Higher Urinary Heavy Metal, Phthalate, and Arsenic but Not Parabens Concentrations in People with High Blood Pressure, U.S. NHANES, 2011–2012
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Sample and Variables
2.2. Biomonitoring
2.3. Statistical Analysis
3. Results and Discussion
N (%) or Mean ± SD | |
---|---|
Age | 31.4 ± 24.6 |
<18 | 3,892 (39.9%) |
18–39 | 2,261 (23.2%) |
40–79 | 3,240 (33.2%) |
80 | 363 (3.7%) |
Sex | |
Male | 4,856 (49.8%) |
Female | 4,900 (50.2%) |
Ethnicity | |
Mexican American | 1,355 (13.9%) |
Other Hispanic | 1,076 (11.0%) |
Non-Hispanic white | 2,973 (30.5%) |
Non-Hispanic black | 2,683 (27.5%) |
Mixed/other | 1,669 (17.1%) |
High blood pressure * | 3,035 (31.1%) |
Systolic blood pressure | 118.7 ± 18.6 |
Diastolic blood pressure | 66.3 ± 16.1 |
Body mass index | 25.3 ± 7.7 |
<18.5 | 1,833 (18.8%) |
18.5–24.9 | 2,669 (27.4%) |
25.0–29.9 | 2,019 (20.7%) |
≥30.0 | 3,235 (33.2%) |
Normal BP (n = 2,193) | High BP (n = 314) | P value | Adjusted Model * | P value | Weighted Model * | P value | |
---|---|---|---|---|---|---|---|
Mercury | 0.62 ± 1.45 | 0.67 ± 1.83 | 0.578 | 1.13 (1.00–1.29) | 0.056 | 1.06 (0.89–1.26) | 0.528 |
Barium | 1.85 ± 2.77 | 1.76 ± 1.81 | 0.562 | 1.01 (0.88–1.16) | 0.871 | 1.15 (0.91–1.44) | 0.220 |
Cadmium | 0.30 ± 0.43 | 0.26 ± 0.51 | 0.199 | 1.06 (0.89–1.27) | 0.504 | 1.02 (0.83–1.87) | 0.832 |
Cobalt | 0.49 ± 0.86 | 0.54 ± 0.88 | 0.318 | 1.28 (1.07–1.52) | 0.006 | 1.35 (0.97–1.88) | 0.073 |
Cesium | 4.78 ± 3.17 | 5,11 ± 3.16 | 0.086 | 1.74 (1.38–2.21) | <0.001 | 1.56 (1.11–2.20) | 0.014 |
Molybdenum | 59.90 ± 57.00 | 71.64 ± 70.21 | 0.001 | 1.49 (1.26–1.77) | <0.001 | 1.46 (1.06–2.01) | 0.023 |
Manganese | 0.17 ± 0.44 | 0.19 ± 0.20 | 0.629 | 1.40 (1.18–1.66) | <0.001 | 1.42 (1.09–1.86) | 0.012 |
Lead | 0.59 ± 1.05 | 0.69 ± 1.00 | 0.112 | 1.62 (1.38–1.91) | <0.001 | 1.58 (1.28–1.96) | <0.001 |
Tin | 1.47 ± 3.17 | 2.18 ± 4.03 | 0.0004 | 1.45 (1.30–1.63) | <0.001 | 1.44 (1.25–1.66) | <0.001 |
Antimony | 0.08 ± 0.12 | 0.10 ± 0.17 | 0.006 | 1.56 (1.29–1.89) | <0.001 | 1.39 (1.10–1.77) | 0.010 |
Strontium | 121.20 ± 121.08 | 115.82 ± 100.78 | 0.454 | 0.99 (0.85–1.15) | 0.904 | 1.01 (0.71–1.43) | 0.967 |
Thallium | 0.20 ± 0.14 | 0.21 ± 0.16 | 0.272 | 1.34 (1.09–1.66) | 0.006 | 1.16 (0.84–1.62) | 0.350 |
Tungsten | 0.16 ± 0.75 | 0.18 ± 0.24 | 0.636 | 1.39 (1.21–1.60) | <0.001 | 1.49 (1.25–1.77) | <0.001 |
Uranium | 0.01 ± 0.07 | 0.01 ± 0.03 | 0.817 | 1.19 (1.02–1.38) | 0.024 | 1.08 (0.89–1.30) | 0.433 |
3.1. Main Findings
Normal BP (n = 2180) | High BP (n = 309) | P value | Adjusted model * | P value | Weighted model * | P value | |
---|---|---|---|---|---|---|---|
Mono(carboxynonyl) phthalate | 4.81 ± 16.80 | 6.28 ± 24.14 | 0.178 | 1.27 (1.12–1.45) | <0.001 | 1.19 (0.98–1.45) | 0.073 |
Mono(carboxyoctyl) phthalate | 51.35 ± 111.28 | 51.66 ± 115.20 | 0.964 | 1.06 (0.96–1.18) | 0.239 | 1.03 (0.84–1.27) | 0.730 |
Mono-2-ethyl-5-carboxypentyl phthalate | 26.93 ± 62.83 | 27.51 ± 29.98 | 0.871 | 1.37 (1.20–1.57) | <0.001 | 1.33 (1.10–1.62) | 0.006 |
Mono-n-butyl phthalate | 23.58 ± 87.67 | 25.47 ± 40.33 | 0.709 | 1.32 (1.19–1.48) | <0.001 | 1.35 (1.13–1.62) | 0.002 |
Mono-(3-carboxypropyl) phthalate | 12.62 ± 84.15 | 12.50 ± 57.81 | 0.981 | 1.19 (1.08–1.31) | <0.001 | 1.13 (0.98–1.30) | 0.080 |
Mono-ethyl phthalate | 183.80 ± 832.54 | 141.27 ± 435.73 | 0.379 | 1.09 (0.99–1.19) | 0.074 | 1.14 (0.97–1.34) | 0.104 |
Mono-(2-ethyl-5-hydroxyhexyl) | 18.26 ± 50.68 | 17.40 ± 23.11 | 0.769 | 1.30 (1.15–1.47) | <0.001 | 1.25 (1.05–1.49) | 0.014 |
Mono-(2-ethyl)-hexyl phthalate | 3.40 ± 8.41 | 2.69 ± 3.76 | 0.143 | 1.04 (0.92–1.18) | 0.544 | 1.05 (0.82–1.33) | 0.699 |
Mono-n-methyl phthalate | 4.39 ± 22.85 | 10.80 ± 75.81 | 0.002 | 1.24 (1.13–1.37) | <0.001 | 1.26 (1.07–1.48) | 0.007 |
Mono-isononyl phthalate | 4.30 ± 13.70 | 4.23 ± 15.20 | 0.937 | 1.00 (0.90–1.10) | 0.957 | 1.01 (0.87–1.16) | 0.942 |
Mono-(2-ethyl-5-oxohexyl) | 11.24 ± 26.39 | 11.29 ± 14.98 | 0.974 | 1.32 (1.16–1.50) | <0.001 | 1.25 (1.07–1.48) | 0.009 |
Mono-benzyl phthalate | 11.21 ± 19.74 | 16.91 ± 29.84 | <0.001 | 1.37 (1.21–1.54) | <0.001 | 1.40 (1.15–1.69) | 0.002 |
Mono-isobutyl pthalate | 13.13 ± 22.17 | 15.71 ± 25.15 | 0.060 | 1.27 (1.11–1.44) | <0.001 | 1.14 (0.92–1.41) | 0.213 |
Benzophenone-3 | 287.97 ± 2,063.09 | 183.41 ± 724.58 | 0.377 | 0.96 (0.90–1.02) | 0.167 | 0.99 (0.88–1.11) | 0.794 |
Bisphenol A | 3.18 ± 8.47 | 3.14 ± 7.91 | 0.936 | 1.11 (0.96–1.27) | 0.149 | 0.94 (0.74–1.20) | 0.615 |
Triclosan | 90.74 ± 272.57 | 71.09 ± 235.00 | 0.228 | 0.96 (0.90–1.03) | 0.308 | 0.96 (0.87–1.06) | 0.377 |
Butyl paraben | 2.01 ± 13.14 | 1.51 ± 7.36 | 0.508 | 1.02 (0.92–1.12) | 0.728 | 1.06 (0.90–1.25) | 0.467 |
Ethyl paraben | 15.51 ± 60.47 | 8.77 ± 22.60 | 0.053 | 1.01 (0.93–1.10) | 0.771 | 0.99 (0.87–1.12) | 0.846 |
Methyl paraben | 214.79 ± 482.94 | 279.78 ± 979.54 | 0.060 | 1.08 (1.00–1.16) | 0.045 | 1.05 (0.92–1.20) | 0.457 |
Propyl paraben | 50.64 ± 145.75 | 58.85 ± 237.71 | 0.399 | 1.04 (0.98–1.11) | 0.181 | 1.04 (0.95–1.14) | 0.329 |
Normal BP (n = 2,478) | High BP (n = 387) | P value | Adjusted model * | P value | Weighted model * | P value | |
---|---|---|---|---|---|---|---|
2,5-Dichlorophenol | 148.62 ± 1,009.99 | 148.71 ± 1,215.77 | 0.999 | 1.02 (0.96–1.08) | 0.549 | 0.96 (0.89–1.04) | 0.299 |
2,4-Dichlorophenol | 4.61 ± 29.06 | 4.46 ± 29.11 | 0.931 | 1.08 (0.99–1.19) | 0.098 | 1.02 (0.88–1.19) | 0.770 |
Total arsenic | 19.38 ± 57.14 | 17.59 ± 31.88 | 0.557 | 1.11 (1.00–1.23) | 0.046 | 1.13 (0.99–1.29) | 0.066 |
Arsenous acid | 0.54 ± 1.33 | 0.51 ± 0.35 | 0.687 | 0.97 (0.75–1.25) | 0.819 | 0.97 (0.66–1.43) | 0.886 |
Arsenic acid | 0.66 ± 0.83 | 0.64 ± 0.19 | 0.683 | 0.82 (0.38–1.74) | 0.602 | 0.47 (0.16–1.41) | 0.164 |
Arsenobetaine | 11.24 ± 51.33 | 9.13 ± 24.00 | 0.434 | 1.00 (0.92–1.08) | 0.921 | 0.97 (0.86–1.10) | 0.671 |
Arsenocholine | 0.25 ± 0.53 | 0.21 ± 0.08 | 0.128 | 0 58 (0.31–1.05) | 0.073 | 0.35 (0.17–0.74) | 0.009 |
Dimethylarsonic acid | 5.97 ± 7.83 | 6.42 ± 8.87 | 0.304 | 1.28 (1.11–1.50) | 0.001 | 1.42 (1.12–1.79) | 0.006 |
Monomethylarsonic acid | 0.90 ± 1.51 | 0.87 ± 0.53 | 0.727 | 1.16 (0.87–1.55) | 0.316 | 1.40 (0.80–2.46) | 0.223 |
Trimethylarsine oxide | 0.23 ± 1.51 | 0.21 ± 0.17 | 0.818 | 1.32 (0.96–1.83) | 0.088 | 2.47 (1.27–4.81) | 0.011 |
3.2. Possible Mechanisms
3.3. Strengths and Limitations
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Gottlieb, S. Nearly a third of U.S. adults have high blood pressure. BMJ 2004, 329. [Google Scholar] [CrossRef]
- Revis, N.W.; Zinsmeister, A.R.; Bull, R. Atherosclerosis and hypertension induction by lead and cadmium ions, an effect prevented by calcium ion. Proc. Natl. Acad. Sci. USA 1981, 78, 6494–6498. [Google Scholar] [CrossRef]
- Carter, D.E.; Aposhian, H.V.; Gandolfi, A.J. The metabolism of inorganic arsenic oxides, gallium arsenide, and arsine, a toxicochemical review. Toxicol. Appl. Pharmacol. 2003, 193, 309–334. [Google Scholar] [CrossRef]
- Navas-Acien, A.; Silbergeld, E.K.; Sharrett, R.; Calderon-Aranda, E.; Selvin, E.; Guallar, E. Metals in urine and peripheral arterial disease. Environ. Health Perspect. 2005, 113, 164–169. [Google Scholar] [CrossRef]
- Shiue, I. Urine phthalate concentrations are higher in people with stroke, United States National Health and Nutrition Examination Surveys (NHANES), 2001–2004. Eur. J. Neurol. 2013, 20, 728–731. [Google Scholar] [CrossRef]
- Olsén, L.; Lind, L.; Lind, P.M. Associations between circulating levels of bisphenol A and phthalate metabolites and coronary risk in the elderly. Ecotoxicol. Environ. Safety 2012, 80, 179–183. [Google Scholar] [CrossRef]
- Heindel, J.J. Endocrine disruptors and the obesity epidemic. Toxicol. Sci. 2003, 76, 247–249. [Google Scholar] [CrossRef]
- Rogers, J.M.; Ellis-Hutchings, R.G.; Grey, B.E.; Zucker, R.M.; Norwood, J., Jr.; Grace, C.E.; Gordon, C.; Lau, C. Elevated blood pressure in offspring of rats exposed to diverse chemicals during pregnancy. Toxicol. Sci. 2013. [Google Scholar] [CrossRef]
- Newbold, R.R.; Padilla-Banks, E.; Snyder, R.J.; Jefferson, W.N. Developmental exposure to estrogenic compounds and obesity. Birth Defects Res. Pt. A 2005, 73, 478–480. [Google Scholar] [CrossRef]
- National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey Data 2012. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. Available online: http//www.cdc.gov/nchs/nhanes.htm (accessed on 29 May 2014).
- No. 56 National Health and Nutrition Examination Survey, Plan and Operations, 1999–2010. Available online: http//www.cdc.gov/nchs/data/series/sr_01/sr01_056.pdf (accessed on 29 May 2014).
- 2011–2012 Data Documentation, Codebook, and Frequencies. Available online: http//www.cdc.gov/nchs/nhanes/nhanes2011–2012/BPX_G.htm (accessed on 29 May 2014).
- National Health and Nutrition Examination Survey. Available online: http//www.cdc.gov/nchs/data/nhanes/nhanes_subsample_notes.pdf (accessed on 29 May 2014).
- Date, A.R.; Gray, A.L. Applications of Inductively Coupled Plasma Mass Spectrometry; Chapman and Hall: New York, NY, USA, 1989. [Google Scholar]
- Mulligan, K.J.; Davidson, T.M.; Caruso, J.A. Feasibility of the direct analysis of urine by inductively coupled argon plasma mass–spectrometry for biological monitoring of exposure metals. J. Anal. Atom. Spectrom. 1990, 5, 301–306. [Google Scholar] [CrossRef]
- Silva, M.J.; Samandar, E.; Preau, J.L., Jr.; Reidy, J.A.; Needham, L.L.; Calafat, A.M. Quantification of 22 phthalate metabolites in human urine. J. Chromatogr. B 2007, 860, 106–112. [Google Scholar] [CrossRef]
- Westgard, J.O.; Barry, P.L.; Hunt, M.R.; Groth, T. A multi-rule Shewhart chart for quality control in clinical chemistry. Clin. Chem. 1981, 27, 493–501. [Google Scholar]
- Ye, X.Y.; Kuklenyik, Z.; Needham, L.L.; Calafat, A.M. Automated on-line column-switching HPLC-MS/MS method with peak focusing for the determination of nine environmental phenols in urine. Anal. Chem. 2005, 77, 5407–5413. [Google Scholar] [CrossRef]
- Ye, X.Y.; Kuklenyik, Z.; Bishop, A.M.; Needham, L.L.; Calafat, A.M. Quantification of the urinary concentrations of parabens in humans by on-line solid phase extraction-high performance liquid chromatography-isotope dilution tandem mass spectrometry. J. Chromatogr. B. 2006, 844, 53–59. [Google Scholar] [CrossRef]
- BMI Classification. World Health Organization. Available online: http://apps.who.int/bmi/index.jsp?introPage=intro_3.html (accessed on 29 May 2014).
- Cwikel, J.; Abdelgani, A.; Goldsmith, J.R.; Quastel, M.; Yevelson, I.I. Two-year follow up study of stress-related disorders among immigrants to Israel from the Chernobyl area. Environ. Health Perspect. 1997, 105, 1545–1550. [Google Scholar]
- Guéguen, Y.; Lestaevel, P.; Grandcolas, L.; Baudelin, C.; Grison, S.; Jourdain, J.R.; Gourmelon, P.; Souidi, M. Chronic contamination of rats with 137 cesium radionuclide, impact on the cardiovascular system. Cardiovasc. Toxicol. 2008, 8, 33–40. [Google Scholar] [CrossRef]
- Patterson, E.; Szabo, B.; Scherlag, B.J.; Lazzara, R. Early and delayed afterdepolarizations associated with cesium chloride-induced arrhythmias in the dog. J. Cardiovasc. Pharmacol. 1990, 15, 323–331. [Google Scholar] [CrossRef]
- Fish, F.A.; Prakash, C.; Roden, D.M. Suppression of repolarization-related arrhythmias in vitro and in vivo by low-dose potassium channel activators. Circulation 1990, 82, 1362–1369. [Google Scholar] [CrossRef]
- Ooie, T.; Takahashi, N.; Saikawa, T.; Iwao, T.; Hara, M.; Sakata, T. Suppression of cesium-induced ventricular tachyarrhythmias by atrial natriuretic peptide in rabbits. J. Card. Fail. 2000, 6, 250–256. [Google Scholar] [CrossRef]
- D’Alonzo, A.J.; Hess, T.A.; Darbenzio, R.B.; Sewter, J.C. Effects of intracoronary cromakalim, pinacidil, or diltiazem on cesium chloride-induced arrhythmias in anesthetized dogs under conditions of controlled coronary blood flow. J. Cardiovasc. Pharmacol. 1993, 21, 677–683. [Google Scholar] [CrossRef]
- Heo, Y.; Parsons, P.J.; Lawrence, D.A. Lead differentially modifies cytokine production in vitro and in vivo. Toxicol. Appl. Pharmacol. 1996, 138, 149–157. [Google Scholar] [CrossRef]
- Vaziri, N.D.; Ding, Y.; Ni, Z. Compensatory up-regulation of nitric-oxide synthase isoforms in lead-induced hypertension, reversal by a superoxide dismutase-mimetic drug. J. Pharmacol. Exp. Ther. 2001, 298, 679–685. [Google Scholar]
- Schäfer, S.G.; Femfert, U. Tin—A toxic heavy metal? A review of the literature. Regul. Toxicol. Pharmacol. 1984, 4, 57–69. [Google Scholar] [CrossRef]
- Cotton, M.D.; Logan, M.E. Effects of antimony on the cardiovascular system and intestinal smooth muscle. J. Pharmacol. Exp. Ther. 1966, 151, 7–22. [Google Scholar]
- Byrne, J.V.; Hope, J.K.; Hubbard, N.; Morris, J.H. The nature of thrombosis induced by platinum and tungsten coils in saccular aneurysms. Amer. J. Neuroradiol. 1997, 18, 29–33. [Google Scholar]
- Toxicological Profile for Tungsten; Agency for Toxic Substances and Disease Registry (ATSDR): Atlanta, GA, USA, 2003.
- Peuster, M.; Fink, C.; von Schnakenburg, C.; Hausdorf, G. Dissolution of tungsten coils does not produce systemic toxicity, but leads to elevated levels of tungsten in the serum and recanalization of the previously occluded vessel. Cardiol. Young 2002, 12, 229–235. [Google Scholar] [CrossRef]
- McCallum, R.I. The industrial toxicology of antimony. The Ernestine Henry lecture 1987. J. R. Coll. Physicians Lond. 1989, 23, 28–32. [Google Scholar]
- Schnorr, T.M.; Steenland, K.; Thun, M.J.; Rinsky, R.A. Mortality in a cohort of antimony smelter workers. Amer. J. Ind. Med. 1995, 27, 759–770. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Antimony; U.S. Public Health Service, U.S. Department of Health and Human Services: Altanta, GA, USA, 1992. [Google Scholar]
- U.S. Department of Health and Human Services. Hazardous Substances Data Bank (HSDB, online database). National Toxicology Information Program, National Library of Medicine. Available online: http://www.nlm.nih.gov/pubs/factsheets/hsdbfs.html (accessed on 29 May 2014).
- Brotons, J.A.; Olea-Serrano, M.F.; Villalobos, M.; Pedraza, V.; Olea, N. Xenoestrogens released from lacquer coatings in food cans. Environ. Health Perspect. 1995, 103, 608–612. [Google Scholar] [CrossRef]
- Halden, R.U. Plastics and health risks. Annu. Rev. Public Health 2010, 31, 179–194. [Google Scholar] [CrossRef]
- Heudorf, U.; Mersch-Sundermann, V.; Angerer, J. Phthalates, toxicology and exposure. Int. J. Hyg. Environ. Health 2007, 210, 623–634. [Google Scholar] [CrossRef]
- Bisset, K.M.; Dhopeshwarkar, A.S.; Liao, C.; Nicholson, R.A. The G protein-coupled cannabinoid-1 (CB1) receptor of mammalian brain, Inhibition by phthalate esters in vitro. Neurochem. Int. 2011, 59, 706–713. [Google Scholar] [CrossRef]
- Osman, A.M.; van Dartel, D.A.; Zwart, E.; Blokland, M.; Pennings, J.L.; Piersma, A.H. Proteome profiling of mouse embryonic stem cells to define markers for cell differentiation and embryotoxicity. Reprod. Toxicol. 2010, 30, 322–332. [Google Scholar]
- Abir, T.; Rahman, B.; D’Este, C.; Farooq, A.; Milton, A.H. The association between chronic arsenic exposure and hypertension, a meta-analysis. J. Toxicol. 2012. [Google Scholar] [CrossRef]
- Abhyankar, L.; Jones, M.R.; Guallar, E.; Navas–Acien, A. Arsenic exposure and hypertension: A systematic review. Environ. Health Perspect. 2012, 120, 494–500. [Google Scholar]
- Jones, M.R.; Tellez-Plaza, M.; Sharrett, A.R.; Guallar, E.; Navas-Acien, A. Urine arsenic and hypertension in U.S. adults, the 2003–2008 National Health and Nutrition Examination Survey. Epidemiology 2011, 22, 153–161. [Google Scholar] [CrossRef]
- Kumagai, Y.; Pi, J. Molecular basis for arsenic-induced alternation in nitric oxide production and oxidative stress, implication of endothelial dysfunction. Toxicol. Appl. Pharmacol. 2004, 198, 450–457. [Google Scholar] [CrossRef]
- Norman, R.E.; Carpenter, D.O.; Scott, J.; Brune, M.N.; Sly, P.D. Environmental exposures, an underrecognized contribution to noncommunicable diseases. Rev. Environ. Health 2013, 28, 59–65. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Shiue, I. Higher Urinary Heavy Metal, Phthalate, and Arsenic but Not Parabens Concentrations in People with High Blood Pressure, U.S. NHANES, 2011–2012. Int. J. Environ. Res. Public Health 2014, 11, 5989-5999. https://doi.org/10.3390/ijerph110605989
Shiue I. Higher Urinary Heavy Metal, Phthalate, and Arsenic but Not Parabens Concentrations in People with High Blood Pressure, U.S. NHANES, 2011–2012. International Journal of Environmental Research and Public Health. 2014; 11(6):5989-5999. https://doi.org/10.3390/ijerph110605989
Chicago/Turabian StyleShiue, Ivy. 2014. "Higher Urinary Heavy Metal, Phthalate, and Arsenic but Not Parabens Concentrations in People with High Blood Pressure, U.S. NHANES, 2011–2012" International Journal of Environmental Research and Public Health 11, no. 6: 5989-5999. https://doi.org/10.3390/ijerph110605989
APA StyleShiue, I. (2014). Higher Urinary Heavy Metal, Phthalate, and Arsenic but Not Parabens Concentrations in People with High Blood Pressure, U.S. NHANES, 2011–2012. International Journal of Environmental Research and Public Health, 11(6), 5989-5999. https://doi.org/10.3390/ijerph110605989