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Abstract:

 Aplysina is the best representative genus of the family Aplysinidae. Halogenated substances are its main class of metabolites. These substances contribute greatly to the chemotaxonomy and characterization of the sponges belonging to this genus. Due to their pharmacological activities, these alkaloids are of special interest. The chemistry of halogenated substances and of the alkaloids has long been extensively studied in terrestrial organisms, while the number of marine organisms studied has just started to increase in the last decades. This review describes 101 halogenated substances from 14 species of Aplysina from different parts of the world. These substances can be divided into the following classes: bromotyramines (A), cavernicolins (B), hydroverongiaquinols (C), bromotyrosineketals (D), bromotyrosine lactone derivatives (E), oxazolidones (F), spiroisoxazolines (G), verongiabenzenoids (H), verongiaquinols (I), and dibromocyclohexadienes (J). A compilation of their 13C NMR data is also part of the review. For this purpose 138 references were consulted.
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1. Introduction

Marine sponges have been known and used by mankind since antiquity. They were included in the first classification of living organisms, written in 350 BC by Aristotle in Greece. At first thought to be plants, their animal nature was only recognized by the end of the XVIII century. However, great naturalists of the time such as Lamarck, Linnaeus and Cuvier classified them as Zoophytes. The elevation of the Porifera to the level of phylum was suggested by Huxley in 1875 and by Sollas in 1884, and was only accepted at the beginning of the XX century [1].

Sponges belong to the phylum Porifera and are the most primitive of multicelled animals, having existed for roughly 700–800 million years. They have a very simple physiology of construction. They are aquatic organisms growing mostly in temperate salt waters but may also be found in fresh water. When reaching adult form, they are found in solid substrates in places that allow adequate conditions for their growth. Some, when in their primary states, may be mobile [2–4]. They are easily found in all marine environments, from the intertidal zones to the ocean depths of 8500 m in tropical and polar seas. Despite their wide distribution in terms of different oceans and depths, the rocky non-polluted coastline areas show greater populations of sponges which are also known for being rich in secondary metabolites [5–9].

The sponges are filtering animals, which utilize flagellate cells called coenocytes for promoting the circulation of the water through a system of canals existing in this phylum only called aquifer system, around which their body is built. This water flow brings organic particles and microorganisms which are filtered and eaten [10]. Of all the known sponges, only 1% grow in fresh water [11].

There are basically three classes of sponges, Calcarea (5 orders and 24 families), Desmospongiae (15 orders and 92 families) and Hexactinellida (6 orders and 20 families). So far, about 15,000 species of sponges have been described, their diversity however is believed to be much bigger than this [4,12]. Being sessile simple organisms, they evolved chemical defense mechanisms to protect themselves against predators and competitors, as well as against infectious microorganisms. Studies show that secondary metabolites in sponges carry out a crucial role in their survival in the marine ecosystem [13,14].

Because of their potential for the production of new substances of pharmacological interest, sponges have been one of the most chemically studied organisms. In the past 20 years, hundreds of substances have been isolated from them and many of those substances have already been identified, and present interesting biological and pharmacological (such as antibacterial, anticoagulant, antifungal, antimalarial, antituberculosis, antiviral, immunosuppressive and neuro-suppressor) activities [15–23]. The main reported activities for the Aplysina genus are antibacterial, antiyeast, antifungal, antiviral, cytotoxic and hyperglycemic activities, which can be seen in Table 1.


Table 1. Bioactivities of marine sponges of the Aplysina genus.



	
Activity/Species Name

	
Type of Extract

	
Bioassays Models, Organism, Dose or Route of Administration

	
Result

	
Ref.






	
Antibacterial activity




	
Aplysina archeri

	
MeOH Ext.

	
Agar plate-Bacillus subtilis; Escherichia coli-1.0 mg/Disc

	
Active

	
[24]




	
Aplysina fistularis

	
MeOH Ext.

	
Agar plate-Bacillus subtilis; Escherichia coli

	
Active

	
[25]




	

	
MeOH-Toluene

	
Agar plate-Bacillus subtilis; Escherichia coli

	
Active

	
[26]




	

	
Chromatographic Fraction

	
Agar plate-Staphylococcus aureus; Sarcinalutea; Klebsiella pneumonia; Proteus vulgaris; Bacteroides fragilis; Clostridium perfringens; Mycobacterium aviun

	
Active

	
[26]




	
Aplysina lacunosa

	
MeOH Ext.

	
Agar plate-Bacillus subtilis; Escherichia coli

	
Active

	
[25]




	

	
MeOH Ext.

	
Agar plate-Bacillus subtilis; Escherichia coli-1.0 mg/Disc

	
Active

	
[24]




	
Aplysina laevis

	
Acetone Ext.

	
Agar plate-Bacillus subtilis; Escherichia coli

	
Active

	
[27]




	
Aplysina mollis

	
Ether Ext.

	
Agar plate-Staphylococcus aureus-0.2μL/Disc

	
Active

	
[28]




	

	
Ether Ext.

	
Agar plate-Escherichia coli; Pseudomonas aeruginosa-0.2 μL/Disc

	
Inactive

	
[28]




	

	
CHCl3 Ext.

	
Agar plate-Staphylococcus aureus-0.2 μL/Disc

	
Active

	
[28]




	

	
CHCl3 Ext.

	
Agar plate-Escherichia coli; Pseudomonas aeruginosa-0.2 μL/Disc

	
Inactive

	
[28]




	

	
Acetone Ext.

	
Agar plate-Staphylococcus aureus-0.2 μL/Disc

	
Inactive

	
[28]




	

	
ETOH (95%) Ext.

	
Agar plate-Staphylococcus aureus; Escherichia coli; Pseudomonas aeruginosa-0.2 μL/Disc

	
Inactive

	
[28]




	

	
Benzene Ext.

	
Agar plate-Staphylococcus aureus; Escherichia coli; Pseudomonas aeruginosa-0.2 μL/Disc

	
Inactive

	
[28]




	
Aplysina species

	
Ether Ext.

	
Agar plate-Staphylococcus aureus; Escherichia coli; Pseudomonas aeruginosa-0.2 μL/Disc

	
Inactive

	
[28]




	

	
Acetone Ext.

	
Agar plate-Staphylococcus aureus; Escherichia coli; Pseudomonas aeruginosa-0.2 μL/Disc

	
Inactive

	
[28]




	

	
ETOH (95%) Ext.

	
Agar plate-Staphylococcus aureus; Escherichia coli; Pseudomonas aeruginosa-0.2 μL/Disc

	
Inactive

	
[28]




	






	
Antibacterial activity

	
Benzene Ext.

	
Agar plate-Staphylococcus aureus; Escherichia coli; Pseudomonas aeruginosa-0.2 μL/Disc

	
Inactive

	
[28]




	
Aplysina species

	
CHCl3 Ext.

	
Agar plate-Staphylococcus aureus; Escherichia coli; Pseudomonas aeruginosa-0.2 μL/Disc

	
Inactive

	
[28]




	






	
Antiyeast activity




	
Aplysina archeri

	
MeOH Ext.

	
Agar plate-Saccharomyces cerevisiae-1.0 mg/Disc

	
Inactive

	
[24]




	
Aplysina lacunosa

	
MeOH Ext.

	
Agar plate-Saccharomyces cerevisiae-1.0 mg/Disc

	
Weak

	
[24]




	

	

	

	
Activity

	




	






	
Antifungal activity




	
Aplysina archeri

	
MeOH Ext.

	
Agar plate-Penicillium atrovenetum-1.0 mg/Disc

	
Inactive

	
[24]




	
Aplysina lacunosa

	
MeOH Ext.

	
Agar plate-Penicillium atrovenetum-1.0 mg/Disc

	
Inactive

	
[24]




	






	
Antiviral activity




	
Aplysina archeri

	
MeOH-Toluene

	
Cell culture-Virus-Feline Leukemia

	
Active

	
[29]




	






	
Cytotoxic activity




	
Aplysina cauliformis

	
CHCl3-MeOH Ext. (1:1)

	
Cell culture-Cells-Cho K-1

	
Active

	
[30]




	
Aplysina fistularis

	
MeOH Ext.

	
Cell culture-Leuk L-1210-ED50 50 mcg/mL

	
Active

	
[25]




	

	
MeOH-Toluene

	
Cell culture-CA-9KB

	
Active

	
[26]




	

	
Chromatographic Fraction

	
Cell culture-Leuk L-1210-IC50 0.14 mcg/mL

	
Active

	
[26]




	
Aplysina fulva

	
Isopropanol Ext.

	
Cell culture-CA-9KB < ED50 20 mcg/mL

	
Active

	
[31]




	

	
Isopropanol Ext.

	
Cell culture-Leuk L-1210 < ED50 20 mcg/mL

	
Active

	
[31]




	

	
Isopropanol Ext.

	
Cell culture-Leuk P-388 < ED50 20 mcg/mL

	
Active

	
[31]




	
Aplysina lacunosa

	
MeOH Ext.

	
Cell culture-Leuk L-1210-ED50 8.2 mcg/mL

	
Inactive

	
[25]




	






	
Hyperglycemic activity




	
Aplysina mollis

	
ETOH (95%) Ext.

	
Mouse-Intragastric-Dose 200 mg/kg

	
Active

	
[32]









The pioneer investigative work in the field of sponge chemistry published by Bergmann and Feeney in the beginning of the 1950s led to the discovery of Cryptotethya crypta bioactive nucleosides spongothymidine and spongouridine [21]. These nucleosides were the basis for the synthesis of Ara-C, the first marine derivative anticancer agent, and antiviral drug Ara-A [22]. Today, Ara-C is used in the routine treatment of patients suffering from leukemia and lymphomas. One of its derivatives was also approved for use in patients with cancer of the pancreas, lungs and breast [23].


The Genus Aplysina

The genus Aplysina, formerly known as Verongia and reclassified to Aplysina, is one of the richest in terms of secondary metabolites, described in 14 species of the family Aplysinidae, there are 2 species from the Mediterranean Sea, 8 from the Caribbean, 3 from the Pacific Coast of Mexico and 15 in the Brazilian coast. Of the above species, 8 have only been recently identified. From the Mediterranean Sea, the two described species of the genus Aplysina are: A. aerophoba (Schmidt, 1862) and A. cavernicola (Vacelet, 1959). From the Caribbean, among others we find A. fistularis insularis, A. fistularis form fulva, A. archeri, A. cauliformis and A. Lacunosa [33].

Like other genera of the order Verongida, Aplysina stands out for its unique biochemical characteristics. They show low terpene content, and possess a moderately high percentage of sterols, mostly within the aplystan skeleton. They also produce a significant series of brominated derivatives of tyrosine metabolites considered peculiar to species of this order. The sponges of this order are also known for their high phenotypic variability [34].

Marine organisms produce a cocktail of halogenated metabolites with potential commercial value. The structures found in these compounds go from linear chain acyclic, to complex polycyclic molecules [35,36]. The research of halogenated metabolites has been more focused on marine algae than on sea sponges [37–41]. Though many compounds have been discovered recently, many sponges species are poorly screened and the need for new drugs keeps this field open.

In a previous paper our research group evaluated crude algae, sponge extracts and chemically determined molecules from Northeastern Brazil [42–48] with database survey [49–62].

In this paper we review halogenated substances from the genus Aplysina. A compilation of the 13C NMR spectral data of the selected natural products is also provided. This type of genus and species investigation is helpful in the identification and capture of halogenated substances from the genus.




2. Methodology

An extensive bibliographic review was carried out to identify studies of halogenated substances isolated from the genus Aplysina. The present review covers the period of 1967 thru 2010. The search was performed using the following databases: NAPRALERT (Natural Products Alert at the University of Illinois, Chicago), Chemical Abstracts, and the Brazilian online scientific literature search system called “Periodical CAPES” (Coordination for the Improvement of Graduate Level Personnel).

Tables 2 and 3 respectively show the halogenated substance distribution in the genus Aplysina, and the basic skeletons of those substances. Table 4 shows the different substituents for the diverse classes of halogenated substances. Table 5 describes the position of the substituents for the 101 substances isolated from each species. Finally Tables 6–14 show a compilation of 13C NMR data of the substances.


Table 2. Distribution of the halogenated substances in the genus Aplysina.



	
Species

	
Halogenated Substances

	
Substance Code

	
Nucleus

	
Ref.






	
A. aerophoba (Schmidt, 1862)

	
Aeroplysinine 2

	
25

	
E1

	
[63]




	
Aplysinadiene

	
26

	
E1

	
[64]




	
(7S*,11R*)-5-[3,5-Dibromo-4-[(2-oxo-5-oxazolidinyl)]methoxyphenyl]-2-oxazolidinone

	
29

	
F1

	
[65]




	
(R,R)-5[3,5-Dibromo-4-[(2-oxo-5-oxazolidinyl)] methoxyphenyl]-2-oxazolidone

	
31

	
F1

	
[64]




	
Aerothionin

	
41

	
G1

	
[34]




	
Homoaerothionin

	
47

	
G2

	
[66]




	
Isofistularin-3

	
48

	
G2

	
[67]




	
Aerophobin-1

	
76

	
G7

	
[68]




	
2-(3,5-Dibromo-2-hydroxy-4-methoxyphenyl) acetamide

	
84

	
H

	
[69]




	
3,5-Dibromo-4-methoxyphenol

	
85

	
H

	
[64]




	
Methyl 2-(3,5-dibromo-2-hydroxy-4-methoxyphenyl) acetate

	
86

	
H

	
[69]




	
Dibromoverongiaquinol or dienone or 3-5-dibromo-1-hydroxy-4-oxocyclohexa-2-5-diene-1-acetamide

	
94

	
I1

	
[64]




	
Aeroplysinin 1

	
100

	
J

	
[66,70]




	
A. archeri (Higgin, 1875)

	
(7S*,11R*)-5-[3,5-Dibromo-4-[(2-oxo-5-oxazolidinyl)]methoxyphenyl]-2-oxazolidinone

	
29

	
F1

	
[71]




	
11,19-Dideoxyfistularin 3

	
33

	
G1

	
[72]




	
Archerine

	
43

	
G1

	
[73]




	
Fistularin-3

	
46

	
G2

	
[29]




	
11-Ketofistularin 3

	
51

	
G2

	
[29]




	
Aplysina compound 1 or 1-Oxa-2-azaspiro[4,5]deca-2,6-diene-3-carboxamide, N,N′-(2-oxo-1,4-butanediyl)bis[7,9-dibromo-10-hydroxy-8-oxo, [5R-[5α(5′R*,9′R*,10′S*),9α,10β]]-(9CI)

	
57

	
G4

	
[74]




	
Aeroplysinin 1

	
100

	
J

	
[74]




	
(+) Aeroplysinin 1

	
100

	
J

	
[71]




	
(−) Aeroplysinin 1

	
100

	
J

	
[71]




	
A. caissara (Pinheiro & Hajdu, 2001)

	
2-(3,5-Dibromo-4,4-dimethoxy-1-hydroxy-2,5-cyclohexadien-1-yl) acetamide

	
21

	
D1

	
[75]




	
Caissarine C

	
42

	
G1

	
[76]




	
Caissarine B

	
53

	
G2

	
[75]




	
Agelocaissarine A1

	
58

	
G4

	
[76]




	
Agelocaissarine A2

	
59

	
G4

	
[76]




	
Agelocaissarine B1

	
60

	
G4

	
[76]




	
Agelocaissarine B2

	
61

	
G4

	
[76]




	
Caissarine A

	
79

	
G8

	
[75]




	
A. cauliformis (Carter, 1882)

	
2-(3,5-Dibromo-1-hydroxy-4,4-dimethoxycyclohexa-2,5-dienyl)acetamide

	
21

	
D1

	
[71]




	
(7S*,11R*)-5-[3,5-Dibromo-4-[(2-oxo-5-oxazolidinyl)]methoxyphenyl]-2-oxazolidinone

	
29

	
F1

	
[71]




	
11-Oxoaerothionin

	
52

	
G2

	
[77]




	
Aplysinametabolite or Methyl 4-((5S,10R)-7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro-[4.5]deca-2,6,8-trienecarboxamido)-2-oxobutylcarbamate

	
64

	
G7

	
[78]




	
Methyl 4-((5S,10R)-7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro-[4.5]deca-2,6,8-trienecarboxamido)-3-oxobutylcarbamate or Aplysina compound 13

	
65

	
G7

	
[78]




	
Methyl-4-((5S,10R)-7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-trienecarboxamido)butylcarbamate or Aplysina metabolite 14

	
66

	
G7

	
[78]




	
Aplysinamisine-1

	
67

	
G7

	
[30]




	
Aplysinamisine-2

	
68

	
G7

	
[30]




	
Aplysinamisine-3

	
69

	
G7

	
[30]




	
Aeroplysinin 1

	
100

	
J

	
[78]




	
A. cavernicola (Vacelet, 1959)

	
Cavernicolin-1

	
5

	
B1

	
[79,80]




	
5-Bromo-7α-chlorocavernicolin

	
7

	
B2

	
[81]




	
5-Bromo-7β-chlorocavernicolin

	
8

	
B2

	
[81]




	
7β-Bromo-5-chlorocavernicolin

	
9

	
B2

	
[81]




	
7α-Bromo-5-chlorocavernicolin

	
10

	
B2

	
[81]




	
Monobromocavernicolin or 5-Bromocavernicolin

	
11

	
B2

	
[81]




	
5-Chlorocavernicolin

	
12

	
B2

	
[81,82]




	
7-Bromocavernicolenone

	
13

	
B3

	
[82]




	
7-Chlorocavernicolenone

	
14

	
B3

	
[63]




	
2-(3,5-Dibromo-1-hydroxy-4,4-dimethoxycyclohexa-2,5-dienyl) acetamide

	
21

	
D1

	
[63]




	
Aeroplysinine 2

	
25

	
E1

	
[63]




	
11,19-Dideoxyfistularin 3

	
33

	
G1

	
[63]




	
12(R)-Hydroxy-11-oxoaerothionin

	
36

	
G1

	
[63]




	
Aerothionin

	
41

	
G1

	
[63]




	
Oxohomoaerothionin

	
44

	
G1

	
[63]




	
11-Deoxyfistularin-3

	
45

	
G2

	
[63]




	
Homoaerothionin

	
47

	
G2

	
[63]




	
Isofistularin3

	
48

	
G2

	
[63]




	
11-Oxoaerothionin

	
52

	
G2

	
[63]




	
(+) 3-Bromo-5-chloroverongiaquinol or (+)-3-Bromo-5-chloro-1-hydroxy-4-oxo-2,5-cyclohexadiene-1-acetamide

	
91

	
I1

	
[81]




	
(+) 3-Bromoverongiaquinol or (+)-3-Bromo-1-hydroxy-4-oxo-2,5-cyclohexadiene-1-acetamide

	
92

	
I1

	
[81]




	
(DL) 5-Bromoverongiaquinol

	
93

	
I1

	
[81]




	
Dichloroverongiaquinol

	
95

	
I1

	
[80]




	
Aeroplysinin 1

	
100

	
J

	
[63]




	
A. conulosa (Pulitzer-Finali, 1986)

	
Aeroplysinine 2

	
25

	
E1

	
[83]




	
A. fistularis (Pallas, 1766)

	
Aplysamine1

	
1

	
A

	
[84]




	
Aplysamine2

	
2

	
A

	
[84]




	
Aplysfistularine

	
4

	
A

	
[46]




	
5-Amino-2,6-dichloro-4-hydroxycyclohex-2-enone acetic acid lactam

	
15

	
B4

	
[26]




	
5-Amino-2-bromo-6-chloro-4-hydroxy-cyclohex-2-enone acetic acid lactam (5-bromo-7-chlorocavernicolin)

	
16

	
B4

	
[26]




	
5-Amino-2-6-dibromo-4-hydroxy-cyclohex-2-enone acetic acid lactam or Cavernicolin

	
17

	
B4

	
[26]




	
4,6-Dibromohomogentisamide

	
18

	
C

	
[85]




	
3,5-Dibromohydroquinone-2-acetamide

	
19

	
C

	
[86]




	
2-(3,5-Dibromo-1-hydroxy-4,4-dimethoxycyclohexa-2,5-dienyl) acetamide

	
21

	
D1

	
[87]




	
Aeroplysinine 2

	
25

	
E1

	
[88]




	
(7S*,11R*)-5-[3,5-Dibromo-4-[(2-oxo-5-oxazolidinyl)]methoxyphenyl]-2-oxazolidinone

	
29

	
F1

	
[71]




	
Aerothionin

	
41

	
G1

	
[88,89]




	
Fistularin-3

	
46

	
G2

	
[88]




	
Homoaerothionin

	
47

	
G2

	
[89]




	
11-Oxoaerothionin

	
52

	
G2

	
[88]




	
Purealidin-L

	
78

	
G7

	
[90]




	
2-(3,5-Dibromo-2-hydroxy-4-methoxyphenyl) acetamide

	
84

	
H

	
[26,69]




	
2,6-Dibromo-1,4-benzoquinone

	
87

	
I1

	
[91]




	
2,6-Dichloro-4-hydroxycyclohexa-2-5-dienone-4-acetamide

	
89

	
I1

	
[26]




	
2-Bromo-6-chloro-4-hydroxycyclohexa-2,5-dienone-4-acetamide

	
90

	
I1

	
[26]




	
Dibromoverongiaquinol or dienone or 3-5-dibromo-1-hydroxy-4-oxocyclohexa-2-5-diene-1-acetamide

	
94

	
I1

	
[61–65,92–96]




	
Aeroplysinin 1

	
100

	
J

	
[96]




	
A. fulva (Pallas, 1766)

	
Cavernicolin-1

	
5

	
B1

	
[83,97]




	
Cavernicolin-2

	
6

	
B1

	
[83,97]




	
3,5-Dibromohydroquinone-2-acetamide

	
19

	
C

	
[34]




	
2’-(3,5-Dibromo-4-hydroxyphenyl) acetamide

	
20

	
C

	
[97]




	
2-(3,5-Dibromo-1-hydroxy-4,4-dimethoxycyclohexa-2,5-dienyl) acetamide

	
21

	
D1

	
[97]




	
Aeroplysinine 2

	
25

	
E1

	
[34]




	
(7S*,11R*)-5-[3,5-Dibromo-4-[(2-oxo-5-oxazolidinyl)]methoxyphenyl]-2-oxazolidinone

	
29

	
F1

	
[97]




	
11-Epi-fistularin-3

	
34

	
G1

	
[98]




	
11-Hydroxyfistularin-3

	
35

	
G1

	
[99]




	
12(R)-Hydroxy-11-oxoaerothionine

	
36

	
G1

	
[34]




	
12(S)-Hydroxy-11-oxoaerothionine

	
37

	
G1

	
[34]




	
Aerothionin

	
41

	
G1

	
[34,83,97]




	
Fistularin-3

	
46

	
G2

	
[31,34,83,97]




	
Homoaerothionin

	
47

	
G2

	
[34]




	
11-Hydroxyaerothionin

	
50

	
G2

	
[34,97]




	
11-Oxoaerothionin

	
52

	
G2

	
[34,97]




	
Aplysinamisine-1

	
67

	
G7

	
[97]




	
AraplysillinN9-sulfamate

	
70

	
G7

	
[99]




	
Fistularin-1

	
72

	
G7

	
[34]




	
Fistularin-2

	
73

	
G7

	
[31]




	
N-[5S,10R)-7,9-Dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxy]-4-aminobutanoic acid

	
74

	
G7

	
[99]




	
Aerophobin-1

	
76

	
G7

	
[97]




	
Aerophobin-2

	
77

	
G7

	
[97]




	
Aeroplysinin 1

	
100

	
J

	
[34,66]




	
Aplysinafulvin

	
101

	
J

	
[97]




	
A. gerardogreeni (Gomes & Bakus, 1992)

	
Aerothionin

	
41

	
G1

	
[100]




	
Homoaerothionin

	
47

	
G2

	
[101]




	
Aplysinone A

	
54

	
G3

	
[101]




	
Aplysinone D

	
55

	
G3

	
[101]




	
Aplysinone B

	
56

	
G4

	
[101]




	
Calafianin

	
62

	
G5

	
[100]




	
Aplysinone C

	
63

	
G6

	
[101]




	
2-(3,5-dibromo-2-hydroxy-4-methoxyphenyl) acetic acid

	
83

	
H

	
[100]




	
A. insularis (Duchassaing & Michelotti, 1864)

	
5-((2,6-Dibromo-4-(2-oxooxazolidin-5-yl)-phenoxy)-methyl)-5-methoxyoxazolidin-2-one

	
32

	
F3

	
[74]




	
11,19-Dideoxyfistularin 3

	
33

	
G1

	
[102]




	
Aerothionin

	
41

	
G1

	
[74,103]




	
Fistularin-3

	
46

	
G2

	
[74,102,103]




	
Homoaerothionin

	
47

	
G2

	
[103]




	
11-Dihydroaerothionin

	
49

	
G2

	
[102]




	
11-Oxoaerothionin

	
52

	
G2

	
[102,103]




	
Aplysina metabolite 14

	
66

	
G7

	
[74]




	
14-Oxoaerophobin-2

	
75

	
G7

	
[102]




	
Aerophobin-1

	
76

	
G7

	
[102]




	
Aerophobin-2

	
77

	
G7

	
[102]




	
(5S,10R)-Methyl 7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxylate

	
80

	
G9

	
[102]




	
2-(3-Dibromo-4-hydroxyphenyl)-N,N,N-trimethylethanaminium

	
82

	
H

	
[102]




	
A. lacunose (Lamarck, 1814)

	
(7S*,11R*)-5-[3,5-Dibromo-4-[(2-oxo-5-oxazolidinyl)]methoxyphenyl]-2-oxazolidinone

	
29

	
F1

	
[65]




	
(7R*,11S*)-5-[3,5-Dibromo-4-[(2-oxo-5-oxazolidinyl)]methoxyphenyl]-2-oxazolidinone

	
30

	
F2

	
[71]




	
11,19-Dideoxyfistularin-3

	
33

	
G1

	
[104]




	
Aerothionin

	
41

	
G1

	
[104]




	
Fistularin-3

	
46

	
G2

	
[104]




	
11-Hydroxyaerothionin

	
50

	
G2

	
[104]




	
11-Oxoaerothionin

	
52

	
G2

	
[104]




	
A. laevis (Carter, 1885)

	
(1′R,5′R,6′S)-2-(3′,5′-Dibromo-1′,6′-dihydroxy-4′-oxo-cyclohex-2′-enyl) acetonitrile

	
98

	
I2

	
[27]




	
(1′R,5’S,6′S)-2-(3′,5′-Dibromo-1′,6′-dihydroxy-4′-oxo-cyclohex-2′-enyl) acetonitrile

	
99

	
I2

	
[27]




	
(+) Aeroplysinin 1

	
100

	
J

	
[27]




	
A. species

	
Aplysamine1

	
1

	
A

	
[84]




	
Aplysamine2

	
2

	
A

	
[84]




	
Aplyzanzine A

	
3

	
A

	
[105]




	
2-(3,5-Dibromo-4-ethoxy-1-hydroxy-4-methoxy-2,5-cyclohexadien-1-yl)-ethanamide

	
22

	
D2

	
[71,84,106]




	
Aeroplysinine 2

	
25

	
E1

	
[106]




	
(7R*,11S*)-5-[3,5-Dibromo-4-[(2-oxo-5-oxazolidinyl)]methoxyphenyl]-2-oxazolidinone

	
30

	
F2

	
[71]




	
(R,R)-5[3,5-Dibromo-4-[(2-oxo-5-oxazolidinyl)]methoxyphenyl]-2-oxazolidone

	
31

	
F1

	
[106]




	
11,19-Dideoxyfistularin-3

	
33

	
G1

	
[72]




	
11-Oxofistularin-3

	
38

	
G1

	
[72]




	
19-Deoxy-11-oxofistularin

	
39

	
G1

	
[72]




	
19-Deoxyfistularin-3

	
40

	
G1

	
[72]




	
Aerothionin

	
41

	
G1

	
[107]




	
Hemifistularin-3

	
71

	
G7

	
[72]




	
(10R)-Ethyl-7,9-dibromo-10-hydroxy-8-methyl-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxylate

	
81

	
G9

	
[106]




	
2-(3-Bromo-4-hydroxyphenyl)-N,N,N-trimethylethanaminium

	
82

	
H

	
[108]




	
A. thiona (Laubenfels, 1950)

	
Aplysinketal A

	
23

	
D1

	
[109]




	
Aplysinketal B

	
24

	
D1

	
[109]




	
Aplysinolide

	
27

	
E2

	
[109]




	
Aplysinimine

	
28

	
E2

	
[109]




	
(7R*,11S*)-5-[3,5-Dibromo-4-[(2-oxo-5-oxazolidinyl)]-methoxyphenyl]-2-oxazolidinone

	
30

	
F2

	
[109]




	
Aerothionin

	
41

	
G1

	
[109]




	
Homoaerothionin

	
47

	
G2

	
[109]




	
2-(3,5-Dibromo-2-hydroxy-4-methoxyphenyl)-acetamide

	
84

	
H

	
[109]




	
2,6-Dibromo-4-acetamide-4-hydroxycyclohexadienone

	
88

	
I1

	
[109]




	
Aplysina hydroxydienone or Dibromo compound 10

	
96

	
I1

	
[109]




	
Aplysina hydroxydienoic methyl esther

	
97

	
I1

	
[109]









Table 5. Halogenated substances found in the genus Aplysina.


	Halogen Compound
	R1
	R2
	R3
	R4
	R5
	R6
	R7
	R8
	R9
	Nucleus





	1
	Me
	Me
	-
	-
	-
	-
	-
	-
	-
	A



	2
	H
	(E) BrMeOPhCH2CNOHCO-
	-
	-
	-
	-
	-
	-
	-
	A



	3
	H
	Br2MeOPhCH2CHN(CH3)2CO-
	-
	-
	-
	-
	-
	-
	-
	A



	4
	Me
	Me
	Me
	-
	-
	-
	-
	-
	-
	A



	5
	Br
	H
	Br
	-
	-
	-
	-
	-
	-
	B1



	6
	H
	Br
	Br
	-
	-
	-
	-
	-
	-
	B1



	7
	Cl
	H
	Br
	-
	-
	-
	-
	-
	-
	B2



	8
	H
	Cl
	Br
	-
	-
	-
	-
	-
	-
	B2



	9
	Br
	H
	Cl
	-
	-
	-
	-
	-
	-
	B2



	10
	H
	Br
	Cl
	-
	-
	-
	-
	-
	-
	B2



	11
	H
	H
	Br
	-
	-
	-
	-
	-
	-
	B2



	12
	H
	H
	Cl
	-
	-
	-
	-
	-
	-
	B2



	13
	Br
	-
	-
	-
	-
	-
	-
	-
	-
	B3



	14
	Cl
	-
	-
	-
	-
	-
	-
	-
	-
	B3



	15
	H
	Cl
	Cl
	-
	-
	-
	-
	-
	-
	B4



	16
	H
	Cl
	Br
	-
	-
	-
	-
	-
	-
	B4



	17
	H
	Br
	Br
	-
	-
	-
	-
	-
	-
	B4



	18
	OH
	H
	Br
	OH
	Br
	-
	-
	-
	-
	C



	19
	Br
	OH
	Br
	H
	OH
	-
	-
	-
	-
	C



	20
	H
	Br
	OH
	Br
	H
	-
	-
	-
	-
	C



	21
	Me
	Me
	-
	-
	-
	-
	-
	-
	-
	D1



	22
	Et
	Me
	-
	-
	-
	-
	-
	-
	-
	D2



	23
	Me
	Butyl
	-
	-
	-
	-
	-
	-
	-
	D1



	24
	Me
	Pentyl
	-
	-
	-
	-
	-
	-
	-
	D1



	25
	MeO
	OH
	H
	-
	-
	-
	-
	-
	-
	E1



	26
	H
	Br
	(E) CH2=CH=CH=CH-
	OH
	Br
	-
	-
	-
	-
	E1



	27
	Br
	OMe
	[image: Marinedrugs 09 02316f5]
	Br
	H
	-
	-
	-
	-
	E2



	28
	Br
	OMe
	H
	Br
	H
	-
	-
	-
	-
	E2



	29
	-CH2(R)oxz
	-
	-
	-
	-
	-
	-
	-
	-
	F1



	30
	-CH2(S)oxz
	-
	-
	-
	-
	-
	-
	-
	-
	F2



	31
	-CH2(R)oxz
	-
	-
	-
	-
	-
	-
	-
	-
	F1



	32
	-CH2MeOoxz
	-
	-
	-
	-
	-
	-
	-
	-
	F3



	33
	-(CH2)3OBr2Ph(CH2)2-
	-
	-
	-
	-
	-
	-
	-
	-
	G1



	34
	-CH2(R)CHOHCH2OBr2PhCHOHCH2-
	-
	-
	-
	-
	-
	-
	-
	-
	G1



	35
	-(CH2)3OBr2Ph(R)CHOHCH2-
	-
	-
	-
	-
	-
	-
	-
	-
	G1



	36
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	-
	-
	-
	-
	-
	-
	-
	-
	G1



	37
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	-
	-
	-
	-
	-
	-
	-
	-
	G1



	38
	[image: Marinedrugs 09 02316f8]
	-
	-
	-
	-
	-
	-
	-
	-
	G1



	39
	[image: Marinedrugs 09 02316f9]
	-
	-
	-
	-
	-
	-
	-
	-
	G1



	40
	-CH2CHOHCH2OBr2Ph(CH2)2-
	-
	-
	-
	-
	-
	-
	-
	-
	G1



	41
	-(CH2)4-
	-
	-
	-
	-
	-
	-
	-
	-
	G1



	42
	-CH2CHOH(CH2)3-
	-
	-
	-
	-
	-
	-
	-
	-
	G1



	43
	-(CH2)2CH(imz)2(CH2)3-
	-
	-
	-
	-
	-
	-
	-
	-
	G1



	44
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	-
	-
	-
	-
	-
	-
	-
	-
	G1



	45
	-(CH2)3OBr2PhCHOHCH2-
	-
	-
	-
	-
	-
	-
	-
	-
	G2



	46
	-CH2(S)CHOHCH2OBr2PhCHOHCH2-
	-
	-
	-
	-
	-
	-
	-
	-
	G2



	47
	-(CH2)5-
	-
	-
	-
	-
	-
	-
	-
	-
	G2



	48
	-CH2CHOHCH2OBr2PhCHOHCH2-
	-
	-
	-
	-
	-
	-
	-
	-
	G2



	49
	-CH2(CHOH)2CH2-
	-
	-
	-
	-
	-
	-
	-
	-
	G2



	50
	-CH2CHOH(CH)2-
	-
	-
	-
	-
	-
	-
	-
	-
	G2



	51
	[image: Marinedrugs 09 02316f11]
	-
	-
	-
	-
	-
	-
	-
	-
	G2



	52
	-CH2CH2O(CH2)2-
	-
	-
	-
	-
	-
	-
	-
	-
	G2



	53
	-(CH2)5COHCH2-
	-
	-
	-
	-
	-
	-
	-
	-
	G2



	54
	-(CH2)5-
	-
	-
	-
	-
	-
	-
	-
	-
	G3



	55
	-(CH2)4-
	-
	-
	-
	-
	-
	-
	-
	-
	G3



	56
	-(CH2)5-
	H
	Br
	OH
	H
	Br
	H
	H
	OH
	G4



	57
	-CH2CH2O(CH2)2-
	Br
	H
	H
	OH
	H
	Br
	OH
	H
	G4



	58
	-CH2CHOH(CH)2-
	H
	Br
	OH
	H
	Br
	H
	H
	OH
	G4



	59
	-CH2CHOH(CH)2-
	Br
	H
	OH
	H
	H
	Br
	H
	OH
	G4



	60
	-CH2CHOH(CH2)3-
	H
	Br
	OH
	H
	Br
	H
	H
	OH
	G4



	61
	-CH2CHOH(CH2)3-
	Br
	H
	OH
	H
	H
	Br
	H
	OH
	G4



	62
	-(CH2)4-
	-
	-
	-
	-
	-
	-
	-
	-
	G5



	63
	-(CH2)5-
	-
	-
	-
	-
	-
	-
	-
	-
	G6



	64
	[image: Marinedrugs 09 02316f12]
	-
	-
	-
	-
	-
	-
	-
	-
	G7



	65
	[image: Marinedrugs 09 02316f13]
	-
	-
	-
	-
	-
	-
	-
	-
	G7



	66
	[image: Marinedrugs 09 02316f14]
	-
	-
	-
	-
	-
	-
	-
	-
	G7



	67
	-CH2(Z)(CH)2imzNH2
	-
	-
	-
	-
	-
	-
	-
	-
	G7



	68
	-(CH2)5gnd
	-
	-
	-
	-
	-
	-
	-
	-
	G7



	69
	-(CH2)3OBr2PhCHOHCH2NHAc
	-
	-
	-
	-
	-
	-
	-
	-
	G7



	70
	-(CH2)3OBr2Ph(CH2)2NHSO3Na
	-
	-
	-
	-
	-
	-
	-
	-
	G7



	71
	-CH2CHOHBr2PhOH
	-
	-
	-
	-
	-
	-
	-
	-
	G7



	72
	-(CH2)3OBr2Phoxz
	-
	-
	-
	-
	-
	-
	-
	-
	G7



	73
	-CH2Br2PhOoxz
	-
	-
	-
	-
	-
	-
	-
	-
	G7



	74
	[image: Marinedrugs 09 02316f15]
	-
	-
	-
	-
	-
	-
	-
	-
	G7



	75
	-(CH2)3imzONH2
	-
	-
	-
	-
	-
	-
	-
	-
	G7



	76
	-(CH2)2imz
	-
	-
	-
	-
	-
	-
	-
	-
	G7



	77
	-(CH2)3imzNH2
	-
	-
	-
	-
	-
	-
	-
	-
	G7



	78
	-(CH2)4gnd
	-
	-
	-
	-
	-
	-
	-
	-
	G7



	79
	-CH2CHOH(CH2)2gnd
	-
	-
	-
	-
	-
	-
	-
	-
	G8



	80
	Me
	-
	-
	-
	-
	-
	-
	-
	-
	G9



	81
	Et
	-
	-
	-
	-
	-
	-
	-
	-
	G9



	82
	-(CH2)2N(Me)3
	H
	-
	-
	-
	-
	-
	-
	-
	H



	83
	[image: Marinedrugs 09 02316f16]
	OH
	-
	-
	-
	-
	-
	-
	-
	H



	84
	[image: Marinedrugs 09 02316f17]
	OH
	-
	-
	-
	-
	-
	-
	-
	H



	85
	OH
	H
	-
	-
	-
	-
	-
	-
	-
	H



	86
	[image: Marinedrugs 09 02316f18]
	OH
	-
	-
	-
	-
	-
	-
	-
	H



	87
	Br
	H
	H
	O
	Br
	-
	-
	-
	-
	I1



	88
	Br
	H
	OH
	[image: Marinedrugs 09 02316f19]
	Br
	-
	-
	-
	-
	I1



	89
	Cl
	H
	OH
	[image: Marinedrugs 09 02316f20]
	Cl
	-
	-
	-
	-
	I1



	90
	Br
	H
	OH
	[image: Marinedrugs 09 02316f21]
	Cl
	-
	-
	-
	-
	I1



	91
	Br
	OH
	OH
	[image: Marinedrugs 09 02316f22]
	Cl
	-
	-
	-
	-
	I1



	92
	Br
	OH
	OH
	[image: Marinedrugs 09 02316f23]
	H
	-
	-
	-
	-
	I1



	93
	H
	OH
	OH
	[image: Marinedrugs 09 02316f24]
	Br
	-
	-
	-
	-
	I1



	94
	Br
	H
	OH
	[image: Marinedrugs 09 02316f25]
	Br
	-
	-
	-
	-
	I1



	95
	Cl
	H
	OH
	[image: Marinedrugs 09 02316f26]
	Cl
	-
	-
	-
	-
	I1



	96
	Br
	H
	OH
	[image: Marinedrugs 09 02316f27]
	Br
	-
	-
	-
	-
	I1



	97
	Br
	H
	O
	CH2CH2OCH3
	Br
	-
	-
	-
	-
	I1



	98
	OH
	OH
	-
	-
	-
	-
	-
	-
	-
	I2



	99
	OH
	OH
	-
	-
	-
	-
	-
	-
	-
	I2



	100
	OH
	OH
	CH2CN
	-
	-
	-
	-
	-
	-
	J



	101
	MeO
	OH
	CH2CONH2
	-
	-
	-
	-
	-
	-
	J





gnd = Guanidine; imz = Imidazole; oxz = Oxazolidinone.




Table 6. Compilation of the 13C NMR data of the halogenated substances from the genus Aplysina. Bromotyramines.


	Position
	1
	2
	3
	4





	1
	140.3
	140.3
	137.94
	138.58



	2
	134.4
	134.4
	132.78
	132.80



	3
	118.7
	118.7
	117.74
	118.02



	4
	152.1
	152.1
	150.87
	151.30



	5
	118.7
	118.7
	117.74
	118.02



	6
	134.4
	134.4
	132.78
	132.80



	7
	35.2
	35.2
	34.20
	32.26



	8
	41.3
	41.3
	39.81
	60.20



	9
	-
	165.8
	170.82
	-



	10
	-
	152.9
	69.84
	-



	11
	-
	28.7
	31.57
	-



	12
	-
	113.1
	137.66
	-



	13
	-
	134.7
	133.21
	-



	14
	-
	130.3
	117.58
	-



	15
	-
	155.8
	152.34
	-



	16
	-
	112.1
	117.58
	-



	17
	-
	131.7
	133.21
	-



	1’
	71.7
	71.7
	69.71
	71.00



	2’
	26.4
	26.4
	25.38
	26.79



	3’
	56.9
	56.9
	55.41
	55.77



	MeO
	-
	56.7
	60.39
	-



	+N(Me)2
	43.7/43.6
	43.7
	41.51/42.92
	44.06



	+N(Me)3
	-
	-
	-
	44.74








Although the isoxazoline alkaloids are the group with more 13C NMR data, some chiral centers of this group continue with an undefined stereochemistry due to the incompatibility of using X-ray crystallography techniques, possessing sometimes non-crystalline characteristic [98]. Some positions with 13C NMR data had to be revised because there were mistakes in the numbering of the carbon skeleton in the attribution of values of some positions in this group of alkaloids.



3. Discussion

The genus Aplysina belongs to the order Verongida, sponges with a wide variety of metabolites. Sterols [110,111], carotenoids [112], amino acids [113] and rare fatty acids [114] have all been isolated from this order. However, the peculiarity of this order is from the ecological and medicinal points of view, in that great production of halogenated substances originates from the metabolism of amino acids such as phenylalanine and tyrosine. The halogenated substances found in the marine sponges of the genus Aplysina can be classified as: (A) Bromotyramines, (B) Cavernicolins, (C) Hydroverongiaquinols, (D) Bromotyrosineketals, (E) Bromotyrosine lactone derivatives, (F) Oxazolidones, (G) Spiroisoxazolines, (H) Verongiabenzenoids, (I) Verongiaquinols and (J) Dibromociclohexadiens.


3.1. Chemotaxonomy Importance of Aplysina Sponges

Although in the past, it was suspected that bromotyrosine compounds were not present in Brazilian Aplysina species [69], nowadays numerous studies have shown the presence of these chemical biomarkers, not only in Brazilian species, but in almost all the Verongida order.

In order to classify the large number of halogenated compounds reviewed in Table 2, for each sponge species, we listed the halogenated compounds under the correlated species. Considering the taxonomic species diagnosis of morphologic variation of spongin fibers is difficult [33], chemical composition can be used as a tool for a more accurate identification. The distribution of the halogenated compounds is widespread in Aplysina genre, and studies show that mainly bromoisoxazoline alkaloids have been found in almost all species. This family of metabolites was usefully employed as a chemical marker for the distinction of some taxa as Aplysina aerophoba and Aplysina cavernicola, two very physically similar species [63], but biochemically different. In another situation, majority of aerothionine was key to identify two subspecies of A. fistularis, which split into A. fulva and A. insularis [115].

The similarity between agelorins A and B, isolated from Agelas oroides and produced by Aplysina caissara, was essential to show the two genera, Aplysina and Agelas, have a phylogenetic relationship [76] and 11-epi-fistularin-3 was yielded by Aplysina fulva [98].

The presence of stereo metabolites isolated from Aplysina sponges as derivatives of fistularin-3 discussed by Rogers et al., 2005 [98], provides evidence that enzymatic pathways are non-stereoselective in these sponges.

As can be seen, each kind of genus adds a different profile of metabolites. However, even with a different chemical profile, Aplysina sp. has compounds that give a clue to their evolutionary origin.



3.2. Bromotyramines

The substances aplyzanzine A, aplysamine-1 and aplysamine-2 present a dibromotyramine structural portion, and probably originated in accordance with Evan et al. [82], by amidation with other bromotyrosinated radicals. Moloka’inamine [116] and purealidin C isolated from Psammaplysilla purea [90] are examples of metabolites isolated from sponges of the order Verongida, having dibromotyramine in their structures. According to Carney, free phenolic groups are important precursors nitrile phenolic [96], hence the similarity between methoxylated compound, aplysamine-2, and hydroxylated analogue, psammaplin-A [84], observed by Xynas and Capon, 1989, shows that psammaplin-A may be important precursor aplysimines as much of the fistularin and its derivatives



3.3. Cavernicolins

Cavernicolines are γ and δ-lactames formed by a residual halogenated tyrosine precursor [81] and also having a bi-cyclic system. The junction of the rings occurs in carbons C-3 and C-4 in ortho position, while in the 7-bromocavernicolenone and in the 7-chlorocavernicolenone, this junction occurs in carbons C-2 and C-4. They can be defined as haloperoxidases with the role of converting either the 3-chloro (V) ortho 3-bromotyrosine (IV) in residues of 3,5-dichloro (VIII) or 3,5-dibromotyrosine (VI) or 3-chloro-5-bromotyrosine (VII) or 3-bromo-5-chlorotyrosine (IX), respectively [80]. These substances have a chiral center at C-2 and their R and S enantiomers are obtained in racemic mixtures, or relatively pure from the genus Aplysina. In the formation of cavernicolines, as to the substitution pattern (ortho or para) it is suggested that the biosynthesis pathway has either a halotyrosine (XV, XVI, XVIII and XVIX) or a halo-dopa (XIV and XVVI) intermediary which will form a spirolactone precursor (XXII and XXIII), allowing the formation of intermediaries in racemic or quasi-racemic mixtures. The absence of control in the absolute stereochemistry of this class is intrinsic to phenol oxidative coupling [81,117]. It is noteworthy that experimental observations [118] show that 3,5-dibromo-4-methoxyphenylalanine methyl ester (XX) in reaction in an anodic oxidative medium form a more appropriate intermediary (XXI) than the spirolactone, originating derivatives similar to the stereoisomers of the cavernicolines with considerable yields (See Figure 1).

Figure 1. Metabolism of the bromotyrosine derived metabolites ( For the steps clarified in previous studies and For the biogenesis hypothesis).
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3.4. Hydroverongiaquinols

The hydroverongiaquinols are 2,6-bromotyrosine phenolic derivatives. Both the hydroverongiaquinols and the verongiabenzenoids are important mediators in biosynthesis of other classes of bromotyrosine metabolites. The verongiabenzenoids are part of the biosynthesis of isoxazoline alkaloids, and hydroverongiaquinols are important precursors in the formation of metabolites which need free phenolic groups to convert themselves into α-oximine substances, such as the phenolic nitriles. However, phenolic nitriles have not been found in the genus Aplysina, they are found in the genus Ianthella where substances like the bastadins, are important chemotaxonomic markers for the genus [119].



3.5. Bromotyrosineketals

The bromotyrosineketals have a 3,5-dibromocyclohexa-2,5-dienyl ketal skeleton system. Literature shows that the dimethoxy and methoxy-ethoxy ketals (XXXII) isolated from Aplysina fistularis and from Aplysina cauliformis [92,93,120], are artifacts formed by the oxidation of dienone, since the dimethoxy form is obtained as a mixture of diastereoisomers [94,95], both showing antibacterial activity. Further evidence that they are artifacts is the formation of dimethoxy and methoxy-ethoxy ketals which can be explained as being formed from an arene (dienone intermediary XII), which suffers 1,4 additions of methanol, water or ethanol (Figure 2), and displayed a reaction described by Kasperek et al. [94,95,121]. However, the methoxy-butoxy and methoxy-pentoxy ketals isolated from Aplysina thiona [109] are not considered reaction products. Aplysinketal A was isolated only in the form of diastereoisomers, and the absence of the dimethoxy ketal indicates the non-existence of reactions during the extraction process [109]. It has been suggested that the formation of the C4 and C5 chains are formed via lysine and ornithine respectively (Figure 2) [104,114].

Figure 2. Spiroisoxazoline and acetal formation as production artefacts.
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3.6. Bromotyrosine Lactone Derivatives

The bromotyrosine lactone derivatives, with the exception of aplysinimine which is an imine, are five member lactones condensated with 3,5-dibromotyrosine residues (XXIV). Aeroplysinin-2 is different from the others because it has a cyclodiene group instead of an aromatic ring, while aplysinadiene presents a cis-trans diene side chain. It is proposed that the biosynthesis of this class of substances has an imine-ether (XXXIV) as initial intermediary, a hydroxylated derivative of aplysinimine. This derivative will either suffer a tertiary alcohol dehydration to form aplysinimine [109,120] or will follow other biosynthetic pathways similarly to bromotyrosine lactones as aeroplysinin-2, or the verongiabenzenoids and verongiaquinols, in this case the intermediary suffers dehydroxylation and demethylation and can form artifacts such as dimethoxys and methoxy-ethoxy ketals. [122]. Aplysinolide is considered an artifact, since it possesses an α,β-unsaturated side chain which is uncommon to find linked to a lactone ring. In accordance to Cruz et al. [109] this substance can be formed by combining aplysinimine with Me2CO during the purification process (see Figure 1).



3.7. Oxazolidones

Oxazolidones are very common in Aplysina, but just two types are found: diastereoisomers of bisoxazolidone and methoxy derivative. This derivative presents two chiral centers with different stereochemistries for different species. Studies show that these bisoxazolidone’s isomers have a relative configuration of 7S*, 11R* [97] and 11R*, 7S* [106], as determined by comparison with bisoxazolidone isolated from Ascidia Clavelina oblonga [123] and an absolute configuration R, R [64] obtained by X-ray crystallography. There are evidences that fistularin-3 degradation promotes bisoxazolidone and aeroplysinin-1 production [13].



3.8. Spiroisoxazolines

The spiroisoxazolines also known as isoxazoline alkaloids form the biggest group of Aplysina and Verongid order metabolites. They are divided into two structure types: mono-spirocyclohexadienylisoxazolines and bis-spirocyclohexadienylisoxazolines [124].

The chemical structure of mono-spirocyclohexadienylisoxazolines (nuclei G7, G8) have essentially one spirocyclohexadienylisoxazoline ring bonded to a 1–6 carbon side chain with exception of the spiroisoxazoline acid ester (nucleus G9) [83] considered an artifact of ethanolic condensation from spiroisoxazoline acid [125]. The bis-spirocyclohexadienylisoxazolines (nuclei G1, G2) can present the same ring, which in the more common example is bonded to a 3–11 carbon side chain.

This side chain is bonded to another spirocyclohexadienylisoxazoline ring [124]. In other spiroisoxazolines, the rings suffer oxidation of the methoxy group forming a cyclohexenone (nuclei G3, G4) [74,76,101]. Cyclohexenone also suffers hydroxyl or bromine oxidations originating cyclohexenone epoxide between carbons 1 and 2 and forming oxaspirocyclohexenonylisoxazolines (nuclei G5, G6) [100]

The biosynthetic pathway for spiroisoxazolines needs tyrosine intermediates with O-methyl groups (XXVII), which are metabolized to form oxime grouped intermediates (XXVIII) and shortly thereafter form other intermediaries with arene oxide (XXIX). The nucleophilic attack of the oxime over either the epoxide or the phenol originates by breaking the epoxide which forms the isoxazole ring (XXX) [96]. The C4 or C5 side chains that extend out of the ring such as in aerothionin and inhomoaerothionin are produced via ornithine and lysine respectively (Figure 2) [70,94,95,126]. However, when the side chains present a 4-aminobutanoic substituent it is suspected that the amino acid involved is glutamic acid (Figure 2) [99]. In some spiroisoxazolines such as fistularin-3, and araplysillin N9-sulfamate, there is a 3-amino-1-propanol connector which binds itself to other structures and probably has as a precursor of its biosynthesis a decarboxylated product of the uncommon amino acid, homoserine. This amino acid is an intermediary for the enzyme S-adenosylmethionine (SAM). It is suggested that the SAM is involved in SN2 substitutions of hydroxyl of 3,5-dibromotyrosine (DBT) (XXIV), making it susceptible to the formation of methoxyl groups by methyltransferase and O-alkylated bonds via other enzymes. The enzyme responsible for O-alkylations is putative C3-alanil-methyltransferase which allows 3-amino-1-propanol connector bonding to the DBT residue, forming spiroisoxazoline residue complexes with large molecular masses (XXV) which are then incorporated in the isoxazoline rings [99]. The alkaloid archerine, a dimer of two imidazole rings, is probably formed by oxidative coupling [1 + 1] of two aerophobin-2 molecules [73]. In sponges of the order Verongida, the spherule cells have the capacity of stocking and secreting isoxazoline alkaloids, which are modified by enzymes located in distinct locations [127,128]. The extracts of the majority of the sponges belonging to the genus Aplysina, when tested, show that their enzymes convert brominated isoxazoline alkaloids into aeroplysinin-1 and dienones. Sponges of other orders are unable to perform this biotransformation [129]. Puyana et al. [130] demonstrated that there is no aeroplysinin-1 and dienones production when there is a decrease in the amount of spiroisoxazolines. The ecological function of this enzymatic activation is microbial pathogen growth inhibition and the repellent odor, which decreases the predatory search by fishes [129].

Although the agelocaissarines A1, A2, B1 and B2 were initially considered production artifacts as pairs of stereoisomers, this was later modified by the observation of in vitro experiments showing the absence of substances with relative stereochemistries different to those found in the work [76].

In therapeutics these substances demonstrate tumor cell cytotoxic [22], antimicrobial [15] and antihistamine [73] activity.

Spiroisoxazolines vary in different species, but also inside the single species. While A. fulva produces aerothionin as its major component (0.11%) [34], this same substance is not present in A. insularis [74] and in A. fulva it appears with a larger amount (0.52%) [102]. Nuñez et al. [97], affirms that this chemical variation may be due to either different extraction and isolation techniques, or to biological diversity of the areas in which the sponges are collected. This chemical distinction led to reinforce the hypothesis that Aplysina aerophoba and Aplysina carvernicola have metabolic differences and that A. aerophoba, erroneously identified in the work of Cimino et al. [67], was in fact Aplysina cavernicola.

The presence of hemifistularin, isolated together with 11-oxofistularin-3, begs us to question whether the first is a precursor of 11-oxofistularin-3 biogenesis, or a degradation product [72]. Fistularin-3 shows another type of variability. Besides having stereoisomers of (+) fistularin-3, such as (+)-isofistularin-3 and 11-epi-fistularin-3, the chemical composition of sponges contains them in irregular proportions, which makes it difficult to determine through optical rotation. In order to determine the absolute configuration of fistularin-3 and its stereoisomers, a microscale analysis with Marfey’s reagent, has been used that led to the formation of stable reaction products analyzed by LC-MS [98].



3.9. Verongiabenzenoids

The verongiabenzenoids are aromatic methoxylated substances which present a skeleton with a 2,6-dibromomethoxybenzene nucleus. Biogenetically methoxylated, some verongiabenzenoids can form isoxazolines [13] or epoxide intermediaries from the arene oxide, which leads to forming other verongiabenzenoids [96].



3.10. Verongiaquinols

The chemical structure of the verongiaquinols is either a cyclohexadien-2-one or cyclohexadien-2,6-one system, with either bromine or chlorine substituents in positions 2 and 6 and hydroxyls on carbons C-3 and C-4. They also may suffer ramifications on carbon C-4. The verongiaquinols seem to be related to degradation steps of tyrosine metabolism, as is the case of dienone (XII). The degradation of bromotyrosine substances such as iso-fistularin-1 and aerophobin-2 after mechanical injury led to the formation of aeroplysinin-1 (XXXII) and (XII). It is also noteworthy that the extraction of frozen sponges and consequent exposure to alkaline sea water will form dienones (XII) [97,130,131]. Besides being integrated at the metabolic level, dienone and aeroplysinin-1 have an important defense role for sponges: cytotoxic, algicidic, molluscicide and antibacterial activity have been reported [131,132].

Other verongiaquinols such as 2,6-dibromoquinone have been reported to inhibit the enzyme RNA polymerase II, blocking the initiation of the chain, but not its elongation [133].

It is not known for sure if (1′R,5′S,6′S) and (1′R,5′R,6′S)-2-(3′-5′-dibromo-1′-6′-dihydroxy-4′-oxocyclohex-2′-enyl)-acetonitrile are simple artifacts, as aeroplysinin-1 is able to form them in the presence of acetone by keto-enol tautomerism. However, these acetonitriles are not normally produced as metabolites of aeroplysinin-1 (XXXII) in other species [27].



3.11. Dibromocyclohexadienes

This group is comprised of two substances which present a 1,2-dihydroarene-1,2-diol and may have their biogenesis via an arene oxide (XXXI) in agreement with their stereochemistry [94,95]. Aeroplysinin-1 (XXXII) is a nitrilated substance found in dextro and levorotatory forms. The dextrorotatory isomer (+) aeroplysinin-1, has been obtained from Aplysina aerophoba [70], Aiolocroia crassa, Verongula rigida, Aplysina archeri [71] and Psammoposilla purpurea [134]. (−) Aeroplysinin-1 has been found in Ianthella ardis [135] and Verongula gigantean [71]. The metabolic degradation of bis-oxazolidone, isofistularin-3, aplysinamisin-1 and aerophobin-2 is known to be an important source of aeroplysinin-1 [13]. In terms of pharmacological activity, aeroplysinin-1 is a versatile substance which has demonstrated cytotoxic [134], antiprotozoal [136] and antiangiogenic [137] activities. Aplysifulvin is one of the most recently isolated substances from the sponge A. fulva [97]. It possesses only two methoxies and no ethoxies, and since no ethoxy derivatives were detected, the possibility that aplysifulvin is an artifact has been discarded. Hypothetically, the chemical structure of aplysifulvin suggests that the 3,3-dialkoxy ketals (with OMe and OEt groups) previously described are artifacts [97].



3.12. Structural Elucidation

This section describes the compilation of the 13C chemical shifts of halogenated compounds of the genus Aplysina. All compounds compiled in this review—bromotyramines (1–4), cavernicolins (5–17), hydroverongiaquinols (18–20), bromotyrosineketals (21–24), bromotyrosine lactone derivatives (25–28), oxazolidones (29–32), spiroisoxazolines (33–81), verongiabenzenoids (82–86), verongiaquinols (87–99) and dibromocyclohexadienes (100–101)—have in common 3,5-halotyrosine or halophenylalanine derivatives.

Research data shows that works from the decades of 1970, 1980 and 1990 show little or no information of 13C NMR as compounds (95–97) whose structural elucidation was done by mass spectrometry (MS) and 1H NMR spectroscopy analysis and reactions of structural identification.

The bromotyramine family skeleton can be recognized by the typical 1H-NMR signals, as for example, in the case of compound 1: a singlet for aromatic protons H-2 and H-6 (δ 7.62) and four triples (δ 3.02, 2H, 8.0 Hz; δ 3.50, 2H, 8.0 Hz; δ 4.12, 2H, 5.5 Hz; δ 3.22, 2H, 5.5 Hz) attributed to H-7, H-8, H-1’, H-3’ respectively [84]. When NH-3’ has low electron density as compound 1 positively charged and compound 2 close to electrophilic oxime group, the 13C-NMR signals shift to downfield compared to compounds 3 and 4,whose substituents are methyl groups [84].

Typical 1H NMR data from the cavernicolin class are, in the case of compound 5, for H-3 δ 4.05 (dd, J = 10.1 Hz and J = 1.5 Hz), a singlet for H-5 at δ 7.3 and the signals for NH and OH at 6.9 (s) and 4.4 (s) respectively [83]. 13C NMR data shows that chlorinated carbon have their signals at downfield shifts in relation to bromine carbons as it can be seen, for example, comparing compounds 5 and 6 with 9 and compound 11 with 12.

Biosynthetically, verongiaquinol metabolites are the oxidized form of hydroverongiaquinols, considered as a hydroquinone precursor [124,138]. Therefore, the basic difference in the 13C NMR between these two classes is the downfield signal of ketone carbon C-1 (δ 172.6) of compound 91 compared with hydroxylated C-1 (δ 150.0) of compound 20 [97].

Data analysis of the 13C NMR bromotyrosine lactone family brominated aromatic show carbon signals have more shielded signals compared to the other aromatic signals of the ring. The more is the unsaturated side branching at C-7, more deshielded are the signals of the lactone ring, with the increasing order of introducing the compounds 28, 27 and 26 [64,109].

The carbons of the spiroisoxazolinic system of most compounds with cores G1, G2, G7, G8 and G9 acquire values which become a standard set of values, with the exception of carbons C-2 and C4 values, which seem to be mistakenly exchanged one for another at δ 120 or δ 114, being the correct value of δ 120 for carbon C-2 due to the proximity of the hydroxyl and the C-4 for δ 114.

The mono and bis-spiroisoxazolinic ring systems could be distinguished by double 1H-NMR shield and deshield signals for the two rings, for example, compound 50 shows signals at δ 4.16 (1H, d, J = 8.3 Hz) for H-1 and δ 4.58 (1H, d, J = 7.9 Hz) for H 1’. A typical methylene signal at δ 4.43; 3.47 (2H, ABq, J = 18.2) is attributed to the isoxazol ring protons H-7, 7’ for this compound [29]. Today the most used techniques to elucidate absolute stereochemistry of the rings are 1H-NMR spectrum analysis and molecular modeling using both MM2 and MOPAC protocols of the Chem3D software [76], and also NOE-difference spectroscopy studies [100].

13C data reveals spiroisoxazoline ring systems have distinguished shifts. The difference between cyclohexadienone (G1, G2, G7, G8 and G9) and cyclohexenone (G3 and G4) systems are two chemical shifts at downfield for C-3’ and C-5’ (54–55) and one at upfield for C-2’ in G3 (56–61), and the same shifts for C-3, -3′, C-5, -5′, C-2, -2′ in G4 (56–61). The epoxide group in G5 and G6 can be characterized by the same shifts plus two differences: a strong shift at downfield for C-3 and C-3′ in G5 and C-3′ in G6. The other difference involves three chemical shifts at upfield for C-1, 1′, C-2, 2′ and C-6, 6′ of 62 and for C-1′, C-2′ and C-6′ of 63. Some 13C data as δ 67.2 and δ 65.7 attributed to chiral C-11 of compound 42 still remain with its stereochemistry unsolved [76].

According to Kossuga, 2004 [123], to determine the configuration of the relative stereochemistry of bis-oxazolidone uses [α] of (7R,11R) bis-oxazolidone with absolute stereochemistry [64]. It was possible to determine the relative configuration of bis-oxazolidones (7*R,11*S) and (11*R,7*S) isolated in previous works as can be seen in Table 2 [63,65,109].




4. Conclusions

The genus Aplysina is one of the richest in secondary metabolites, which have been cataloged in 14 species from the Aplysinidae family. Most classes of compounds mentioned here present themselves brominated, and, despite the large number of species of the genus Aplysina, many have not been studied chemically. The halogenated compounds found in marine sponges of this genus were classified into: (A) Bromotyramines, (B) Cavernicolins, (C) Hydroverongiaquinols, (D) Bromotyrosineketals, (E) Bromotyrosine Lactone derivatives, (F) Oxazolidones, (G) Spiroisoxazolines, (H) Verongiabenzenoids, (I) Verongiaquinols and (J) Dibromocyclohexadiens.

In view of their potential for producing new compounds of pharmacological interest, sponges have been one of the most studied organisms from a chemical point of view. Over the past 20 years, hundreds of substances have been isolated from sponges, many of which have been identified and show interesting biological and pharmacological activities, as for example, antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antituberculosis, antiviral, immunosuppressive and neurosuppressive activities.

The species of the genus Aplysina also show a wide structural variety of nitrogen compounds, present only in marine sponges. Therefore they are a rich source for research of new structural models for future therapeutic applications. With the information provided in this review, we hope to facilitate research in the field and to contribute to a better understanding and knowledge of the phytochemistry of this genus.
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Table 8. Compilation of the 13C NMR data of the halogenated substances from the genus Aplysina. Hydroverongiaquinols.


	Position
	20





	1
	130.0



	2
	133.0



	3
	111.0



	4
	150.0



	5
	111.0



	6
	133.0



	2’
	40.0



	3’
	173.4












Table 10. Compilation of the 13C NMR data of the halogenated substances from the genus Aplysina. Bromotyrosine Lactone Derivatives.


	Position
	25
	26
	27
	28





	1
	89.1
	148.85
	154.29
	161.3



	2
	135.5
	109.12
	100.74
	106.7



	3
	119.3
	103.75
	161.97
	155.2



	4
	151.2
	147.16
	111.80
	110.8



	5
	107.6
	103.75
	125.75
	135.2



	6
	77.0
	113.68
	122.35
	117.0



	7
	42.2
	146.35
	117.53
	40.6



	8
	173.7
	165.91
	165.23
	164.0



	9
	-
	144.60
	-
	-



	10
	-
	128.12
	150.75
	-



	11
	-
	128.12
	25.21
	-



	12
	-
	19.79
	23.69
	-



	MeO
	61.5
	-
	61.0
	60.8














Table 13. Compilation of the 13C NMR data of the halogenated substances from the genus Aplysina. Verongiabenzenoids.


	Position
	82
	83





	1
	154.87
	152.19



	2
	111.18
	117.30



	3
	134.63
	133.35



	4
	129.20
	135.92



	5
	130.33
	133.35



	6
	117.68
	117.30



	7
	29.07
	26.88



	8
	68.51
	65.07



	OMe
	59.88
	60.31



	(Me)3N+
	53.77
	52.23










Table 14. Compilation of the 13C NMR data of the halogenated substances from the genus Aplysina. Verongiaquinol.


	Position
	90
	97
	98





	1
	172.6
	183.0
	183.0



	2
	119.9
	122.7
	123.7



	3
	153.2
	151.7
	146.6



	4
	70.8
	75.5
	74.2



	5
	148.8
	78.4
	78.9



	6
	127.6
	56.1
	57.1



	1′
	-
	116.9
	116.9



	2′
	-
	28.4
	28.4



	CH2
	45.1
	-
	-



	CONH2
	169.4
	-
	-
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media/file4.png


media/file18.png


media/file13.png


media/file9.png


media/file22.png


media/file23.png


media/file10.png


media/file5.png


media/file15.png


media/file19.png


media/file14.png


media/file6.png


nav.xhtml


  marinedrugs-09-02316


  
    		
      marinedrugs-09-02316
    


  




  





media/file11.png


media/file1.png


media/file16.png


media/file2.png


media/file20.png


media/file7.png


media/file24.png


media/file12.png


media/file3.png


media/file0.png


media/file17.png


media/file8.png


media/file25.png


media/file21.png


