.2 N.C. N.D. N.C. 11.3 N.D. N.D. 1.0 c

Obluchinskaya and
Pozharitskaya

(2024) [116]
Fucales Fucaceae Ascophyllum

nodosum 25 4 N.S. 30 5% EtOH N.S. N.S. N.S. N.S. 22 16.1 N.C. N.D. 38.1 18.8 364.1 d 0.1102 N.D.

Garcia-Vaquero et al.
(2020) [117] Fucales Fucaceae Ascophyllum

nodosum N.S. 1 N.S. 10 0.1 M HCl 500 2 or 5 N.S. 20–100 20 N.C. 7.6 2.6 19.5 N.D. N.D. N.D. 2.3

Okolie et al.
(2019) [90] Fucales Fucaceae Ascophyllum

nodosum N.S. N.S. N.S. 10 0.01 M HCl N.S. 35 N.S. N.S. 20 4.6 N.C. N.C. 27.1 17.3 2.6–128.7 a 0.5 N.D.

Obluchinskaya and
Pozharitskaya

(2024) [116]
Fucales Fucaceae

Fucus distichus
subsp. evanescens

(formerly
F.evanescens)

25 4 N.S. 30 5% EtOH N.S. N.S. N.S. N.S. 22 17.9 N.C. N.D. 40.5 22.4 357.0 d 3.6 N.D.

Obluchinskaya and
Pozharitskaya

(2024) [116]
Fucales Fucaceae

Fucus distichus
subsp. evanescens

(formerly
F.evanescens)

25 4 N.S. 30 5% EtOH N.S. N.S. N.S. N.S. 22 21.6 N.C. N.D. 43.2 24.7 321.2 d 8.6 N.D.

Hmelkov et al.
(2018) [118] Fucales Fucaceae

Fucus distichus
subsp. evanescens

(formerly
F.evanescens)

N.S. N.S. N.S. 20 H2O 150 5–30 N.S. N.S. 35 1.0–3.4 N.C. N.D. N.C. 18.1–25.0 d 280.0 N.D. N.D.

Obluchinskaya and
Pozharitskaya

(2024) [116]
Fucales Fucaceae Fucus

serratus 25 4 N.S. 30 5% EtOH N.S. N.S. N.S. N.S. 22 15.5 N.C. N.D. 36.7 0.189 470.9 d 0.0443 N.D.

Dobrinčić et al.
(2022) [109] Fucales Fucaceae Fucus

virsoides N.S. N.S. N.S. N.S. 0.1 M HCl
0.1 M H2SO4

200 30 N.S. 100 26 12.1 14.8 1.2 0.17 b 83.4 817.0 a 1.8 N.D.

Dobrinčić et al.
(2022) [109] Fucales Sargassaceae Gongolaria

barbata N.S. N.S. N.S. N.S. 0.1 M HCl
0.1 M H2SO4

200 30 N.S. 100 26 11.8 31.7 0.1 3.8 b 90.4 1133.9 a 1.2 N.D.

Alboofetileh et al.
(2019) [107] Fucales Sargassaceae Nizamuddinia

zanardinii 70 N.S. N.S. 80 DI H2O 196 58 N.S. N.S. N.S. 3.5 N.C. N.D. N.D. N.D. N.D. N.D. N.D.

Alboofetileh et al.
(2019) [87] Fucales Sargassaceae Nizamuddinia

zanardinii 70 N.S. N.S. N.S. DI H2O 196 59 N.S. N.S. 20 3.6 32.3 58.7 19.0 b 23.0 913.5 a 0.1 N.D.

Alboofetileh et al.
(2019) [88] Fucales Sargassaceae Nizamuddinia

zanardinii 55 N.S. N.S. N.S. N.S. 200 20 x2 N.S. N.S. 20 3.6 32.3 58.7 19.0 b 23.0 913.5 a 0.1 N.D.

Laeliocattleya et al.
(2023) [119] Fucales Sargassaceae Sargassum

aquifolium 40–60 N.S. N.S. 20 DI H2O 350 10–20 N.S. N.S. 40 2.8–3.9 N.C. N.C. 17.2–63.2 5.5–6.2 N.D. 19.1–35.3 1.5–7.8

Thao My et al.
(2020) [120] Fucales Sargassaceae Sargassum

mcclurei 50–56 N.S. N.S. 24 EtOH 240–480 40–60 N.S. N.S. N.S. 33.0 N.C. N.D. N.D. N.D. N.D. N.D. N.D.

Vaamonde-García
et al. (2022) [121] Fucales Sargassaceae Sargassum

muticum 25 N.S. N.S. N.S. H2O 150 25 1.5 N.S. 0.04 N.D. 38.3 23.0 8.8 3.8 N.C N.D. 0.2

Del Río et al.
(2021) [122] Fucales Sargassaceae Sargassum

muticum N.S. N.S. N.S. 20 DI H2O 150 30 N.S. N.S. 0.04 N.D. N.C. N.D. 5.8 3.6 N.D. N.D. 2.2

Flórez-
Fernández et al.

(2017) [115]
Fucales Sargassaceae Sargassum

muticum 25 N.S. N.S. 20 N.S. 150 5–30 N.S. N.S. 0.04 N.D. N.C. N.D. N.D. 4.0 N.D. N.D. 2.5

Lin et al.
(2022) [123] Fucales Sargassaceae Sargassum

piluliferum

Stage 1:

6.3 19.3 28.0 5.4 b 11.5 567.7 14.5 N.D.
60 6 N.S. 30 DI H2O 350 45 N.S. N.S. N.S.

Stage 2:
80 N.S. 3.5 N.S. DI H2O N.S. N.S. N.S. N.S. N.S.

Wang et al.
(2021) [51] Fucales Sargassaceae Sargassum

siliquosum N.S. N.S. N.S. 10 N.S. 50–200 10–20 N.S. N.S. N.S. N.D. 46.6 4.8 2.2 N.D. N.D. N.D. N.D.

Hanjabam et al.
(2019) [66] Fucales Sargassaceae Sargassum wightii

Stage 1:

14.6 N.C. N.D. 23.7 17.6 N.D. N.D. 2.0
N.S. 1–2 N.S. 25 1 M HCl N.S. 30 N.S. 50 N.S.

Stage 2:
85 1–2 2 25 1 M HCl N.S. N.S. N.S. N.S. N.S.

Hans et al.
(2023) [82] Fucales Sargassaceae Turbinaria

conoides N.S. N.S. N.S. 25 DI H2O N.S. 30 N.S. 50 N.S. 8.1 N.C. N.D. N.C. 16.4 N.D. N.D. N.C.

N.S. not specified. N.D. not determined. N.C. not possible to calculate. a Molecular weight was calculated as the mean of number average and weight average molecular weights.
b Determined from total sugar content by fucose sugar composition. c Value extracted from a graph. d Value calculated as a weighted average of crude extract fractions.
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5.3. Microwave-Assisted Extraction

In microwave-assisted extraction (MAE), microwave radiation is applied to the pre-
treated seaweed suspension. The magnetic field generated by the microwave source
induces the movement of dissolved ions as well as the rotation of polar molecules within
the cell, leading to localized hot spots [14], breaking apart the cell wall and promoting the
extraction of cell wall contents into the solvent [124]. The key processing conditions for
MAE include extraction time [125,126], temperature [125,126], solid-to-liquid ratio [125],
pressure [125] and microwave power [127].

Table 4 summarizes the existing literature and the variables used. MAE generally
uses dilute hydrochloric acid or sulfuric acid as a solvent, with shorter extraction times
(1–30 min) compared to those for traditional or enzyme-assisted methods. Typical ex-
traction temperatures range from 60 ◦C to temperatures exceeding 100 ◦C. A notable
observation is that extractions carried out using species in the Fucaceae family exhibit sig-
nificantly higher yields (48.5–83.3%) in comparison to those carried out with species from
the Sargassaceae (6.2–15.3%) and Alariaceae (6.8–13.7%) families, likely due to differences
in the original polysaccharide content of the starting seaweed material. Additionally, fucose
(1.7 to 65%), sulfate (0.7 to 48.8%), uronic acid (0.7 to 21.9%) and phenolic (0.4% to 1.0%)
contents differ significantly between studies (Table 4).

Dobrinčić et al. carried out extractions of sulfated polysaccharides from two seaweed
species, F. virsoides and G. barbata, employing two extraction methods: traditional (acid)
extraction and MAE. The yields obtained through MAE of 20.4% and 15.3% for the two
species, respectively, were comparable to the yields obtained with traditional methods
of 18.5% and 16.5%, respectively [124]. Okolie et al. studied the extraction of fucoidans
from A. nodosum using four extraction techniques, including traditional acid and MAE [84].
Traditional extraction led to yields of 11.9%, compared to 5.7% in MAE. The difference
between the two studies may be explained by Dobrinčić et al.’s use of an acetone pre-
treatment before extraction [124], as well as differences in seaweed species and the selected
extraction conditions.

Okolie et al. also found that fucoidan extracts obtained through MAE had a signifi-
cantly higher uronic acid content (3.59%) compared to those from traditional extraction
(0.59%), which could suggest a greater degree of alginate contamination. The molecular
weights of the microwave extracts were also significantly lower than those obtained us-
ing traditional methods [84]. This is contrasted by Dobrinčić et al., who observed fewer
uronic acids in MAE extracts. In addition, a 30% increase in sulfate content, a 17% in-
crease in fucose contents and increased molecular weight and antioxidant capacity [124]
were observed.

It is also notable that the purity of extracts varies between studies. For example, Zayed
et al. produced extracts with purities ranging from 16% for Saccharina latissima to 83% for
Fucus distichus subsp. evanescens (formerly F. evanescens), suggesting that the viability of
this method is likely dependent on the species employed [127].

MAE is reported to reduce the volume of solvents required, as well as extraction
time, by over 75% compared to that for traditional methods [128,129]. Table 4 clearly
demonstrates that extraction times for this method are on the order of minutes, with
traditional extractions lasting on the order of hours. However, there is no clear evidence
in the table of reduced solvent requirements, with similar solid-to-liquid ratios being
employed to those for traditional techniques (10–65 g mL−1).

MAE reduces operating costs and minimizes process hazards thanks to reduced
extraction times. On the other hand, it requires specialist equipment to be implemented at
scale, increasing the capital costs of the process.
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Table 4. Experimental data on fucoidan extraction using the microwave-assisted extraction (MAE) technique. Operating conditions are reported in terms of
extraction temperature, extraction time (t), solid-to-liquid ratio (vSL) and solvent used, as well as microwave power (P) and time (tm). Results are collated in terms of
process properties (yield and purity), extract characteristics (sugar, fucose, sulfate contents and molecular weight (MW)) and impurities present (uronic acids and
phenolic compounds). Data are reported in alphabetical taxonomical order.

Reference
Seaweed Type Extraction Conditions Process Properties Extract Characteristics Extract Impurities

Order Family Species
T tm P vSL Solvent

Yield Purity Sugar Fucose Sulfate MW Uronics Phenolics
(◦C) (min) (W) (g/mL) (%) (%) (%) (%) (%) (kDa) (%) (%)

James et al.
(2024) [130] Fucales Fucaceae Ascophyllum

nodosum 90 15 N.S. 20 ChCl-Gly 17.5–22.5 N.C. N.C. N.C. 0.7–1.1 c N.C. N.C. 0.6–1.0

Garcia-Vaquero
et al. (2020) [117] Fucales Fucaceae Ascophyllum

nodosum N.S. 2–5 250–1000 N.S. 0.1 M HCl N.C. 51.2 3.3 1.7 N.D. N.D. N.D. 0.1

Okolie et al.
(2019) [84] Fucales Fucaceae Ascophyllum

nodosum 90 15 N.S. 10 0.01 M H2SO4 5.7 65.8 56.2 3.7 18.8 81.2 3.6 N.D.

Yuan and
Macquarrie
(2015) [126]

Fucales Fucaceae Ascophyllum
nodosum 90–150 5–30 N.S. N.S. 0.1 M HCl

0.01 M H2SO4
6.5–16.1 N.C. N.C. N.C. 6.1–28.6 1.3–37.5 N.C. N.C.

Zayed et al.
(2023) [127] Fucales Fucaceae

Fucus distichus
subsp. evanescens

(formerly
F.evanescens)

N.S. 1–2 240–
560 10–25 0.1 M HCl 0.9–12.3 83.3 78.0 65.0 48.8 d 16.5 N.D. N.D.

Ptak et al.
(2019) [37] Fucales Fucaceae

Fucus distichus
subsp. evanescens

(formerly
F.evanescens)

80–120 30 N.S. N.S. 0.1 M HCl
0.01 M H2SO4

3.4–7.8 N.C. N.D. N.D. N.D. N.D. N.D. N.D.

Ptak et al.
(2019) [37] Fucales Fucaceae Fucus serratus 80–120 30 N.S. N.S. 0.1 M HCl

0.01 M H2SO4
4.2–9.5 N.C. N.D. N.D. N.D. N.D. N.D. N.D.

Zayed et al.
(2023) [127] Fucales Fucaceae Fucus spiralis N.S. 1–2 240–

560 10–25 0.1 M HCl N.D. 81.3 64.0 52.0 38.0 c 15.9 N.D. 43.0

Ptak et al.
(2019) [37] Fucales Fucaceae Fucus vesiculosus 80–120 30 N.S. N.S. 0.1 M HCl

0.01 M H2SO4
6.5–11.1 N.C. N.D. N.D. N.D. N.D. N.D. N.D.

Dobrinčić et al.
(2021) [124] Fucales Fucaceae Fucus virsoides 60–100 N.S. N.S. 30 0.1 M HCl

0.1 M H2SO4
20.4 48.5 15.7 7.6 c 37.1 611.7 a 15.9 N.D.

Dobrinčić et al.
(2021) [124] Fucales Sargassaceae Gongolaria barbata 60–100 N.S. N.S. 30 0.1 M HCl

0.1 M H2SO4
15.3 26.6 7.1 1.9 b 45.6 966.8 a 12.5 N.D.

Alboofetileh et al.
(2019) [88] Fucales Sargassaceae Nizamuddinia

zanardinii 90 N.S. 700 N.S. N.S. 6.2 36.3 51.3 18.6 c 24.1 913.9 a 0.7 N.D.

Wang et al.
(2021) [51] Fucales Sargassaceae Sargassum

siliquosum N.S. N.S. 750 5–25 N.S. 6.9 47.3 33.3 15.8 b 12.2 107.3 * 21.9 6.9

Sasaki et al.
(2024) [131] Laminariales Alariaceae Undaria pinnatifida 150–170 N.S. N.S. 67 DI H2O 8.8–13.7 N.C. N.D. N.C. 6.9–19.2 N.D. N.D. N.D.

Vaamonde-García
et al. (2022) [121] Laminariales Alariaceae Undaria pinnatifida 160 N.S. N.S. 30 N.S. N.D. 44.3 25.8 11.4 1.7 N.C. N.D. 0.4

Zayed et al.
(2023) [127] Laminariales Laminariaceae Saccharina

latissima N.S. N.S. 240–
560 10–25 0.1 M HCl N.D. 16.1 56.0 9.0 1.2 18.4 N.D. 11.0

N.S. not specified. N.D. not determined. N.C. not possible to calculate. * Determined after a purification step. a Molecular weight was calculated as the mean of number average and
weight average molecular weights. b Determined from total sugar content by fucose sugar composition. c Calculated using sulfation degree and the assumption that each disaccharide
unit contains one fucose group, i.e., sulfate content equals sulfation degree multiplied by fucose content. d Fucose content converted back from the sulfation ratio.
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5.4. Pressurized Liquid Extraction

In pressurized liquid extraction (PLE), fucoidan is extracted at higher temperatures
(>100 ◦C) and pressures (>>1 atm) than in conventional methods [68]. The high-temperature
and -pressure conditions impart the extraction solvents with unique physical properties
such as viscosity, density and dielectric constants [132]. Under these conditions, autohydrol-
ysis is promoted, leading to the formation of hydronium (H3O+) and hydroxy (OH−) ions
from water molecules [133] and catalyzing the hydrolysis of the seaweed cells, releasing
their contents [134]. A unique advantage of PLE is that it offers the flexibility of being
operated in a dynamic (continuous) or static (batch) mode [132]. However, the solvent used
must be oxygen free to avoid the oxidation of extracts [132]. PLE process variables include
temperature, pressure and extraction time, with flow rate as an important parameter for
continuous operation [67].

Table 5 summarizes literature results where PLE methods have been used. PLE
typically is performed in less than 30 min, with significantly shorter times than traditional
techniques. Also, the most common solvent used in PLE is water, offering advantages in
terms of disposal and environmental impact. Yields are generally around 20%, comparable
with those of other traditional and alternative extraction methods. Saravana et al. carried
out both an SWE and a traditional extraction from Saccharina japonica [135,136]. The highest
crude fucoidan yield, 13.16%, obtained using PL was significantly higher than that for
the traditional method (1.8%). This observation was furthered by Dobrinčić et al., who,
as mentioned in the previous section, extracted fucoidan using traditional MAE and PLE
methods from two seaweed species. The yields of the PLE methods were 24.2% and 18.8%,
somewhat higher than those of the conventional methods (18.5% and 16.5%) and MAE
methods (20.4% and 15.3%) [124]. Interestingly, much higher sulfate contents of 51.82% and
57.58%, compared to the traditional technique, with sulfate contents of 28.46% and 35.53%,
were observed [124]. This is not reflected in Table 5, where average sulfate contents in PLE
extracts account for around 20% of the extract.

PLE reduces extraction times [137] and does not require harsh solvents [67,136], lead-
ing to reduced operating costs [138], as well as environmental and sustainability advantages.
On the other hand, PLE process equipment must be heat, pressure and corrosion resistant,
increasing capital costs [67]. Also, the careful optimization of pre-treatment methods and
process conditions is required to control extract quality attributes.
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Table 5. Experimental data on fucoidan extraction using the pressurized liquid extraction (PLE) technique. Operating conditions are reported in terms of extraction
temperature, pH, extraction time (t), solid-to-liquid ratio (vSL) and solvent used, as well as pressurized liquid pressure (Pi), treatment time (tp) and the number of
cycles (np). Results are collated in terms of process properties (yield and purity), extract characteristics (sugar, fucose, sulfate contents and molecular weight (MW))
and impurities present (uronic acids and phenolic compounds). Data are reported in alphabetical taxonomical order.

Reference

Seaweed Type Extraction Conditions Process Properties Extract Characteristics Extract Impurities

Order Family Species T pH vSL Solvent
Pi tp ncycles Yield Purity Sugar Fucose Sulfate MW Uronics Phenolics

(◦C) (g/mL) (Bar) (min) (-) (%) (%) (%) (%) (%) (kDa) (%) (%)

Hans et al.
(2023) [82] Dictyotales Dictyotaceae Padina

tetrastromatica 150 N.S. 40 DI H2O 50 N.S. N.S. 12.8 N.C. N.D. N.C. 13.5 N.D. N.D. 1.8 f

Getachew et al.
(2022) [139] Fucales Fucaceae

Fucus distichus
subsp.

evanescens
(formerly

F.evanescens)

120–200 N.S. 10 N.S. N.S. 5 N.S. 4.8–26.0 N.C. N.D. 2.4–12.5 c N.D. N.D. N.D. 12.1 f

Rodríguez-
Jasso et al.
(2012) [1]

Fucales Fucaceae

Fucus distichus
subsp.

evanescens
(formerly

F.evanescens)

160–200 N.S. 25 DI H2O N.S. 10–30 N.S. 16.5 N.C. N.D. N.C. 18.5–30.8 N.D. N.D. 3.2–5.4

Dobrinčić et al.
(2021) [124] Fucales Fucaceae Fucus viroides 60–140 N.S. N.S. 0.1 M H2SO4 103.42 10–15 1–2 24.2 60.1 18.2 11.0 b 51.8 335.7 a 5.3 N.D.

Dobrinčić et al.
(2021) [124] Fucales Sargassaceae Gongolaria

barbata 60–140 N.S. N.S. 0.1 M H2SO4 103.42 10–15 1–2 18.8 28.0 4.4 1.2 b 57.6 723.8 7.2 N.D.

Cernadas et al.
(2019) [140] Fucales Himanthaliaceae Himanthalia

elongata 120–200 4.46–5.3 30 H2O N.S. N.S. N.S. 70.7–63.2 23.3 38.9 9.1 2.3–18.3 N.D. N.D. 0.4–4.6

Alboofetileh
et al. (2019) [88] Fucales Sargassaceae Nizamuddinia

zanardinii 150 N.S. N.S. N.S. N.S. 10 2 13.2 41.7 54.6 22.8 b 11.6 523.2 a 1.9 N.D.

Alboofetileh
et al.

(2019) [141]
Fucales Sargassaceae Nizamuddinia

zanardinii 90–150 N.S. N.S. DI H2O 7.5 N.S. 10–30 26.0 34.1 50.5 17.2 b 13.4 694 2.1 N.D.

Huang et al.
(2022) [142] Fucales Sargassaceae Sargassum

glaucescens 130–180 N.S. 5–15 DI H2O 20–70 15–30 N.S. N.D. 36.2 1.83 0.066 N.D. N.D. N.D. N.D.

Vaamonde-
García et al.
(2022) [121]

Fucales Sargassaceae Sargassum
muticum 170 N.S. 30 DI H2O N.S. N.S. N.S. N.D. 45.8 64.9 29.7 3.3 N.C. 7.1 3.2

Hans et al.
(2023) [82] Fucales Sargassaceae Turbinaria

conoides 150 N.S. 40 DI H2O 50 N.S. N.S. 150 N.S. N.S. 40 DI H2O 50 N.S. N.S.

Ferreira-Anta
et al.

(2023) [143]
Laminariales Alariaceae Undaria

pinnatifida 160–220 N.S. 30 DI H2O 7.6 N.S. N.S. N.D. N.C. N.D. N.C. 1.0–5.0 N.D. N.C. 0.3–2.5 c

Gan and
Baroutian

(2022) [144]
Laminariales Alariaceae Undaria

pinnatifida 120–210 N.S. 10–30 H2O 30 5–30 N.S. N.D. N.C. N.D. 9.0–46.0 c N.D. N.D. N.D. N.D.

Flórez-
Fernández et al.

(2019) [145]
Laminariales Laminariaceae Laminaria

ochroleuca 120–200 N.S. 30 H2O 7.6 N.S. N.S. N.D. N.C. N.D. 2.8–17.5 c 26.0–44.0 c N.D. N.D. 0.5–2.1 c

Saravana et al.
(2018) [146] Laminariales Laminariaceae Saccharina

japonica 100–150 N.S. 30–50 H2O 10–15 N.S. N.S. 5.1–15.7 43.0 43.5 18.7 b 25.7 416.8 15.8 4.8

Saravana et al.
(2018) [136] Laminariales Laminariaceae Saccharina

japonica 100–180 N.S. 11–25 0.1% NaOH 20–80 5–15 N.S. 13.6 N.C. N.D. 48.5 28.6 152.5 14.6 3.5

Saravana et al.
(2016) [135] Laminariales Laminariaceae Saccharinajaponica 80–200 N.S. 17

0.1% NaOH
0.1% HCOOH
50–70% EtOH

5–100 5 N.S. 0.1–8.5 c 13.2–100 1.0–31.0 c 1.0–4.1 c 8.0–29.0 c 83.4–216.9 1.5–13.8 c 0.5–3.8 c

N.S. not specified. N.D. not determined. N.C. not possible to calculate. a Molecular weight was calculated as the mean of number average and weight average molecular weights.
b Determined from total sugar content by fucose sugar composition. c Value extracted from a graph.
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6. Comparisons Across Alternative Extraction Techniques
6.1. Comparison of Extract Quality Attributes

Figure 5 summarizes data collected on process properties (i.e., yield, extract purity),
extract characteristics (i.e., sugar, fucose, sulfate and molecular weight) and impurities (i.e.,
uronic acid and polyphenols) reported in the previous sections. It is evident that there
is a large crossover of process and extract characteristics between methods. Due to the
literature’s tendency to benchmark alternative methods against traditional methods, it
becomes advantageous to instead focus on making direct comparisons between the alterna-
tive methods. These next few sections focus on making comparisons between extraction
methods and discussing which characteristics are likely to lead to bioactive extracts.
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Figure 5. Boxplots of the effect of extraction techniques on fucoidan extract (a) yield, (b) purity,
(c) total sugar, (d) fucose, (e) sulfate content, (f) molecular weight, (g) uronic acid content and
(h) phenolic content across the different extraction techniques. The shaded region indicates typical
values for traditional extraction methods, a line indicates the median and indicates the mean of each
data set.

The data show that fucoidan yields range from 5 to 20%; this falls within the typical
range of traditional methods [72], with little variability between the alternative methods
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(Figure 5a). A similar invariant trend can also be observed for purity (Figure 5b), as well as
sugar (Figure 5c), fucose (Figure 5d), sulfate (Figure 5e) and phenolic (Figure 5h) contents.

Figure 5f shows a narrower range of extract molecular weights for EAE. This is likely
due to the same cellulolytic or protease-based enzyme cocktails being employed, with
similar hydrolytic properties for breaking apart the cell wall in a non-seaweed-specific
manner. This leads to extracts with similar molecular weights. A wider range of molecular
weights is seen for UAE and MAE methods, suggesting that these methods may require
careful control to achieve a desired molecular weight. All of the alternative methods
yield molecular weights falling within the same range achieved through the application
of traditional extraction methods, suggesting that these methods are comparable using
this metric.

Figure 5g shows that the uronic acid content across all methods is comparable, likely
due to alginates being removed using calcium carbonate. It is clear that all fucoidan extrac-
tion methods can produce fucoidan with similar yields, contents and quality attributes.

To aid in the selection of an extraction method, a holistic approach is required. To
achieve this, the following heuristics are proposed and should be considered during process
selection. This will allow for the capture of the broader context on a case-by-case basis and
aid in the selection of an extraction process.

1. Process Scale: The amount of fucoidan product to be produced must be considered.
This is dependent on the amount of raw seaweed material available, as well as the
usage of the final product. Traditional methods easily lend themselves to large scales
using traditional stirred-tank reactors. However, EAE methods may become more
challenging at scale due to a larger demand for enzymes.

2. Operational Mode: It is also important to consider if a batch, semi-continuous or
continuous process is most suitable for the production of fucoidan. The use of a
continuous process increases production rates and reduces labor costs but does not
lend itself to process customization or quality control monitoring between stages like
a batch process. As already established, PLE methods have the flexibility to operate in
all three of these process types, while EAE methods are limited to batch or semi-batch
processes due to their long processing times (~24 h).

3. Economics: Both the capital (CAPEX) and operating (OPEX) expenses associated
with the extraction and downstream requirements must be quantified as part of
a technoeconomic assessment during process design and selection. Models of the
energy and solvent requirements of each extraction technique at different production
scales need to be developed in future.

4. Environmental Friendliness and Sustainability: The waste streams present in the
process and the impact of their disposal routes should be examined closely. Wherever
possible, waste streams from fucoidan production should be valorized and a zero-
waste biorefinery approach applied.

5. Regulatory and Safety Constraints: Each extraction method has its own unique regu-
latory requirements. For example, EAE methods may be constrained regarding the
use of enzymes, and PLE methods will require additional controls for safe operation.

Having considered each of these factors and selected an extraction technique, focus
should move toward producing an extract with desirable key quality attributes (e.g., sulfate
and fucose contents, molecular weight, etc.) at a sufficient yield and purity. To this end,
further work is required to understand the relationships between fucoidan extract contents,
structure and yields with changing seaweed species, pre-treatment methods, extraction
techniques and conditions selected. This would identify relevant extraction conditions
for optimization. To identify these, the standardization of key quality attributes becomes
essential to drive alternative methods into industrial practice.
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6.2. Comparison of Extract Bioactivities

Fucoidans possess a wide range of biological activities, including antiviral, antifungal,
anti-inflammatory, anti-cancer and anticoagulant properties. As introduced in this review
(Figure 1), the quality of the fucoidan is influenced by biological factors (i.e., seaweed
species, harvest location, geolocation), as well as the extraction technique and the conditions
employed. Changes in these factors will result in variability in fucoidan contents and
structural conformation, having a direct effect on fucoidan extracts’ bioactivity. As such,
there have been many studies focused on fucoidan as a bioactive substance. Table 6 presents
a selection of these studies across a range of biological activities.

The table is demonstrative of the wide range of biological activities that fucoidans
can possess. It is also evident that the starting seaweed material and extraction method
directly influence biological activity. The antioxidant study carried out by Dobrinčić et al.,
highlights this, where extracts produced using different species and traditional, MAE
or PLE methods all possess different antioxidant properties, confirming that the method
and seaweed species have a significant influence on extract bioactivity [124]. Okolie et al.
validate this observation through their prebiotic studies, in which different growth rates
are observed for different extracts [84]. A study by Alboofetileh et al. furthers this, where
an antiviral response is seen in extracts produced using all methods but PLE. Notably,
this study also reports that extracts produced through alternative methods outperform
traditional extracts, presenting a possible opportunity [88].

What remains unclear is the relationship between biological activity and extract quality
attributes. This prompts further investigation to understand the underlying biological
processes and mechanisms of action of fucoidan for a given biological activity, as well as
the extraction conditions that lead to a biologically active extract. To this end, research has
been focused primarily on the effects of fucoidan molecular weight and sulfate contents on
biological activity.

A suggested benefit of low-molecular-weight fucoidans is that they possess increased
bioavailability. Tan et al. demonstrated this by studying tissue absorption and pharma-
cokinetics in ICR mice. Their results showed that low-molecular-weight fucoidans were
absorbed faster and more efficiently in comparison to high-molecular-weight fractions [147].
As such, studies have been carried out to assess the effects of this extract quality attribute.

Chen et al. found that low-molecular-weight fucoidans enhanced anti-lipogenesis,
antioxidant and anti-inflammatory activities, suggesting that bioactivity may be improved
with a reduction in molecular weight [31]. Krylova carried out antiviral studies on extracts
of differing molecular weights, finding that the low-molecular-weight fractions had more
potent antiviral effects [148]. In both studies, the interpretation of these results should be
cautious, given the fact that high- and low-molecular-weight fractions in these studies were
prepared using enzymatic digestion, which may have altered the fucoidan structure away
from something obtainable using solely fucoidan extraction methods. More confidence in
these findings is provided by Wang et al., who prepared low- and high-molecular-weight
extracts using molecular weight cut-off membranes, finding that the low-molecular-weight
fraction induced a greater anti-inflammatory response [149].
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Table 6. A selection of studies investigating fucoidan bioactivity: antiviral, antioxidant, antibacterial, anti-inflammatory, probiotic and anti-lipogenesis effects.

Reference Seaweed
Species Microbe(s) Used Extraction/Preparation Method Assay Key Results

Antiviral

Mandal et al.
(2007) [150]

Polycladia indica (formerly
Cystoseira indica)

Vero cells
Herpes simplex viruses (HSV1

and HSV2)

• Crude fucoidan purified using
anion-exchange
chromatography, both crude
and purified, chemically
desulfated.

• MTT assay used to determine
fucoidan cytotoxic effect.

• Antiviral activity assessed
using a plaque-based assay.

• No cytotoxicity was observed in
any of the four fractions.

• Desulfated samples had reduced
potency or no antiviral effect
against HSV-1 and HSV-2.

Thuy et al.
(2014) [151]

Sargassum mcclurei

Sargassum
polycystum

Turbinaria ornata

U373-CD4-CXCR4 cellsHIV-1

• Crude fucoidan from three
species was tested. The sulfate
content of two of the crude
extracts was increased by
anion-exchange
chromatography.

• Cytotoxic effect determined
using LIVE/DEAD staining.

• Antiviral effect quantified using
luciferase relative luminescence
measurement.

• Cell viability remained between
100 and 60% for all three crude
samples.

• Increased antiviral effects were
observed with increasing sulfate
content when comparing crude
and purified samples.

Alboofetileh et al.
(2019) [88] Nizamuddinia zanardinii Vero cells

Herpes simplex virus (HSV2)

• Traditional, EAE, UAE, MAE,
PLE and combined
ultrasound–microwave
(UMAE) and
enzyme–ultrasound (EUAE)
methods used.

• MTS assay used to determine
fucoidan cytotoxic effects.

• Antiviral activity assessed
using a plaque assay.

• No cytotoxic effects were
observed.

• All extracts possessed antiviral
properties compared to the
positive control.

• The traditional extract was the
most potent antiviral agent, with
alternative (UAE, MAE, UMAE
and PLE) methods producing a
reduced potency.

Krylova et al.
(2021) [148]

Fucus distichus subsp. evanescens
(formerly F. evanescens)

Vero cells
Amur virus

• Fucoidan enzymatically
digested into high- (FeHMP)
and low-molecular-weight
(FeLMP) fractions for testing.

• MTT assay used to determine
fucoidan cytotoxic effects.

• Antiviral activity assessed
using a plaque-based assay.

• Low cytotoxicity was found
for all fucoidan fractions
(>2000 µg/mL).

• A reduced IC50 value was
observed for the FeLMP
compared to the FeHMP,
suggesting a greater antiviral
effect with reduced molecular
weight.
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Table 6. Cont.

Reference Seaweed
Species Microbe(s) Used Extraction/Preparation Method Assay Key Results

Antioxidant

Yuan and
Macquarrie
(2015) [126]

Ascophyllum nodosum N/A

• Fucoidan with differing
molecular weights and sulfate
contents produced using
different MAE conditions.

• Antioxidant capacity assessed
using DPPH and reducing
power assays.

• Antioxidant capacity by both
assays was correlated with
increasing molecular weight and
sulfate content.

Chen et al.
(2021) [31]

Sargassum
siliquosum N/A

• Fucoidan produced by MAE
method and cut-off membrane
purification.

• Highly sulfated form prepared
by chemical modification.

• Varying-molecular-weight
samples produced by hydrogen
peroxide digestion.

• Antioxidant capacity assessed
using a DPPH assay.

• The study found that the
antioxidant capacity of extracts
was inversely proportional to
molecular weight.

Dobrinčić et al.
(2021) [124]

Gongolaria barbata

Fucus virsoides
N/A

• Fucoidans produced using
traditional, MAE and PLE
methods.

• Antioxidant capacity assessed
using ORAC and DPPH assays.

• Antioxidant capacity varied
between methods and species,
suggesting that these have an
effect on this biological activity.

Wang et al.
(2022) [149] Ascophyllum nodosum RAW264.7 cells

• Fucoidan produced by the EAE
method and two extracts of
differing molecular weights
prepared using cut-off
membranes.

• Production of seven cytokines
(inflammation) monitored
using PCR.

• Nitric oxide levels determined
using an assay kit.

• Both fractions suppressed nitric
oxide production and regulated
pro-inflammatory cytokine
production.

• The low-molecular-weight
fucoidan was a more potent
anti-inflammatory agent than the
high-molecular-weight extract.

Husni et al.
(2022) [152] Sargassum hystrix N/A

• Extracts produced using
traditional extraction methods
with four different conditions.

• Antioxidant capacity assessed
using DPPH, FRAP, HRSA and
a vitamin C-based assay.

• FRAP results suggested a directly
proportional relationship between
antioxidant capacity and sulfate
content.

• This relationship was not
observed in other antioxidant
assays because of interference
with other compounds in the
extracts.
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Table 6. Cont.

Reference Seaweed
Species Microbe(s) Used Extraction/Preparation Method Assay Key Results

Antibacterial

Alboofetileh et al.
(2019) [88] Nizamuddinia zanardinii

Escherichia coli
Pseudomonas aeruginosa
Listeria monocytogenes
Staphylococcus aureus

• Traditional, EAE, UAE, MAE,
PLE and combined
ultrasound–microwave
(UMAE) and
enzyme–ultrasound (EUAE)
methods used.

• Disk diffusion method at
2 mg/mL used and quantified
using minimum inhibitory
concentration (MIC).

• PLE (MIC: 1.8 mg/mL) and MAE
(MIC: 1.7 mg/mL) inhibited the
growth of E. coli.

• PLE (2 mg/mL), EUAE
(2 mg/mL) and UMAE
(1.8 mg/mL) fucoidans inhibited
the growth of P. aeruginosa.

• No antibacterial effect was
observed on L. monocytogenes or
S. aureus for any extraction
method.

Anti-inflammatory

Chen et al.
(2021) [31] Sargassum siliquosum RAW264.7 cells

• Fucoidan produced by the
MAE method and cut-off
membrane purification.

• Highly sulfated form prepared
by chemical modification.

• Varying-molecular-weight
samples produced by hydrogen
peroxide digestion.

• Pro-inflammatory cytokine
levels (TNF-α) determined by
ELISA

• The level of TNF-α production
(inflammation) decreased with
increased sulfate content and a
reduction in molecular weight.

Wang et al.
(2022) [149] Ascophyllum nodosum RAW264.7 cells

• Fucoidan produced by EAE
method and two extracts of
differing molecular weights
prepared using cut-off
membranes.

• Production of seven cytokines
(inflammation) monitored
using PCR.

• Nitric oxide levels determined
using an assay kit.

• Both fractions suppressed nitric
oxide production and regulated
pro-inflammatory cytokine
production.

• The low-molecular-weight
fucoidan was a more potent
anti-inflammatory agent than the
high-molecular-weight extract.
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Table 6. Cont.

Reference Seaweed
Species Microbe(s) Used Extraction/Preparation Method Assay Key Results

Prebiotic

Okolie et al.
(2019) [84] Ascophyllum nodosum

Lactobacillus delbruecki subsp.
bulgaricus

Lactobacillus casei

• Fucoidans produced using
traditional, EAE, MAE and
UAE methods.

• Growth rate determined using
an optical density growth curve
assay for 24 h.

• All fucoidans improved the
growth of L. delbruecki ss
bulgaricus in a statistically
significant way.

• No such trend was seen for
L. casei.

Anti-lipogenesis

Chen et al.
(2021) [31]

Sargassum
siliquosum HepG2 cells

• Fucoidan produced by MAE
method and cut-off membrane
purification.

• Highly sulfated form prepared
by chemical modification.

• Varying-molecular-weight
samples produced by hydrogen
peroxide digestion.

• Lipid formation determined
using an oil red staining assay.

• With increased sulfate content,
the anti-lipogenesis activity
decreased.

• Anti-lipogenesis activity
increased with decreasing
molecular weight.

• A low-sulfate-content,
low-molecular-weight sample
may be favorable for a high
anti-lipogenesis activity.
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However, studies such as that by Yuan and Macquarrie counter this finding, showing
that the reducing power of extracts increased with molecular weight [126]. As such, it
may be the case that different ranges of molecular weights are required for different
biological activities. Due to this discrepancy in the literature, it may be preferable to
produce and refine fucoidan extracts into a pure, high-molecular-weight form prior to
digestion into low-molecular-weight fractions and formulation into final products for
specific bioactivity applications.

Sulfate content has also been suggested to influence fucoidan biological activity. Husni
et al. produced fucoidan using four extraction methods before testing their antioxidant
capacities. The results showed that the total antioxidant capacity of the four extracts
determined by FRAP assay closely followed the extract sulfate content, indicating that
this may be a variable of importance. However, this trend was not seen when antioxidant
capacity was assessed using other methods [152], showing the conflicts in the literature on
the effect of this variable. This conflict was furthered by Chen et al., who found that the anti-
inflammatory and antioxidant activity of fucoidans increased with sulfate content while the
anti-lipogenesis decreased, suggesting that the effect of sulfate content is unique on each
biological activity [31]. A limitation of this study is that the sulfate content of the fucoidans
used was artificially increased by a chemical modification. Therefore, the results of this
study may not be representative of naturally occurring highly sulfated fucoidans. Similarly,
Mandal et al. produced sulfated and desulfated forms of an extract through chemical means
before testing on herpes simplex virus. The antiviral activity of the desulfated samples
was significantly lower (IC50 >100 µg/mL) in comparison to that of the sulfated samples
(19.5 µg/mL), suggesting increased antiviral activity [150].

Thuy et al. found no correlation between sulfate content and antiviral activity after
producing extracts with increased sulfate content using anion-exchange chromatogra-
phy [151]. This may suggest that the picture is more complex, and simply increasing sulfate
content alone may not lead to an increase in bioactivity. Bioactivity effects may instead be
related to the molecular conformation that allows for the sulfation of the polysaccharide
structure [153]. Overall, the literature suggests that sulfate content does influence extract
biological activity.

At present, fucoidan manufacturing should focus on producing extracts with a high
purity and high molecular weight to allow for flexibility in the valorization and formulation
of fucoidan into biologically active preparations. To achieve this, seaweed species and
process variables must be optimized. However, further work is needed to understand the
influence of other key quality attributes on different biological activities. For example,
there is little literature on the effect of fucose contents. The effect of this variable may be
explained by the monosaccharide being highly sulfated, with up to three sulfate functional
groups [154]. As such, extracts with a high fucose content may have similar effects to those
of extracts with a high sulfate content, and there would be a requirement to minimize
other seaweed cell wall contents, including uronic acids, through purification for a potent
bioactive extract. However, this should be investigated with more biological studies in
order to elucidate the relationship between biological activity, fucoidan structure and
quality attributes.

Fucoidan extract data reporting should be standardized to build up a large data set
so that commonalities and trends can be spotted, e.g., by using machine learning tools
to identify extract quality attributes required for a given bioactivity. Further emphasis
should move from determining if an extract possesses a given bioactivity to mechanistic
studies to understand how fucoidan acts on a specific microbial class. These studies would
then allow for the required quality attributes to be identified and allow for greater specific
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discussions around individual bioactivities, e.g., antiviral and antibacterial, instead of
general bioactivity.

6.3. Future Standardization Recommendations

One of the purposes of this review paper is to demonstrate that the standardized
reporting of data on extract structure and contents would allow for a link between extraction
techniques, extract quality attributes and, ultimately, bioactivity to be established. This was
achieved by standardizing the large amount of information extracted from the literature
using a set of assumptions. However, this methodology may mean that differences in the
biological factors, extraction protocols and analytical methods employed are not captured
fully. This could be attenuated if the methods of reporting were standardized.

As was established earlier in this review, both biological and process factors influence
the final fucoidan product (Figure 1). These differences make the comparison of extracts
between studies particularly challenging. In order to tackle the effect of biological factors,
information on the raw seaweed used in an extraction should be provided whenever
possible, including its species, harvest location, season and monosaccharide profile. For the
process factors and the vast number of different pre-treatments, extraction and purification
protocols employed, yields, molecular weight and contents should be reported between
process stages so that the effectiveness of each can be assessed.

Another challenge in extract reporting is the vast number of analytical techniques
employed, such as mass spectroscopy, anion-exchange chromatography and colorimetric
methods, to determine key fucoidan quality attributes. An excellent overview of many
of these methods is provided by Zayed et al. [22]. Colorimetric methods are widely used
due to their simplicity and reduced cost. However, they also have associated error, which
may lead to the over- or under-estimation of fucoidan content [155]. This limits their ability
to be compared with liquid or gas chromatography methods. As such, to allow for their
continued use, a well-characterized fucoidan standard should always be included so that
comparisons can be made between studies.

Similarly, the way data is reported is fundamental. For example, yields are often
expressed as a polysaccharide-rich (fucoidan, alginate, laminarin) extract yield relative
to the amount of raw biomass used instead. This makes it difficult to compare key fac-
tors contributing toward the success of fucoidan extraction, especially when comparing
fucoidan yields among different species. Efforts should be made to determine the fucoidan
purity of such polysaccharide fractions so that it can be determined if they are actually
fucoidan-rich extracts. Only then can an extraction method’s performance be truly assessed,
and only then will it be possible to determine how different fucoidan yields are among
different seaweed species. Finally, uronic acid contents are often reported together, but not
all are from the same polysaccharide source. As such, a high uronic acid content is not
necessarily an indicator of alginate contamination. Glucuronic and galacturonic acids can
be part of branching sections of fucoidan, especially in fucoidan derived from Laminariales.
Therefore, the individual uronic acid (glucuronic, galacturonic, glucuronic, etc.) content
should be reported for accurate comparison.

Despite these challenges, this review made all efforts to show the performance vari-
ability of different methods by making assumptions to standardize extract data and allow
direct comparisons to be made.

These comparisons suggest that all extraction methods offer similar performance in
terms of yield, purity and contents. A notable result was that EAE produced extracts with
a narrow range of molecular weights due to this method’s specific nature.
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This crude way of standardizing the literature acts as a case study to demonstrate
that if information on fucoidan extracts was uniform, comparison between methods would
become easier.

The standardization of reporting for extraction contents and properties would allow for
a more sophisticated form of this methodology to be applied and presents an opportunity
of creating a large, detailed dataset to allow for deeper and more meaningful comparisons
between extraction methods and conditions. A further possibility for the creation of this
dataset could arise through use of machine learning tools, allowing for the relationships
between extraction conditions and techniques, fucoidan contents, quality attributes and,
ultimately, bioactivity to be determined.

7. Conclusions and Future Outlook
Numerous fucoidan extraction techniques have been developed over the years. These

techniques employ a wide range of background technology, all with the same aim of break-
ing apart the seaweed cell wall to release its contents. Throughout this review, it is clear
that a diverse number of pre-treatment, extraction and purifications protocols, each using
a different seaweed source, are affected by their own unique sets of biological factors to
produce a fucoidan extract. Afterward, the key quality attributes of each extract is analyzed
using a number of different analytical techniques. This makes comparison between papers
extremely challenging, and a true assessment of each extraction technique’s benefits is
virtually impossible. To address this problem, the standardization of extract reporting is
vital to aid in the development of knowledge surrounding specific extraction techniques
and could help to unravel the relationship between extraction variables and fucoidan
contents to aid in the selection of processing parameters for specific biological applications.

This review provides a template for standardization aiming to uncover the relation-
ships between extraction techniques, extract characteristics (including extraction yield,
molecular weight and total sugar, fucose, uronic acid, sulfate and polyphenol contents) and
bioactive properties. This was achieved through a literature search to collect all existing
data. The extracted data were then standardized through assumptions before collation
(Tables 1–5 and Figure 5); this demonstrated that all extraction methods can produce fu-
coidan extracts with similar quality attributes (i.e., yield, purity and contents).

As such, a holistic approach for the selection of an appropriate extraction technique
is required. A number of heuristics for the selection of an extraction method, considering
the wider context, are provided within this review. Future work is required to continue
developing knowledge within the suggested heuristic categories provided, e.g., technoeco-
nomic analysis. Furthermore, a blueprint of best practices to produce high-quality fucoidan
is provided.

Through an analysis of the literature, the key quality attributes required for a bio-
logically active extract were suggested. Literature in this area should move away from
discussing bioactivity in general and toward more specific effects, such as antibacterial
properties. Mechanistic studies are also required to further develop knowledge on fucoidan.
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Abbreviations
USD United States dollar
MAE Microwave-assisted extraction
UAE Ultrasound-assisted extraction
EAE Enzyme-assisted extraction
PLE Pressurized liquid extraction

HPAEC-PAD
High-performance anion-exchange chromatography with pulsed
amperometric detection

T Extraction temperature
t Extraction time
vSL Solid-to-liquid ratio
[E] Enzyme concentration
P Microwave/ultrasound power
Tu Ultrasound extraction time
I Ultrasound extraction current
A Ultrasound extraction amplitude
ƒ Ultrasound extraction frequency
tm Microwave extraction time
Pi Pressurized liquid extraction pressure
tp Pressurized extraction time
ncycles

MW
Number of pressurized liquid extraction cycles
Extract molecular weight

DI H2O Deionized water
H2O Water
NaOAc Sodium acetate buffer
HCl Hydrochloric acid

Tris-MES
Tris(hydroxymethyl)aminomethane (2-(N-morpholino)ethanesulfonic
acid buffer

MgCl2 Magnesium chloride
EDTA Ethylenediaminetetraacetic acid
ChCl-Gly Choline Chloride-Glycerol
NaN3 Sodium azide
H2SO4 Sulfuric acid
NaOH Sodium hydroxide
HCOOH Methanoic acid
EtOH Ethanol
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