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Abstract: Inflammatory bowel disease (IBD) is characterized by uncontrolled, chronic
relapsing inflammation in the gastrointestinal tract and has become a global healthcare
problem. Here, we aimed to illustrate the anti-inflammatory activity and the underlying
mechanism of methyl 3-bromo-4,5-dihydroxybenzoate (MBD), a compound derived from
marine organisms, especially in IBD, using a zebrafish model. The results indicated that
MBD could inhibit the inflammatory responses induced by CuSO4, tail amputation and
LPS in zebrafish. Furthermore, MBD notably inhibited the intestinal migration of immune
cells, enhanced the integrity of the gut mucosal barrier and improved intestinal peristalsis
function in a zebrafish IBD model induced by trinitro-benzene-sulfonic acid (TNBS). In
addition, MBD could inhibit ROS elevation induced by TNBS. Network pharmacology
analysis, molecular docking, transcriptomics sequencing and RT-PCR were conducted to
investigate the potential mechanism. The results showed that MBD could regulate the
TLR/NF-κB pathways by inhibiting the mRNA expression of TNF-α, NF-κB, IL-1, IL-1β,
IL6, AP1, IFNγ, IKKβ, MyD88, STAT3, TRAF1, TRAF6, NLRP3, NOD2, TLR3 and TLR4,
and promoting the mRNA expression of IL4, IκBα and Bcl-2. In conclusion, these findings
indicate that MBD could be a potential candidate for the treatment of IBD.

Keywords: methyl 3-bromo-4,5-dihydroxybenzoate; zebrafish; TNBS; inflammatory bowel
disease; NF-κB pathway

1. Introduction
Inflammation is a complicated process and essential for the body against tissue/cell

damage or infection [1]. However, uncontrolled and chronic inflammations are harmful
to the body, and are closely related to various diseases, such as cancers, cardiovascular
diseases and inflammatory bowel disease (IBD) [2–4]. IBD has become a worldwide health
problem, and is characterized by uncontrolled and excessive inflammation in the intestine.
IBD mainly includes Crohn’s disease (CD) and ulcerative colitis (UC) [5,6]. When IBD
occurs, the gut barrier is damaged with a reduction in goblet cells and junction proteins,
which can lead to the infiltration of harmful bacteria into the intestine, and then cause
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inflammation. It can further lead to weight loss, pain and even rectal bleeding. Oxidative
damage and even apoptosis are closely involved in the process of IBD [7,8]. Excessive ROS
can cause damage to DNA, protein and membrane lipids and then cause apoptosis of the
cells, which is essential to the gut barrier. A lot of drugs have been developed and applied
to treat IBD [7,8]. However, unsatisfactory therapeutic effects and easy recurrence remain
problems for IBD treatment. Therefore, more attention should be paid to searching for
green and efficient drugs against IBD.

Rich marine organisms, which live in different environments, such as those with
high pressure, high salinity, low oxygen content and low temperature, provide various
natural chemicals that are different from those of terrestrial organisms [9]. Recent years,
abundant novel chemicals, such as steroids, alkaloids, polyketides and peptides, have been
identified from marine organisms, and have various bioactivities, including antitumor,
antiviral, antibacterial and anti-inflammatory activities [10]. Bromophenols, common
secondary metabolites, can be isolated from marine organisms, including marine algae,
sponges, ascidians and so on. Bromophenols exhibit various biological activities, such as
anticancer, antidiabetic, antimicrobial and anti-inflammatory [11]. Methyl 3-bromo-4,5-
dihydroxybenzoate (MBD), one of the bromophenols, is derived from Red Alga Rhodomela
confervoides [12]. However, its biological activity has not been fully investigated. Here, its
anti-inflammatory activity, especially in IBD was studied in a zebrafish model.

Recent years, zebrafish (Danio rerio), a small tropical freshwater fish, has been widely
used as a powerful animal model in the immunological field [13,14]. It has various advan-
tages, such as small size, high productive rate, in vitro fertilization and rapid growth [13,14].
In addition, at the early developing stage, the embryo/larva is transparent, making it easy
to perform real-time observations of the organ or specific cells, such as immune cells,
nerve cells labeled with florescent proteins in the transgenic zebrafish line [15,16]. The
dynamic inflammation process also can be easily observed under a fluorescence microscope.
Inflammatory zebrafish models, which are induced by CuSO4, lipopolysaccharide (LPS),
tail-cutting, bacterial infection or TNBS, have been widely used to study inflammatory
mechanisms or screen compounds with anti-inflammatory activity [16–18]. Thus, a ze-
brafish model was used to investigate the anti-inflammatory activity and the underlying
mechanism of MBD against IBD.

Here, anti-inflammatory activity was evaluated using zebrafish models induced by
CuSO4, LPS and tail-cutting. Furthermore, the relieving effect of MBD against IBD was
studied in a TNBS-induced zebrafish model and the underlying mechanism was explored
using network pharmacology, mRNA sequencing and an RT-PCR test.

2. Results
2.1. The Activity of MBD Against Inflammation Induced by CuSO4, LPS or Tail-Cutting

CuSO4 can induce acute inflammation by causing damage to facial nerve cells, leading
to the migration of the immune cells [19]. Compared with the control (Ctl) group, CuSO4

caused a significant increase in the immune cells that migrated to the damaged area,
while MBD could inhibit the migration of immune cells in the Tg(zlyz:EGFP) zebrafish line
(Figure 1B).

Tail-cutting can induce inflammation by damaging the zebrafish tail [20]. As shown
in Figure 1C, much more migrated immune cells were shown in the damaged area, while
fewer immune cells were located in the damaged area in the MBD treated groups.

LPS, derived from bacteria, can cause systemic zebrafish inflammation, leading to
a remarkable increase in immune cells (Figure 1D) [21]. After treatment with MBD, the
number elevation of immune cells could be inhibited. These results indicated that MBD
had an apparent anti-inflammatory effect.
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2.2. MBD Relieved TNBS-Induced IBD 

TNBS is widely used to establish IBD in zebrafish or mice by disrupting the gut mu-
cosal barrier, activating inflammatory-related pathways and then increasing the intestinal 
migration of immune cells [22,23]. TNBS increased the migration of immune cells to the 
intestine compared with the control groups, while MBD could inhibit the intestinal loca-
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Figure 2. The anti-inflammatory effect of MBD in the zebrafish IBD model induced by TNBS. (A) A 
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shown in indicated red area. ## p ≤ 0.01 vs. Ctl; * p ≤ 0.05, *** p ≤ 0.001 vs. model. 

Figure 1. The anti-inflammatory effect of MBD against CuSO4, LPS or tail-cutting. (A) The chemical
structure of MBD. Representative images of the anti-inflammatory effects in the CuSO4-induced
acute inflammation (B), tail-cutting-induced mechanic damage inflammation (C) and LPS-induced
systemic inflammation models (D). (E–G) show the statistical analysis of (B–D). The migrated and
aggregated immune cells shown in the red area were used for the analysis. ## p ≤ 0.01 vs. Ctl;
** p ≤ 0.01 and *** p ≤ 0.001 vs. model.

2.2. MBD Relieved TNBS-Induced IBD

TNBS is widely used to establish IBD in zebrafish or mice by disrupting the gut mu-
cosal barrier, activating inflammatory-related pathways and then increasing the intestinal
migration of immune cells [22,23]. TNBS increased the migration of immune cells to the
intestine compared with the control groups, while MBD could inhibit the intestinal location
of immune cells compared with IBD group (Figure 2).
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Figure 2. The anti-inflammatory effect of MBD in the zebrafish IBD model induced by TNBS. (A) A
representative image. (B) The statistical analysis was conducted on the migrated immune cells shown
in indicated red area. ## p ≤ 0.01 vs. Ctl; * p ≤ 0.05, *** p ≤ 0.001 vs. model.

2.3. MBD Enhanced the Peristaltic Ability of the Intestine

Since the epithelial cells of the intestine have a high rate of endocytosis, the peristaltic
ability of the zebrafish intestine can be detected by live staining using calcein dye. The
exocytosis of the calcein dye indicated the peristaltic ability and the intestine. As shown in
Figure 3, after 16 hpe (hours post exposure), the fluorescence intensity of the calcein dye in
the TNBS group was higher than that in the control group, while it was lower in the MBD
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group than in the TNBS group. Furthermore, the peristalsis number in 1 min in the MBD
group was higher than that in TNBS group. These results indicated that intestine function
could be improved by MBD.
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Figure 3. The protective effect of MBD on intestinal peristalsis and efflux activity. The zebrafish was
stained with calcein solution for 16 h. (A) Images representative of the zebrafish stained with calcein
solution at 0 h and 16 h. (B) The statistical analysis of the integrated optical density (IOD) parameter
of the calcein staining. (C) The peristalsis frequency 1 min after calcein staining. ## p ≤ 0.01 vs. Ctl;
* p ≤ 0.05 vs. model, ** p ≤ 0.01 vs. model, *** p ≤ 0.001 vs. model.

2.4. MBD Enhanced the Integrity of the Intestinal Structure

The integrity of the intestinal structure was detected by hematoxylin–eosin (HE)
staining and by transmission electron microscopy (TEM) after MBD exposure. The HE
staining results indicated that there was less integrity of the intestinal structure in TNBS
group compared to the control group, whereas there was more integrity of the intestinal
structure in the MBD group compared to the TNBS group (Figure 4A). Furthermore,
from the TEM picture, it is apparent that there were more microvilli and there was less
disruption of mitochondria in the MBD group than in the TNBS group (Figure 4B). These
results indicated that MBD could inhibit inflammation by protecting the gut barrier.
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2.5. MBD Reduced ROS Elevation Induced by TNBS

To further investigate the anti-inflammatory mechanism of MBD, the ROS level, which
was closely related to the occurrence and development of inflammation, was tested after
MBD exposure. As shown in Figure 5, the ROS level significantly increased after TNBS
treatment, whereas ROS elevation was remarkably inhibited by MBD treatment (Figure 5).
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2.6. Network Pharmacology Analysis

The network pharmacology analysis results showed that 233 potential targets which
might interact with MBD, and 8271 potential targets related to IBD, were found in the Phar-
mMapper (Version 2017), SEA and STITCH databases (Figure 6A). There were 171 genes
shared by MBD and IBD. Figure 6B shows the key targets analyzed and mapped by STRING
and Cytoscape 3.6.1 software. ALB, TNF, EGFR, SAC, ESR1, STAT3, BCL2 and CASP3 were
listed as the first eight targets. The KEGG results showed that the main pathways related to
MBD and IBD were primarily correlated with the NOD pathway, JAK-STAT pathway, TNF
pathway, P53 pathway and chemokine-related pathway (Figure 6C). Molecular docking
was used to test MBD and these eight targets. The molecular docking results showed
that MBD could interact with these proteins, and the docking site and combining thermal
energy are shown in Figure 6D,E.

2.7. Transcriptome Analysis

Transcriptome sequencing was carried out to further study the potential mechanism
of MBD against TNBS-induced IBD. The results showed that 366 genes were up-regulated
and 1240 genes were down-regulated in the TNBS group compared to the control group.
Furthermore, there were 149 genes up-regulated and 7 down-regulated in MBD group
compared to the TNBS group. In addition, there were 514 genes up-regulated and 188 genes
down-regulated in the MBD group compared to control group (Figure 7A).

Then, GO analysis was conducted on the deferentially expressed genes (DEGs)
(Figure 7B,C). The results showed that changed biological processes mainly included
cellular iron ion homeostasis, intracellular sequestering and the transport of iron ions in the
TNBS group compared to the control group. Conversely, the changed biological processes
mainly included the cellular response to xenobiotic stimuli in the MBD group compared
with the TNBS group. These results indicated that MBD might inhibit TNBS-induced
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inflammation by regulating the pathways related to the cellular response to xenobiotic
stimuli and iron metabolism and homeostasis.
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The KEGG analysis results showed that NOD-like receptor signaling pathways were
closely related to IBD and ferroptosis. As to MBD, the DEGs were mainly related to
the NOD-like and Toll-like receptor signaling pathways, and C-type lectin receptor path-
ways (Figure 7D,E). These results indicated that MBD could inhibit TNBS-induced in-
flammation by adjusting various pathways, including the NOD-like and Toll-like receptor
signaling pathways.
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2.8. Gene Expression

To further validate the results of mRNA sequencing and network pharmacology, RT-
PCR was used to test the inflammation-related genes and pathways. As shown in Figure 8,
the mRNA expression of IL1, IL6, AP1, IFNγ, NF-κB, IKKβ, MyD88, STAT3, TNF-α, TRAF1,
TRAF6, TGFβ, NLRP3, NOD2, TLR3, TLR4 and TBX21 was significantly enhanced by TNBS,
while MBD could inhibit the elevation of these genes. However, the expression of IL4, IκBα

and Bcl-2 was significantly inhibited by TNBS, while MBD could activate the expression of
these genes.
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3. Discussion
Various drugs have been developed and used to treat IBD, including aminosalicylates,

antibiotics, corticosteroids, immunosuppressive drugs and supportive medications [24].
However, there are lots of limitations, including the easy recurrence of IBD after drug
withdrawal, and adverse effects, such as drug resistance, nausea, headache and diarrhea,
during the treatment [25]. To date, there are still no drugs that can completely cure IBD.
Therefore, it is urgent to develop green and efficient drugs to treat IBD. Here, methyl 3-
bromo-4,5-dihydroxybenzoate (MBD), a bromophenol compound, which was derived from
marine algae and sponges, was found to have anti-inflammatory activity. Furthermore,
the anti-inflammatory activity, especially in IBD, and the underlying mechanism were
investigated in a zebrafish IBD model induced by TNBS.

Various factors, including infection, radiation and mechanical injury, can lead to
inflammatory responses in the body. When an inflammatory response occurs, it will
cause a series of responses, including migration of the immune cell to the damage site,
ROS elevation, angiogenesis and the production of inflammatory factors [26]. Here, the
Tg(zlyz:EGFP) zebrafish line, with immune cells labeled with EGFP, was used to directly
observe the migration of immune cells to inflammation sites. Previous reports have shown
that CuSO4, LPS and tail-cutting have been widely used to induce inflammation in zebrafish
by leading to the migration or accumulation of immune cells [27]. CuSO4 can damage
the facial nerve cells of zebrafish, LPS can cause systemic inflammation, and tail-cutting
can cause mechanical damage to the tail [28]. Our results showed that MBD could inhibit
the inflammatory response by inhibiting the intestinal migration of immune cells induced
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by TNBS. These results indicated that MBD had anti-inflammatory activity in various
inflammatory models including IBD.

The failure of the gut barrier is the main characteristic of IBD. When IBD occurs,
intestinal goblet cells and tight junction proteins will be reduced, leading to intestinal
leakage. Then, lots of harmful bacteria or viruses can enter into the intestine, multiply and
further induce inflammation of the intestinal mucosa [29]. Intestinal structural integrity
is closely related to intestinal function. The HE staining and TEM results indicated that
intestinal structural integrity could be protected by MBD, as it protects against damage
inflicted by TNBS. In addition, peristalsis and excretion capability are the key signs of
intestinal function [29]. The calcein staining results showed that the peristalsis and excretion
capabilities were enhanced by MBD in the zebrafish IBD model. These results indicated
that MBD could protect the gut barrier and the function of the intestine in IBD.

ROS is an important signal and closely involved in the occurrence and progression of
IBD. Excessive ROS can affect lipid metabolism, as well as DNA and protein synthesis, then
induce the apoptosis of intestinal epithelial cells, and further damage the structure and
the function of the intestine [30]. Here, the ROS staining results showed that TNBS could
promote the production of ROS, which was consistent with previous reports [31,32]. On the
contrary, MBD could inhibit the elevation of ROS induced by TNBS. Our results indicated
that the promotion of antioxidant capacity by MBD was helpful to alleviate IBD symptoms.

Network pharmacology is a useful tool to analyze potential targets and pathways
based on relevant databases. Our results indicated that MBD was closely correlated to genes
such as TNF, STAT3 and EGFR, which are key markers in the inflammatory response [33,34].
In addition to the molecular docking results showing that MBD could interact with these
targets, RNA sequencing was also conducted to further investigate the potential targets of
MBD. The results indicated that inflammation related to various pathways, such as the NF-
κB/STAT3 and TLR pathways, was changed after MBD treatment. To validate the results
of the network pharmacology analysis and RNA sequencing, RT-PCR was conducted after
MBD treatment in zebrafish. The results showed that TNF, IL1, IL6, IFNγ and MyD88,
key indicators of inflammation [35], were remarkably decreased after MBD treatment
compared to the TNBS group. The NF-κB/STAT3 pathway could be down-regulated by
MBD, consistent with the results of network pharmacology and RNA Seq. Toll-like receptor
(TLR) pathways are closely correlated to IBD [36,37]. When the gut barrier is damaged,
the products from pathogens or microorganisms can bind TLRs to induce inflammation by
activating the innate immune system and then activating the NF-κB pathway [38,39]. In
our study, TLRs pathways, including TLRs (TLR3, TLR4), MyD88, TRAF1 and TRAF6, were
inhibited by MBD. These results indicated that MBD could alleviate IBD by inhibiting the
NF-κB/STAT3 and TLR pathways.

To summarize, methyl 3-bromo-4,5-dihydroxybenzoate (MBD), a bromophenol com-
pound derived from marine organisms, could alleviate inflammatory bowel disease (IBD).
MBD could protect the structural intensity of the gut barrier and the function of the intestine
against the damage caused by TNBS in zebrafish. The potential molecular mechanisms
involve the regulation of the NF-κB and TLR pathways. Overall, our results suggest that
MBD has the potential to alleviate IBD by inhibiting inflammation-related pathways.

4. Materials and Methods
4.1. Zebrafish Strains and Culture

TG(zlyz:EGFP) and wild-type (WT) AB were maintained on the Zebrafish Drug Screen-
ing Platform of Shandong Academy of Science and cultured at 28 ± 0.5 ◦C in an automatic
zebrafish housing system with a 14/10 h light/dark photoperiod. The zebrafish were
fed twice daily with newly hatched brine shrimps. Fish spawning, embryo egg collec-



Mar. Drugs 2025, 23, 47 10 of 14

tion and larva culture were carried out according to standard procedure [16]. Healthy
embryos/larvae from 48 to 96 hpf were used for the subsequent experiments.

4.2. Chemical Reagent

MBD (CAS No.: 65841-10-3, >99.5%) was obtained from TargetMol Biochemical Tech-
nology Co., (Shanghai, China). It was prepared in DMSO at a concentration of 20 mM and
stored in a −20 ◦C refrigerator. Then, the working solution was prepared in ddH2O. All
the reagents and chemicals were of analytical grade.

4.3. Inflammation Induced by CuSO4, Tail Amputation, LPS or TNBS

Acute inflammation was induced by CuSO4 as previously described [19]. Briefly,
Tg(zlyz:EGFP) zebrafish larvae at 72 hpf (10 tails each group) were pretreated with MBD (5,
10, 20 µM) or indomethacin (20 µM) for 2 h. Then, CuSO4 was added and treated for 1 h at
a concentration of 20 µM. Then, microscopy was conducted, focusing on an indicated area
with migrated immune cells, and the number of cells was used for analysis. Indomethacin
served as the positive control.

After zebrafish were anesthetized in 0.04% tricaine, tail amputation was carried out on
Petri dishes with 2% agarose under a stereomicroscope. Then, the zebrafish (10 tails in each
group) were incubated with indomethacin (20 µM) and MBD (5, 10, 20 µM). Fish water
with 5‰ DMSO served as the control and the fish who did not undergo tail-cutting served
as the negative control. After 6 h, microscopy was conducted, focusing on the cutting area,
and the immune cells that had migrated to the damaged area were analyzed using ImageJ
1.5.1 software [40,41].

A systemic inflammation model was established in zebrafish through LPS treatment.
Briefly, Tg(zlyz:EGFP) was incubated with LPS with/without 5-aminosalicylic acid (5-ASA,
20 µM) and/or MBD (5, 10, 20 µM) for 24 h from 72 hpf to 96 hpf. A photograph was
taken under a fluorescence microscope. The fluorescence intensity was analyzed using
ImageJ software.

The IBD zebrafish model was established using TNBS as previously reported [24].
Briefly, the zebrafish larvae (10 tails per group) were incubated with 50 µg/mL TNBS from
72 hpf to 124 hpf to establish the IBD model. Then, 5-ASA (20 µM) or MBD (5, 10, 20 µM)
was added and incubated for another 24 h. Then, the intestinal peristalsis frequency per
minute was counted under a microscope and a microscopy image was taken. The immune
cells that had migrated to the intestinal region were used for analysis with ImageJ software.

4.4. Intestinal Efflux Efficiency Detection

The intestinal efflux efficiency was detected based on the IBD model induced by TNBS
using a previously reported method [27]. Briefly, after the IBD model was established, the
zebrafish were treated with calcein solution for 1.5 h and then rinsed with water 3 times.
Microscopy was carried out and then the zebrafish larvae were cultured for an additional
16 h in the dark. Then, a microscopy image was taken again for the second time, and the
integrated optical density (IOD) of the calcein dye staining was analyzed using ImageJ
software. The calculation formulae were as follows.

IODCtl = [IODCTL0 − IODCTL1]/IODCTL0

IODTNBS = [IODTNBS0 − IODTNBS1]/IODTNBS0

4.5. Histopathological Analysis

To check the pathological changes in the intestine, HE staining and transmission TEM
were conducted following a previously described method [27]. Briefly, after treatment, the
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zebrafish were fixed in 4% PFA, dehydrated with ethanol of gradient concentration, and
finally embedded in paraffin. The fixed zebrafish were sectioned and then HE staining
was performed. Images of the sections with HE staining were obtained. The sections were
treated with uranyl acetate and lead citrate and then electron microscopy was conducted to
obtain the pictures (Hitachi HT7800, Tokyo, Japan).

4.6. ROS Analysis

The ROS level in the zebrafish larvae was assessed using an ROS probe, 2′-7′-
Dichlorodihydrofluorescein diacetate (DCFH-DA), which reacted with ROS and changed
to a fluorescent dichlorofluorescein (DCF). After treatment, the zebrafish larvae (10 tails per
group) were stained with 30 µg/mL DCFH-DA solution in the dark for 1 h. After the ze-
brafish were anesthetized, a microscopy image was taken using a fluorescence microscope.
The intensity of fluorescence was used to calculate the ROS level.

4.7. Network Pharmacology Analysis Methods

Network pharmacology analysis was conducted according to the previous method [30,31].
Briefly, for the target fish, the sdf format of MDB was unloaded to the Swiss Target Pre-
diction database and PharmMapper database. Homo sapiens was set up as the screening
species. The collected target proteins were used to establish a protein–protein interaction
(PPI) network in the String platform: “https://string-db.org/ (accessed on 2 April 2024)”.

For the GO and KEGG analyses, the targets, which were shared by MBD and IBD,
were used for annotation, visualization and integrated discovery in the DAVID database:
“https://david.ncifcrf.gov/ (accessed on 2 April 2024)”. p < 0.05 was set up with the
screening conditions of the GO and KEGG analyses.

The data of the correlation of MBD and IBD targets and the pathways were filed into
excel and then the target and pathway (T-P) networks were established in Cytoscape 3.6.1
software. The PPT network was also created using Cytoscape 3.6.1.

For the molecular docking, the first 8 potential targets (ALB, TNF, EGFR, SAC, ESR1
STAT3, BCL2, CASP3) in PPI were chosen for further analysis as previously reported [33,34].
Firstly, the 3D structures of the targets were established and energy minimized in Chem3D
Pro14.0 software. Pymol 2.6.0 software was used to obtain an interaction picture of MBD
and the target proteins.

4.8. Transcriptomic Analysis

mRNA extraction, cDNA synthesis, RNAseq and transcriptomic analysis were con-
ducted using previously reported methods [42]. After MBD treatment, zebrafish larvae
(20 tails per group) were gathered and subjected to RNAseq by the OE Biotechnique Com-
pany (Shanghai, China). The differentially expressed genes (DEGs) were defined with a
fold change >1.5 and p-value (padj) < 0.05. And the top 20 DEGs were used for further
analysis. GO and KEGG analysis were performed using OECloud tools.

4.9. Real-Time Quantitative PCR (qRT-PCR)

qRT-PCR was performed to detect the mRNA expression of inflammation-related
genes using the SYBR Green mix (Takara, Dalian, China). The 2−∆∆Ct method was employed
to analyze the comparative expression of the detected genes. The housekeeping gene β-
actin was used as the internal control. The primers used in the experiment were provided
by Boshang Bioengineering Company (Shanghai, China) and are listed in Table 1.

https://string-db.org/
https://david.ncifcrf.gov/
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Table 1. Primer sequences.

Gene Forward (5′-3′) Reverse (5′-3′)

β-actin AGAGCTATGAGCTGCCTGACG CCGCAAGATTCCATACCCA
IL-1 AGGTGCATCGTGCACATAAG AAGCTGATGGCCCTAAACAG
IL-4 GCCATATCCACGGATGCGACAA GGTGTTCTTCGTTGCTGTGAGGA
IL-6 TCTGCTACACTGGCTACA ACATCCTGAACTTCGTCTC

NF-κB CAATGAAATCTCCTGGGTG CAATGAAATCTCCTGGGTG
TNF-α ATGAGCACAGAAAGCATGATC TACAGGCTTGTCACTCGAATT
STAT3 CAGCAGCTTGACACACGGTA AAACACCAAAGTGGCATGTGA
AP-1 CCACCGCTCTCTCCTATC ATCCTCTCCAGTTTCCTCTT

NLRP3 AGCCTTCCAGGATCCTCTTC CTTGGGCAGCAGTTTCTTTC
TLR3 TTGCCTTGTATCTACTTTTGGGG TCAACACTGTTATGTTTGTGGGT
TLR4 AGACCTGTCCCTGAACCCTAT CGATGGACTTCTAAACCAGCCA

MyD88 ATCCACAGGGACTGACACC CCACCACCATCCTCTTACAC
IκBβ GGTGGAAAGACTCCTGAAAGC TGTAGTTAGGGAAGGTAAGAATG
IKKβ ACTCTCAGCTCAGTAAGACCG CCACAGTCTTCTCATCCTCGTT

TRAF1 GGGCAACCCAGACAAAGT CATCGTGGAGGCTGAAGG
TRAF6 GCCCATGCCGTAT ACTGAATGTGCAGGGGACTG
NOD2 TGCCTCGGGAACAGTAAGAC GCCGCCCTCTCCATTAAAC
IFN-γ CTCGTAAGACTCCTTGTGT ATGAACTCGGTGAACTGG
Bcl-2 TCACTCGTTCAGACCCTCAT ACGCTTTCCACGCACAT

TGF-β GAACTCGCTTTGTCTCCA TACAGTCGCAGTATAACCTCA
TBX21 CTCACCAACCATACCTCTC TGTATTCGGTCTCGTAAGC

4.10. Statistical Analysis

The data were analyzed with GraphPad Prism 5.0 software, using the one-way ANOVA
method, combined with Dunnett’s post hoc t-test. At least three independent experiments
were conducted, and all of the data are shown as the mean ± SD. A p value < 0.05 was
recognized as statistically significant (# and * p ≤ 0.05, ## and ** p ≤ 0.01, *** p ≤ 0.001).
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