Association between Urine Phthalate Levels and Poor Attentional Performance in Children with Attention-Deficit Hyperactivity Disorder with Evidence of Dopamine Gene-Phthalate Interaction
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Assessment of the Neuropsychological Functions
2.3. Phthalate MetaboliteLevel Measurements
2.4. Genotyping
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Participants
Variable | ADHD (n = 179) |
---|---|
Gender, male/female, No. (%) | 147/32 (82.1/17.9) |
Age, mean (SD), years | 8.98 (2.39) |
ADHD subtype, No. (%) | |
Combined | 83 (46.4) |
Predominantly inattentive | 68 (38.0) |
Predominantly hyperactive-impulsive | 7 (3.9) |
Not otherwise specified | 21 (11.7) |
Psychiatric comorbidity, No. (%) | |
Oppositional defiant disorder | 22 (12.2) |
Anxiety disorder | 4 (2.2) |
Tic disorder | 5 (2.8) |
Enuresis | 4 (2.2) |
Intelligence Quotient, mean (SD) | 106.21 (14.43) |
CPT | MEHP | MEOP | MBP | |||
---|---|---|---|---|---|---|
B (95% CI) | p | B (95% CI) | p | B (95% CI) | p | |
Omission errors | 8.46 (−0.96–17.89) | 0.078 | 8.05 (−2.61–18.70) | 0.137 | 6.28 (−5.34–17.89) | 0.287 |
Commission errors | 9.97 (0.81–19.14) | 0.033 | 15.52 (5.36–25.69) | 0.003 | 3.44 (−7.95–14.83) | 0.552 |
Response time variability | 6.88 (0.80–12.95) | 0.027 | 7.67 (0.82–14.52) | 0.028 | 5.97 (−1.53–13.47) | 0.118 |
3.2. Associations between the Phthalate Metabolite Concentrations and the CPT Variable Scores
3.3. Effects of the Phthalate Metabolite Concentration by DRD4 Genotype on the CPT Variable Scores
Model | OE | CE | RTSD | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
ANCOVA model 1 | ||||||
DRD4 (4/4) | 1.81 | 0.180 | 1.06 | 0.304 | 2.87 | 0.093 |
MEHP | 0.15 | 0.701 | 0.02 | 0.902 | 0.01 | 0.942 |
MEHP by DRD4 interaction | 6.57 | 0.012 | 5.80 | 0.018 | 3.24 | 0.074 |
ANCOVA model 2 | ||||||
DRD4 (4/4) | 0.80 | 0.374 | 0.15 | 0.703 | 3.91 | 0.050 |
MEOP | 0.04 | 0.835 | 0.65 | 0.421 | 0.002 | 0.964 |
MEOP by DRD4 interaction | 4.54 | 0.035 | 3.15 | 0.078 | 5.17 | 0.025 |
ANCOVA model 3 | ||||||
DRD4 (4/4) | 0.60 | 0.441 | 0.003 | 0.956 | 2.01 | 0.159 |
MBP | 0.25 | 0.620 | 0.12 | 0.731 | 0.16 | 0.686 |
MBP by DRD4 interaction | 3.39 | 0.068 | 1.10 | 0.296 | 2.00 | 0.160 |
CPT | MEHP | MEOP | MBP | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DRD4 4/4 | Other | DRD4 4/4 | Other | DRD4 4/4 | Other | |||||||||||||
B (S.E.) | 95% CI | p | B (S.E.) | 95% CI | p | B (S.E.) | 95% CI | p | B (S.E.) | 95% CI | p | B (S.E.) | 95% CI | p | B (S.E.) | 95% CI | p | |
OE | 19.66
(6.15) | 7.38–31.95 | 0.002 | −1.19
(8.25) | −17.71–15.33 | 0.885 | 21.26
(6.99) | 7.31–35.22 | 0.003 | −4.74
(8.90) | −22.55–13.07 | 0.596 | 21.96
(8.33) | 5.32–38.61 | 0.010 | −1.76
(10.28) | −22.32–18.81 | 0.865 |
CE | 14.54
(6.60) | 1.35–27.73 | 0.031 | 3.06
(6.87) | −10.69–16.81 | 0.658 | 21.24
(7.26) | 6.73–35.74 | 0.005 | 6.26
(7.39) | −8.53–21.05 | 0.400 | 9.34
(9.00) | −8.62–27.31 | 0.303 | −0.02
(8.57) | −17.17–17.13 | 0.998 |
RTSD | 11.15
(4.44) | 2.28–20.02 | 0.015 | 2.17
(5.07) | −7.98–12.31 | 0.671 | 14.77
(4.92) | 4.95–24.60 | 0.004 | -1.04
(5.48) | −12.01–9.93 | 0.850 | 13.50
(5.93) | 1.65–25.34 | 0.026 | 2.00
(6.31) | −10.64–14.63 | 0.753 |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wormuth, M.; Scheringer, M.; Vollenweider, M.; Hungerbuhler, K. What are the sources of exposure to eight frequently used phthalic acid esters in Europeans? Risk Anal. 2006, 26, 803–824. [Google Scholar] [CrossRef]
- An Initiative of the European Council for Plasticisers and Intermediates (ECPI). Plasticisers and flexible PVC information centre. Available online: http://www.plasticisers.org/faq (accessed on 3 June 2014).
- Regulation (EC) No. 1272/2008 of the European Parliament and of the Council of 16 December 2008 on Classification, Labelling and Packaging of Substances and Mixtures, Amending and Repealing Directives 67/548/EEC and 1999/45/EC, and Amending Regulation (EC) No 1907/2006. Off. J. Eur. Union. 2008, L353, pp. 0001–1355. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2008.353.01.0001.01.ENG (accessed on 3 June 2014).
- European Chemical Agencies (ECHA). Candidate list of substances of very high concern for authorisation. Available online: http://echa.europa.eu/web/guest/candidate-list-table?search_criteria=phthalate (accessed on 3 June 2014).
- Hauser, R.; Calafat, A.M. Phthalates and human health. Occup. Environ. Medicine 2005, 62, 806–818. [Google Scholar] [CrossRef]
- Muczynski, V.; Cravedi, J.P.; Lehraiki, A.; Levacher, C.; Moison, D.; Lecureuil, C.; Messiaen, S.; Perdu, E.; Frydman, R.; Habert, R.; et al. Effect of mono-(2-ethylhexyl) phthalate on human and mouse fetal testis: In vitro and in vivo approaches. Toxicol. Appl. Pharmacol. 2012, 261, 97–104. [Google Scholar] [CrossRef]
- Meeker, J.D. Exposure to environmental endocrine disruptors and child development. Arch. Pediatr. Adolesc. Med. 2012, 166, 1–7. [Google Scholar] [CrossRef]
- Tanaka, T. Reproductive and neurobehavioural toxicity study of bis(2-ethylhexyl) phthalate (DEHP) administered to mice in the diet. Food Chem. Toxicol. 2002, 40, 1499–1506. [Google Scholar] [CrossRef]
- Tanaka, T. Reproductive and neurobehavioural effects of bis(2-ethylhexyl) phthalate (DEHP) in a cross-mating toxicity study of mice. Food Chem. Toxicol. 2005, 43, 581–589. [Google Scholar] [CrossRef]
- Wolff, M.S.; Engel, S.M.; Berkowitz, G.S.; Ye, X.; Silva, M.J.; Zhu, C.; Wetmur, J.; Calafat, A.M. Prenatal phenol and phthalate exposures and birth outcomes. Environ. Health Perspect. 2008, 116, 1092–1097. [Google Scholar] [CrossRef]
- Engel, S.M.; Zhu, C.; Berkowitz, G.S.; Calafat, A.M.; Silva, M.J.; Miodovnik, A.; Wolff, M.S. Prenatal phthalate exposure and performance on the Neonatal Behavioral Assessment Scale in a multiethnic birth cohort. Neurotoxicology 2009, 30, 522–528. [Google Scholar] [CrossRef]
- Kim, Y.; Ha, E.H.; Kim, E.J.; Park, H.; Ha, M.; Kim, J.H.; Hong, Y.C.; Chang, N.; Kim, B.N. Prenatal exposure to phthalates and infant development at 6 months: Prospective Mothers and Children’s Environmental Health (MOCEH) study. Environ. Health Perspect. 2011, 119, 1495–1500. [Google Scholar] [CrossRef]
- Swan, S.H.; Liu, F.; Hines, M.; Kruse, R.L.; Wang, C.; Redmon, J.B.; Sparks, A.; Weiss, B. Prenatal phthalate exposure and reduced masculine play in boys. Int. J. Androl. 2010, 33, 259–269. [Google Scholar] [CrossRef]
- Miodovnik, A.; Engel, S.M.; Zhu, C.; Ye, X.; Soorya, L.V.; Silva, M.J.; Calafat, A.M.; Wolff, M.S. Endocrine disruptors and childhood social impairment. Neurotoxicology 2011, 32, 261–267. [Google Scholar] [CrossRef]
- Polanczyk, G.; de Lima, M.S.; Horta, B.L.; Biederman, J.; Rohde, L.A. The worldwide prevalence of ADHD: A systematic review and metaregression analysis. Amer. J. Psychiat. 2007, 164, 942–948. [Google Scholar] [CrossRef]
- Masuo, Y.; Morita, M.; Oka, S.; Ishido, M. Motor hyperactivity caused by a deficit in dopaminergic neurons and the effects of endocrine disruptors: A study inspired by the physiological roles of PACAP in the brain. Regul. Peptides 2004, 123, 225–234. [Google Scholar] [CrossRef]
- Engel, S.M.; Miodovnik, A.; Canfield, R.L.; Zhu, C.; Silva, M.J.; Calafat, A.M.; Wolff, M.S. Prenatal phthalate exposure is associated with childhood behavior and executive functioning. Environ. Health Perspect. 2010, 118, 565–571. [Google Scholar]
- Kim, B.N.; Cho, S.C.; Kim, Y.; Shin, M.S.; Yoo, H.J.; Kim, J.W.; Yang, Y.H.; Kim, H.W.; Bhang, S.Y.; Hong, Y.C. Phthalates exposure and attention-deficit/hyperactivity disorder in school-age children. Biol. Psychiatry 2009, 66, 958–963. [Google Scholar] [CrossRef]
- Chopra, V.; Harley, K.; Lahiff, M.; Eskenazi, B. Association between phthalates and attention deficit disorder and learning disability in U.S. children, 6–15 years. Environ. Res. 2014, 128, 64–69. [Google Scholar] [CrossRef]
- Gizer, I.R.; Ficks, C.; Waldman, I.D. Candidate gene studies of ADHD: A meta-analytic review. Hum. Genet. 2009, 126, 51–90. [Google Scholar] [CrossRef]
- Faraone, S.V.; Perlis, R.H.; Doyle, A.E.; Smoller, J.W.; Goralnick, J.J.; Holmgren, M.A.; Sklar, P. Molecular genetics of attention-deficit/hyperactivity disorder. Biol. Psychiatry 2005, 57, 1313–1323. [Google Scholar]
- Bellinger, D.C. Late neurodevelopmental effects of early exposures to chemical contaminants: Reducing uncertainty in epidemiological studies. Basic Clin. Pharmacol. Toxicol. 2008, 102, 237–244. [Google Scholar] [CrossRef]
- Kim, Y.S.; Cheon, K.A.; Kim, B.N.; Chang, S.A.; Yoo, H.J.; Kim, J.W.; Cho, S.C.; Seo, D.H.; Bae, M.O.; So, Y.K.; et al. The reliability and validity of Kiddie-Schedule for Affective Disorders and Schizophrenia-Present and Lifetime Version-Korean version (K-SADS-PL-K). Yonsei Med. J. 2004, 45, 81–89. [Google Scholar]
- Park, K.S.; Yoon, J.Y.; Park, H.J.; Park, H.J.; Kwon, K.U. Development of KEDI-WISC, Individual Intelligence Test for Korean Children; Korean Educational Development Institute: Seoul, Korea, 1996. [Google Scholar]
- Shin, M.S.; Cho, S.; Chun, S.Y.; Hong, K.E. A study of the development and standardization of ADHD diagnostic system. Korean J. Child Adolesc. Psychiat. 2000, 11, 91–99. [Google Scholar]
- Lim, M.H.; Kim, H.W.; Paik, K.C.; Cho, S.C.; Yoon, D.Y.; Lee, H.J. Association of the DAT1 polymorphism with attention deficit hyperactivity disorder (ADHD): A family-based approach. Amer. J. Med. Genet. 2006, 141, 309–311. [Google Scholar]
- Cheon, K.A.; Kim, B.N.; Cho, S.C. Association of 4-repeat allele of the dopamine D4 receptor gene exon III polymorphism and response to methylphenidate treatment in Korean ADHD children. Neuropsychopharmacology 2007, 32, 1377–1383. [Google Scholar] [CrossRef]
- Kim, B.; Koo, M.S.; Jun, J.Y.; Park, I.H.; Oh, D.Y.; Cheon, K.A. Association between dopamine D4 receptor gene polymorphism and scores on a continuous performance test in Korean children with attention deficit hyperactivity disorder. Psychiatr. Investig. 2009, 6, 216–221. [Google Scholar] [CrossRef]
- Cheon, K.A.; Ryu, Y.H.; Kim, J.W.; Cho, D.Y. The homozygosity for 10-repeat allele at dopamine transporter gene and dopamine transporter density in Korean children with attention deficit hyperactivity disorder: Relating to treatment response to methylphenidate. Eur. Neuropsychopharmacol. 2005, 15, 95–101. [Google Scholar] [CrossRef]
- Teitelbaum, S.L.; Britton, J.A.; Calafat, A.M.; Ye, X.; Silva, M.J.; Reidy, J.A.; Galvez, M.P.; Brenner, B.L.; Wolff, M.S. Temporal variability in urinary concentrations of phthalate metabolites, phytoestrogens and phenols among minority children in the United States. Environ. Res. 2008, 106, 257–269. [Google Scholar] [CrossRef]
- Kim, M.; Song, N.R.; Choi, J.H.; Lee, J.; Pyo, H. Simultaneous analysis of urinary phthalate metabolites of residents in Korea using isotope dilution gas chromatography-mass spectrometry. Sci.Total Environ. 2014, 470, 1408–1413. [Google Scholar]
- Kim, S.; Kang, S.; Lee, G.; Lee, S.; Jo, A.; Kwak, K.; Kim, D.; Koh, D.; Kho, Y.L.; Kim, S.; et al. Urinary phthalate metabolites among elementary school children of Korea: Sources, risks, and their association with oxidative stress marker. Sci. Total Environ. 2014, 472, 49–55. [Google Scholar] [CrossRef]
- Ha, M; Kwon, H.J.; Leem, J.H.; Kim, H.C.; Lee, K.J.; Park, I.; Lim, Y.W.; Lee, J.H.; Kim, Y.; Seo, J.H.; et al. Korean Environmental Health Survey in Children and Adolescents (KorEHS-C): Survey design and pilot study results on selected exposure biomarkers. Int. J. Hyg. Environ. Health 2014, 217, 260–270. [Google Scholar] [CrossRef]
- Arnsten, A.F. Stimulants: Therapeutic actions in ADHD. Neuropsychopharmacology 2006, 31, 2376–2383. [Google Scholar] [CrossRef]
- Asghari, V.; Sanyal, S.; Buchwaldt, S.; Paterson, A.; Jovanovic, V.; van Tol, H.H. Modulation of intracellular cyclic AMP levels by different human dopamine D4 receptor variants. J. Neurochem. 1995, 65, 1157–1165. [Google Scholar]
- Namkoong, K.; Cheon, K.A.; Kim, J.W.; Jun, J.Y.; Lee, J.Y. Association study of dopamine D2, D4 receptor gene, GABAA receptor beta subunit gene, serotonin transporter gene polymorphism with children of alcoholics in Korea: A preliminary study. Alcohol 2008, 42, 77–81. [Google Scholar] [CrossRef]
- Shaywitz, B.A.; Yager, R.D.; Klopper, J.H. Selective brain dopamine depletion in developing rats: An experimental model of minimal brain dysfunction. Science 1976, 191, 305–308. [Google Scholar]
- Ishido, M.; Masuo, Y.; Sayato-Suzuki, J.; Oka, S.; Niki, E.; Morita, M. Dicyclohexylphthalate causes hyperactivity in the rat concomitantly with impairment of tyrosine hydroxylase immunoreactivity. J. Neurochem. 2004, 91, 69–76. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Park, S.; Kim, B.-N.; Cho, S.-C.; Kim, Y.; Kim, J.-W.; Lee, J.-Y.; Hong, S.-B.; Shin, M.-S.; Yoo, H.J.; Im, H.; et al. Association between Urine Phthalate Levels and Poor Attentional Performance in Children with Attention-Deficit Hyperactivity Disorder with Evidence of Dopamine Gene-Phthalate Interaction. Int. J. Environ. Res. Public Health 2014, 11, 6743-6756. https://doi.org/10.3390/ijerph110706743
Park S, Kim B-N, Cho S-C, Kim Y, Kim J-W, Lee J-Y, Hong S-B, Shin M-S, Yoo HJ, Im H, et al. Association between Urine Phthalate Levels and Poor Attentional Performance in Children with Attention-Deficit Hyperactivity Disorder with Evidence of Dopamine Gene-Phthalate Interaction. International Journal of Environmental Research and Public Health. 2014; 11(7):6743-6756. https://doi.org/10.3390/ijerph110706743
Chicago/Turabian StylePark, Subin, Bung-Nyun Kim, Soo-Churl Cho, Yeni Kim, Jae-Won Kim, Ju-Young Lee, Soon-Beom Hong, Min-Sup Shin, Hee Jeong Yoo, Hosub Im, and et al. 2014. "Association between Urine Phthalate Levels and Poor Attentional Performance in Children with Attention-Deficit Hyperactivity Disorder with Evidence of Dopamine Gene-Phthalate Interaction" International Journal of Environmental Research and Public Health 11, no. 7: 6743-6756. https://doi.org/10.3390/ijerph110706743
APA StylePark, S., Kim, B. -N., Cho, S. -C., Kim, Y., Kim, J. -W., Lee, J. -Y., Hong, S. -B., Shin, M. -S., Yoo, H. J., Im, H., Cheong, J. H., & Han, D. H. (2014). Association between Urine Phthalate Levels and Poor Attentional Performance in Children with Attention-Deficit Hyperactivity Disorder with Evidence of Dopamine Gene-Phthalate Interaction. International Journal of Environmental Research and Public Health, 11(7), 6743-6756. https://doi.org/10.3390/ijerph110706743