Toxicity Evaluation of Pig Slurry Using Luminescent Bacteria and Zebrafish
Abstract
:1. Introduction
2. Experimental Section
2.1. Collection and Determination of Physicochemical Index of Samples
2.2. Luminescent Bacteria
2.3. Zebrafish
2.4. Fertilized of Zebrafish Embryos
2.5. Toxicity Tests
2.5.1. Luminescent Bacteria Toxicity Test
2.5.2. Larvae of D. Rerio Acute Toxicity Test
2.5.3. Toxicity Test of Zebrafish Embryos
2.6. Methods of Toxicity Evaluation
2.7. Statistical Analysis
3. Results
3.1. Physicochemical Characterization of Pig Slurry Effluents
pH | Conductivity (ms∙cm−1) | NH3-N (mg∙L−1) | TP (mg∙L−1) | COD (mg∙L−1) | |
---|---|---|---|---|---|
Digested slurry | 7.69 | 10.01 | 845 | 152.45 | 2667 |
Post-treated slurry | 7.27 | 5.97 | 46.2 | 24.04 | 373 |
3.2. Effect on Luminescent Bacterial Exposed to Pig Slurry
A1 | A2 | X0 | p | R2 | EC50 (%) | TU a | |
---|---|---|---|---|---|---|---|
Digested slurry | 108.22 | −1.79 | 6.09 | 1.19 | 99.76% | 6.81 ± 1.56 | 14.68 |
Post-treated slurry | 104.30 | 43.02 | 38.04 | 1.66 | 99.83% | No inhibition | 0.80 |
3.3. Effect on Zebrafish Larvae Exposed to Pig Slurry
LC50 (%) | TU | |
---|---|---|
Digested slurry | 1.95 | 51.33 |
Post-treated slurry | 75.23 | 1.33 |
3.4. Effect on the Early Development of Embryos Exposed to Pig Slurry
Volume Fraction (%) | Embryonic Mortality (%) | Hatching Rate (%) | Malformation Rate (%) | |
---|---|---|---|---|
Control | 0 | 0 | 100 | 0 |
Digested slurry | 1.0 | 5 | 55 | 10.5 |
2.0 | 20 | 35 | 18.8 | |
3.0 | 40 | 20 | 41.7 | |
4.0 | 60 | 0 | 62.5 | |
5.0 | 75 | 0 | 100 | |
Post-treated slurry | 6.25 | 5 | 80 | 0 |
12.5 | 10 | 70 | 5.6 | |
25.0 | 20 | 55 | 6.3 | |
50.0 | 35 | 40 | 23.1 | |
100.0 | 45 | 25 | 41.7 |
ELC50 (%) a | HEC50 (%) b | MEC50 (%) c | |
---|---|---|---|
Digested slurry | 3.48 | 1.32 | 3.47 |
Post-treated slurry | No inhibition | 31.81 | No inhibition |
TU | |||
---|---|---|---|
Mortality | Hatching | Malformation | |
Digested slurry | 28.74 | 75.76 | 28.82 |
Post-treated slurry | 0.90 | 3.14 | 0.83 |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pachauri, R.K.; Reisinger, A. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change: Mitigation of Climate Change. In Proceedings of the Intergovernmental Panel on Climate Change, Geneva, Switzerland, 27 May 2007.
- Mathiesen, B.V.; Lund, H.; Karlsson, K. 100% Renewable energy systems, climate mitigation and economic growth. Appl. Energy 2011, 88, 488–501. [Google Scholar] [CrossRef]
- Chandra, R.; Vijay, V.; Subbarao, P.; Khura, T. Performance evaluation of a constant speed IC engine on CNG, methane enriched biogas and biogas. Appl. Energy 2011, 88, 3969–3977. [Google Scholar] [CrossRef]
- Zhang, G.Z.; Wu, S.B.; Wang, H.L.; Wei, S.Q.; Wang, K.Y.; Long, Y.; Deng, L.W. Survey and analysis on slate quo of public intention for utilizing digestate from large and medium size biogas plant. China Biogas 2009, 28, 21–24. (In Chinese) [Google Scholar]
- Nkemka, V.N.; Murto, M. Evaluation of biogas production from seaweed in batch tests and in UASB reactors combined with the removal of heavy metals. J. Environ. Manag. 2010, 91, 1573–1579. [Google Scholar] [CrossRef]
- Suominen, K.; Verta, M.; Marttinen, S. Hazardous organic compounds in biogas plant end products—Soil burden and risk to food safety. Sci. Total Environ. 2014, S0048–9697. [Google Scholar] [CrossRef]
- Mekki, A.; Dhouib, A.; Feki, F.; Sayadi, S. Assessment of toxicity of the untreated and treated olive mill wastewaters and soil irrigated by using microbiotests. Ecotoxicol. Environ. Saf. 2008, 69, 488–495. [Google Scholar] [CrossRef]
- Bulich, A.A.; Isenberg, D. Use of the luminescent bacterial system for the rapid assessment of aquatic toxicity. ISA Trans 1981, 20, 29–33. [Google Scholar]
- Tigini, V.; Giansanti, P.; Mangiavillano, A.; Pannocchia, A.; Varese, G.C. Evaluation of toxicity, genotoxicity and environmental risk of simulated textile and tannery wastewaters with a battery of biotests. Ecotoxicol. Environ. Saf. 2011, 74, 866–873. [Google Scholar] [CrossRef]
- Meric, S.; de Nicola, E.; Iaccarino, M.; Gallo, M.; di Gennaro, A.; Morrone, G.; Warnau, M.; Belgiorno, V.; Pagano, G. Toxicity of leather tanning wastewater effluents in sea urchin early development and in marine microalgae. Chemosphere 2005, 61, 208–217. [Google Scholar] [CrossRef]
- Oral, R.; Meriç, S.; de Nicola, E.; Petruzzelli, D.; Della Rocca, C.; Pagano, G. Multi-species toxicity evaluation of a chromium-based leather tannery wastewater. Desalination 2007, 211, 48–57. [Google Scholar] [CrossRef]
- Ra, J.S.; Kim, S.D.; Chang, N.I.; An, K.G. Ecological health assessments based on whole effluent toxicity tests and the index of biological integrity in temperate streams influenced by wastewater treatment plant effluents. Environ. Toxicol. Chem. 2007, 26, 2010–2018. [Google Scholar] [CrossRef]
- Dutka, B.; Kwan, K.; Rao, S.; Jurkovic, A.; McInnis, R.; Palmateer, G.; Hawkins, B. Use of bioassays to evaluate river water and sediment quality. Environ. Toxicol. Water Qual. 1991, 6, 309–327. [Google Scholar] [CrossRef]
- Kaiser, K.L.; Palabrica, V.S. Photobacterium phosphoreum toxicity data index. Water Qual. Res. J. Can. 1991, 26, 361–431. [Google Scholar]
- Organisation for Economic Co-operation and Development (ISO). Water Quality-Determination of the Inhibitory Effect of Water Samples on the Light Emission of Vibrio fischeri (Luminescent Bacteria Test)—Part 3: Method Using Freeze-Dried Bacteria; ISO 11348-3; ISO: Geneva, Switzerland, 2007. [Google Scholar]
- Wang, C.; Yediler, A.; Lienert, D.; Wang, Z.; Kettrup, A. Toxicity evaluation of reactive dyestuffs, auxiliaries and selected effluents in textile finishing industry to luminescent bacteria (Vibrio fischeri). Chemosphere 2002, 46, 339–344. [Google Scholar] [CrossRef]
- Arias-Barreiro, C.; Nishizaki, H.; Okubo, K.; Aoyama, I.; Mori, I. Ecotoxicological characterization of tannery wastewater in Dhaka, Bangladesh. J. Environ. Biol. 2010, 31, 471–475. [Google Scholar]
- McKim, J.M. Early Life Stage Toxicity Tests. In Fundamentals of Aquatic Toxicology: Effects, Environmental Fate and Risk Assessment; Rand, G.M., Ed.; Taylor & Francis: Washington, DC, USA, 1995. [Google Scholar]
- Chio, C.P.; Chen, W.Y.; Chou, W.C.; Hsieh, N.H.; Ling, M.P.; Liao, C.M. Assessing the potential risks to zebrafish posed by environmentally relevant copper and silver nanoparticles. Sci. Total Environ. 2012, 420, 111–118. [Google Scholar] [CrossRef]
- Kais, B.; Schneider, K.; Keiter, S.; Henn, K.; Ackermann, C.; Braunbeck, T. DMSO modifies the permeability of the zebrafish (Danio rerio) chorion-implications for the fish embryo test (FET). Aquat. Toxicol. 2013, 140, 229–238. [Google Scholar]
- Selderslaghs, I.W.; Blust, R.; Witters, H.E. Feasibility study of the zebrafish assay as an alternative method to screen for developmental toxicity and embryotoxicity using a training set of 27 compounds. Reprod. Toxicol. 2012, 33, 142–154. [Google Scholar] [CrossRef]
- Galus, M.; Jeyaranjaan, J.; Smith, E.; Li, H.; Metcalfe, C.; Wilson, J.Y. Chronic effects of exposure to a pharmaceutical mixture and municipal wastewater in zebrafish. Aquat. Toxicol. 2013, 132–133, 212–222. [Google Scholar] [CrossRef]
- Gellert, G.; Heinrichsdorff, J. Effect of age on the susceptibility of zebrafish eggs to industrial wastewater. Water. Res. 2001, 35, 3754–3757. [Google Scholar] [CrossRef]
- Froehner, K.; Meyer, W.; Grimme, L.H. Time-dependent toxicity in the long-term inhibition assay with Vibrio fischeri. Chemosphere. 2002, 46, 987–997. [Google Scholar] [CrossRef]
- Organisation for Economic Co-operation and Development (ISO). Water Quality—Determination of the Acute Lethal Toxicity of Substances to a Freshwater Fish [Brachydanio rerio Hamilton-Buchanan (Teleostei, Cyprinidae)]—Part 1: Static Method; ISO7346-1; ISO: Geneva, Switzerland, 1996. [Google Scholar]
- Weigt, S.; Huebler, N.; Braunbeck, T.; Landenberg, F.V. Zebrafish teratogenicity test with metabolic activation (mDarT): Effects of phase I activation of acetaminophen on zebrafish Danio rerio embryos. Toxicology 2010, 275, 36–49. [Google Scholar] [CrossRef]
- Gao, L.; Li, Z.L.; Chen, H.H.; Chen, H.; Cha, J.M.; Wang, Z.J. Toxicities of dye effluent on Japanese Medaka (Oryzias latipes) embryo and larava. Asian J. Ecotoxicol. 2011, 6, 303–309. (In Chinese) [Google Scholar]
- Discharge Standard of Pollutants for Livestock And Poultry Breeding. Available online: http://english.mep.gov.cn/standards_reports/standards/water_environment/Discharge_standard/200710/t20071024_111807.htm (accessed on 1 January 2003).
- Abubaker, J.; Risberg, K.; Pell, M. Biogas residues as fertilizers-Effects on wheat growth and soil microbial activities. Appl. Energy 2012, 99, 126–134. [Google Scholar] [CrossRef]
- Goberna, M.; Podmirseg, S.M.; Waldhuber, S.; Knappa, B.A.; Garcíab, C.; Insama, H. Pathogenic bacteria and mineral N in soils following the land spreading of biogas digestates and fresh manure. Appl. Soil Ecol. 2011, 49, 18–25. [Google Scholar] [CrossRef]
- De la Torre, A.; Jiménez, J.; Carballo, M.; Fernandez, C.; Roset, J.; Munoz, M. Ecotoxicological evaluation of pig slurry. Chemosphere 2000, 41, 1629–1635. [Google Scholar] [CrossRef]
- Henn, K.; Braunbeck, T. Dechorionation as a tool to improve the fish embryo toxicity test (FET) with the zebrafish (Danio rerio). Comp. Biochem. Phys. C: Toxicol. Pharmacol. 2011, 153, 91–98. [Google Scholar] [CrossRef]
- Wiegand, C.; Pflugmacher, S.; Oberemm, A.; Steinberg, C. Activity development of selected detoxication enzymes during the ontogenesis of the zebrafish (Danio rerio). Int. Rev. Hydrobiol. 2000, 85, 413–422. [Google Scholar] [CrossRef]
- Wiegand, C.; Pflugmacher, S.; Giese, M.; Frank, H.; Steinberg, C. Uptake, toxicity, and effects on detoxication enzymes of atrazine and trifluoroacetate in embryos of zebrafish. Ecotox. Environ. Saf. 2000, 45, 122–131. [Google Scholar] [CrossRef]
- Richards, F.M.; Alderton, W.K.; Kimber, G.M.; Liu, Z.; Strang, I.; Redfern, W.S.; Winter, M.J.; Hutchinson, T.H. Validation of the use of zebrafish larvae in visual safety assessment. J. Pharmacol. Toxicol. Methods. 2008, 58, 50–58. [Google Scholar] [CrossRef]
- Pardo, T.; Clemente, R.; Alvarenga, P.; Bernal, M.P. Efficiency of soil organic and inorganic amendments on the remediation of a contaminated mine soil: II. Biological and ecotoxicological evaluation. Chemosphere 2014, 107, 101–108. [Google Scholar] [CrossRef]
- Farré, M.; Barceló, D. Toxicity testing of wastewater and sewage sludge by biosensors, bioassays and chemical analysis. Trac.-Trend. Anal. Chem. 2003, 22, 299–310. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Ding, T.D.; Liang, L.Y.; Wang, F.P.; Chen, J. Response of aquatic ecosystem to phenol pollution at different concentration levels. Environ. Chem. 2012, 31, 714–719. (In Chinese) [Google Scholar]
- Liu, Z.P.; Zhang, S.L.; Wu, E.S.; Yang, J.H.; Tang, R. Toxicity study on urban sewage to larva of zebrafish. Environ. Sci. Tech. 2010, 23, 21–27. (In Chinese) [Google Scholar]
- Şişman, T.; İncekara, Ü.; Yıldız, Y.Ş. Determination of acute and early life stage toxicity of fat-plant effluent using zebrafish (Danio rerio). Environ. Toxicol. 2008, 23, 480–486. [Google Scholar] [CrossRef]
- Fang, Y.X.; Ying, G.G.; Zhang, L.J.; Zhao, J.L.; Su, H.C.; Yang, B.; Liu, S. Use of TIE techniques to characterize industrial effluents in the Pearl River Delta region. Ecotoxicol. Environ. Saf. 2012, 76, 143–152. [Google Scholar] [CrossRef]
- Sun, H.J.; Yang, W.; Chen, Y.F.; Yang, Z. Effect of purified microcystin on oxidative stress of silver carp Hypophthalmichthys molitrix larvae under different ammonia concentrations. Biochem. Syst. Ecol. 2011, 39, 536–543. [Google Scholar] [CrossRef]
- Carballeira, C.; de Orte, M.; Viana, I.; Carballeira, A. Implementation of a minimal set of biological tests to assess the ecotoxic effects of effluents from land-based marine fish farms. Ecotoxicol. Environ. Saf. 2012, 78, 148–161. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Chen, W.; Cai, Q.; Zhao, Y.; Zheng, G.; Liang, Y. Toxicity Evaluation of Pig Slurry Using Luminescent Bacteria and Zebrafish. Int. J. Environ. Res. Public Health 2014, 11, 6856-6870. https://doi.org/10.3390/ijerph110706856
Chen W, Cai Q, Zhao Y, Zheng G, Liang Y. Toxicity Evaluation of Pig Slurry Using Luminescent Bacteria and Zebrafish. International Journal of Environmental Research and Public Health. 2014; 11(7):6856-6870. https://doi.org/10.3390/ijerph110706856
Chicago/Turabian StyleChen, Wenyan, Qiang Cai, Yuan Zhao, Guojuan Zheng, and Yuting Liang. 2014. "Toxicity Evaluation of Pig Slurry Using Luminescent Bacteria and Zebrafish" International Journal of Environmental Research and Public Health 11, no. 7: 6856-6870. https://doi.org/10.3390/ijerph110706856
APA StyleChen, W., Cai, Q., Zhao, Y., Zheng, G., & Liang, Y. (2014). Toxicity Evaluation of Pig Slurry Using Luminescent Bacteria and Zebrafish. International Journal of Environmental Research and Public Health, 11(7), 6856-6870. https://doi.org/10.3390/ijerph110706856