Sudomotor Function as a Tool for Cardiorespiratory Fitness Level Evaluation: Comparison with Maximal Exercise Capacity
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
All | SUDOSCAN Risk Score | p | |||||||
---|---|---|---|---|---|---|---|---|---|
No Risk | Moderate Risk | Elevated Risk | |||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
Women | n = 537 | n = 162 | n = 188 | n = 187 | |||||
Age (years) | 49.7 | 8.3 | 42.8 | 7.8 | 51.3 | 6.3 | 54.0 | 6.7 | <0.0001 |
BMI (kg/m2) | 25.9 | 4.5 | 23.2 | 2.8 | 25.0 | 3.2 | 29.1 | 4.9 | <0.0001 |
Weight (kg) | 69.7 | 12.9 | 63.5 | 8.7 | 66.9 | 9.5 | 77.9 | 14.7 | <0.0001 |
Waist (cm) | 88.6 | 12.2 | 81.3 | 8.5 | 86.6 | 9.1 | 96.7 | 12.9 | <0.0001 |
Body fat (%) | 33.9 | 6.9 | 29.5ᵃ | 5.7 | 33.0 | 5.7 | 38.7ᵇ | 5.9 | <0.0001* |
SBP (mm Hg) | 138 | 19 | 132 | 17 | 139 | 19 | 142 | 20 | <0.0001 |
DBP (mm Hg) | 89 | 11 | 86 | 10 | 89 | 11 | 92 | 10 | <0.0001 |
HbA1C (%)& | 5.7 | 0.4 | 5.5ᵃ | 0.4 | 5.7 | 0.3 | 6.9 | 0.4 | <0.0001* |
Estimated VO2max (METs)&& | 9.1 | 1.8 | 10.3 | 1.7 | 9.0 | 1.5 | 7.9ᵇ | 1.2 | <0.0001* |
Hand ESC (µS) | 70.0 | 10.0 | 74.0 | 9.0 | 71.0 | 10.0 | 66.0 | 11.0 | <0.0001* |
Foot ESC (µS) | 81.0 | 8.0 | 86.0 | 4.0 | 82.0 | 6.0 | 76.0 | 9.0 | <0.0001* |
Men | n = 113 | n = 31 | n = 48 | n = 34 | |||||
Age (years) | 51.2 | 8.2 | 44.4 | 9.4 | 51.9 | 5.8 | 56.5 | 5.1 | <0.0001 |
BMI (kg/m2) | 25.9 | 3.5 | 23.3 | 2.5 | 25.9 | 2.7 | 28.3 | 3.7 | <0.0001 |
Weight (kg) | 81.8 | 12.8 | 74.9 | 11.9 | 81.2 | 10.1 | 88.9 | 13.4 | <0.0001 |
Waist (cm) | 95.3 | 11.0 | 86.8 | 8.2 | 95.5 | 8.7 | 102.9 | 10.6 | <0.0001 |
Body fat (%) | 21.3 | 5.9 | 16.7 | 4.7 | 21.4 | 4.8 | 25.2 | 5.6 | <0.0001 |
SBP | 149 | 19 | 148 | 15 | 146 | 16 | 155 | 25 | NS |
DBP | 92 | 11 | 91 | 9 | 93 | 11 | 93 | 14 | NS |
HbA1C (%) | 6.2 | 1.0 | 5.7 | 0.2 | 6.4 | 1.5 | 6.3 | 0.8 | - |
Estimated VO2max (METs)&& | 12.2 | 2.5 | 13.9 | 2.4 | 12.1 | 2.3 | 10.4 | 1.9 | <0.0001 |
Hand ESC (µS) | 69.0 | 11.0 | 75.0 | 6.0 | 69.0 | 11.0 | 65.0ᵇ | 12.0 | 0.0003* |
Foot ESC (µS) | 83.0 | 5.0 | 86.0 | 4.0 | 84.0 | 4.0 | 80.0 | 6.0 | <0.0001* |
Baseline | 12 months | ||||
---|---|---|---|---|---|
Mean | SD | Mean | SD | p | |
Weight (kg) | 76.4 | 12.5 | 74.9 | 12.3 | <0.0001 |
Waist (cm) | 95.7 | 11.5 | 93.3 | 11.4 | <0.0001 |
Estimated VO2max (METs)& | 7.8 | 1.2 | 8.5 | 1.4 | <0.0001 |
Hand ESC (µS) | 67.7 | 13.4 | 72.3 | 12.9 | <0.0001 |
Foot ESC (µS) | 78.1 | 13.2 | 84.1 | 8.3 | <0.0001 |
SUDOSCAN risk score (%) | 30.0 | 11.0 | 24.0 | 13.0 | <0.0001 |
Without Follow-up of Training Level | Low Weekly Activity& | High Weekly Activity&& | |||||
---|---|---|---|---|---|---|---|
(n = 72) | (n = 62) | (n = 20) | |||||
Mean | SD | Mean | SD | Mean | SD | p | |
Change in weight (kg) | −0.9 | 3.4 | −1.6 | 4.0 | −3.3 | 4.8 | NS |
Change in waist (cm) | −2.1 | 4.7 | −2.4 | 4.5 | −3.6 | 5.9 | NS |
Change in estimated VO2max (METs) | +0.5 | 0.9 | +0.8 | 0.9 | +1.1 | 1.2 | NS |
Change in hand ESC (µS) | +5.0 | 8.4 | +3.0 | 9.4 | +8.4 | 12.3 | 0.043 |
Change in foot ESC (µS) | +5.6 | 8.9 | +4.9 | 8.9 | +10.8 | 12.8 | 0.024 |
Change in SUDOSCAN risk score (%) | −5.1 | 5.3 | −4.7 | 6.4 | −8.5 | 6.8 | 0.027 |
4. Conclusions
Acknowledgments
Authors Contributions
Conflicts of Interest
References
- Eriksson, J.; Lindström, J.; Tuomilehto, J. Potential for the prevention of type 2 diabetes. Br. Med. Bull. 2001, 60, 183–199. [Google Scholar] [CrossRef]
- Gillies, C.L.; Abrams, K.R.; Lambert, P.C.; Cooper, N.J.; Sutton, A.J.; Hsu, R.T.; Khunti, K. Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. Br. Med. J. 2007, 334, 299–308. [Google Scholar] [CrossRef]
- Dunn, A.L. The effectiveness of lifestyle physical activity interventions to reduce cardiovascular disease. Am. J. Lifestyle Med. 2009, 3, 11S–18S. [Google Scholar] [CrossRef]
- Colberg, S.R.; Sigal, R.J.; Fernhall, B.; Regensteiner, J.G.; Blissmer, B.J.; Rubin, R.R.; Chasan-Taber, L.; Albright, A.L.; Braun, B.; American College of Sports Medicine; American Diabetes Association. Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement. Diabetes Care 2010, 33, 147–167. [Google Scholar] [CrossRef]
- Wilmore, J.H.; Costill, D.L.; Kenney, W.L. Cardiovascular and respiratory function. In Physiology of Sport and Exercise, 4th ed.; Wilmore, J.H., Costill, D.L., Eds.; Human Kinetics: Champaign, IL, USA, 2008; pp. 121–184. [Google Scholar]
- Grandinetti, A.; Chow, D.C.; Sletten, D.M.; Oyama, J.K.; Theriault, A.G.; Schatz, I.J.; Low, P.A. Impaired glucose tolerance is associated with postganglionic sudomotor impairment. Clin. Auton. Res. 2007, 17, 231–233. [Google Scholar] [CrossRef]
- Low, V.A.; Sandroni, P.; Fealey, R.D.; Low, P.A. Detection of small-fiber neuropathy by sudomotor testing. Muscle Nerve 2006, 34, 57–61. [Google Scholar] [CrossRef]
- Smith, A.G.; Russell, J.; Feldman, E.L.; Goldstein, J.; Peltier, A.; Smith, S.; Hamwi, J.; Pollari, D.; Bixby, B.; Howard, J.; Singleton, J.R. Lifestyle intervention for pre-diabetic neuropathy. Diabetes Care 2006, 29, 1294–1299. [Google Scholar] [CrossRef]
- Provitera, V.; Nolano, M.; Caporaso, G.; Stancanelli, A.; Santoro, L.; Kennedy, W.R. Evaluation of sudomotor function in diabetes using the dynamic sweat test. Neurology 2010, 74, 50–56. [Google Scholar] [CrossRef]
- Casellini, C.M.; Parson, H.K.; Richardson, M.S.; Nevoret, M.L.; Vinik, A.I. Sudoscan, a noninvasive tool for detecting diabetic small fiber neuropathy and autonomic dysfunction. Diabetes Technol. Ther. 2013, 15, 948–953. [Google Scholar] [CrossRef]
- Ramachandran, A.; Moses, A.; Shetty, S.; Thirupurasundari, C.J.; Seeli, A.C.; Snehalatha, C.; Singvi, S.; Deslypere, J.P. A new non-invasive technology to screen for dysglycemia including diabetes. Diab. Res. Clin. Pract. 2010, 88, 302–306. [Google Scholar] [CrossRef]
- Powers, S.; Howley, E. Exercise Physiology — Theory and Application to Fitness and Performance, 7th ed.; Mc Graw-Hill: New York, NY, USA, 2008. [Google Scholar]
- Chizmadzhev, Y.A.; Indenbom, A.V.; Kuzmin, P.L.; Galichenko, S.V.; Weaver, J.C.; Potts, R.O. Electrical Properties of Skin at Moderate Voltages: Contribution of Appendageal Macropores. Biophys. J. 1998, 74, 843–856. [Google Scholar] [CrossRef]
- Hollander, M.; Wolfe, D.A. Nonparametric Statistical Methods, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurements. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Tuomilehto, J.; Schwarz, P.; Lindström, J. Long-term benefits from lifestyle interventions for type 2 diabetes prevention — Time to expand the efforts. Diabetes Care 2011, 34 (Suppl. 2), S210–S214. [Google Scholar] [CrossRef]
- Sumner, C.J.; Sheth, S.; Griffin, J.W.; Cornblath, D.R.; Polydefkis, M. The spectrum of neuropathy in diabetes and impaired glucose tolerance. Neurology 2003, 60, 108–111. [Google Scholar] [CrossRef]
- Singleton, J.R.; Smith, A.G.; Bomberg, M.R. Increased prevalence of impaired glucose tolerance in patients with painful sensory neuropathy. Diabetes Care 2001, 24, 1448–1453. [Google Scholar] [CrossRef]
- Schwarz, P.; Brunswick, P.; Calvet, JH. EZSCAN a new tool to detect diabetes risk. Br. J. Diabetes Vasc. Dis. 2011, 11, 204–209. [Google Scholar] [CrossRef]
- Hubert, D.; Brunswick, P.; Calvet, J.H.; Dusser, D.; Fajac, I. Abnormal electrochemical skin conductance in cystic fibrosis. J. Cyst. Fibrosis 2011, 10, 15–20. [Google Scholar] [CrossRef]
- Ayoub, H.; Lair, V.; Griveau, S.; Brunswick, P.; Bedioui, F.; Cassir, M. SUDOSCAN devicefor the early detection of diabetes: in vitro measurements versus results of clinical tests. Sensor Lett. J. 2011, 9, 2147–2149. [Google Scholar] [CrossRef]
- Ayoub, H.; Lair, V.; Griveau, S.; Brunswick, P.; Zagal, J.H.; Bedioui, F.; Cassir, M. Electrochemical kinetics of anodic Ni dissolution in aqueous media as a function of chloride ion concentration at pH values close to physiological conditions. Electroanalysis 2012, 24, 386–391. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Raisanen, A.; Eklund, J.; Calvet, J.-H.; Tuomilehto, J. Sudomotor Function as a Tool for Cardiorespiratory Fitness Level Evaluation: Comparison with Maximal Exercise Capacity. Int. J. Environ. Res. Public Health 2014, 11, 5839-5848. https://doi.org/10.3390/ijerph110605839
Raisanen A, Eklund J, Calvet J-H, Tuomilehto J. Sudomotor Function as a Tool for Cardiorespiratory Fitness Level Evaluation: Comparison with Maximal Exercise Capacity. International Journal of Environmental Research and Public Health. 2014; 11(6):5839-5848. https://doi.org/10.3390/ijerph110605839
Chicago/Turabian StyleRaisanen, Anu, Jyrki Eklund, Jean-Henri Calvet, and Jaakko Tuomilehto. 2014. "Sudomotor Function as a Tool for Cardiorespiratory Fitness Level Evaluation: Comparison with Maximal Exercise Capacity" International Journal of Environmental Research and Public Health 11, no. 6: 5839-5848. https://doi.org/10.3390/ijerph110605839
APA StyleRaisanen, A., Eklund, J., Calvet, J. -H., & Tuomilehto, J. (2014). Sudomotor Function as a Tool for Cardiorespiratory Fitness Level Evaluation: Comparison with Maximal Exercise Capacity. International Journal of Environmental Research and Public Health, 11(6), 5839-5848. https://doi.org/10.3390/ijerph110605839