Prevalence and Determinants of Metabolic Health in Subjects with Obesity in Chinese Population
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Anthropometric Measurement
2.3. Biochemical Determination
2.4. Epidemiological Investigation
2.5. Definition of the Phenotypes
2.6. Statistical Analysis
3. Results
Variable | MHNW (n = 1661) | MANW (n = 655) | MHO (n = 196) | MAO (n = 506) |
---|---|---|---|---|
Men/women (%) | 37.30/62.70 | 47.80/52.20 | 43.90/56.10 | 55.70/44.30 |
Age (years) | 51.82 ± 6.91 | 54.43 ± 6.94 # | 52.01 ± 7.62 | 53.95 ± 7.75 † |
WC (cm) | 74.37 ± 6.37 | 79.02 ± 6.57 # | 94.14 ± 8.41 ‡∫ | 98.07 ± 8.59 †§¶ |
WHR | 0.83 ± 0.06 | 0.87 ± 0.06 # | 0.91 ± 0.07 ‡∫ | 0.93 ± 0.07 †§¶ |
WHtR | 0.46 ± 0.04 | 0.48 ± 0.04 # | 0.58 ± 0.05 ‡∫ | 0.60 ± 0.05 †§¶ |
SBP (mm·Hg) | 114.12 ± 13.51 | 127.81 ± 16.33 # | 124.02 ± 15.65 ‡∫ | 137.32 ± 15.69 †§¶ |
DBP (mm·Hg) | 75.63 ± 14.32 | 83.86 ± 18.24 # | 80.87 ± 10.16 ‡∫ | 88.56 ± 10.40 †§¶ |
TC (mmol/L) | 5.09 ± 1.03 | 5.42 ± 1.11 # | 5.04 ± 0.90 ∫ | 5.31 ± 1.05 †§ |
TG (mmol/L) | 1.09 ± 0.67 | 2.33 ± 1.82 # | 1.38 ± 0.98 ‡∫ | 2.45 ± 1.81 †§ |
HDL-C (mmol/L) | 1.62 ± 0.39 | 1.29 ± 0.38 # | 1.43 ± 0.47 ‡∫ | 1.20 ± 0.40 †§¶ |
LDL-C (mmol/L) | 2.84 ± 0.91 | 2.86 ± 0.89 | 3.03 ± 0.93 ‡∫ | 3.02 ± 0.91 †§ |
TC/HDL-C ratio | 3.27 ± 0.85 | 4.60 ± 2.50 # | 3.67 ± 0.88 ‡∫ | 4.79 ± 2.07 †§ |
LDL/HDL-C ratio | 1.83 ± 0.68 | 2.38 ± 1.28 # | 2.21 ± 0.77 ‡ | 2.65 ± 0.92 †§¶ |
UA (mmol/L) | 266.56 ± 75.31 | 292.98 ± 82.89 # | 304.52 ± 82.96 ‡ | 332.36 ± 90.07 †§¶ |
ALT (U/L) | 16 (13–22) | 20 (15–26) # | 21 (16–32) ‡ | 26 (19–38) †§¶ |
AST (U/L) | 20 (17–24) | 20 (17–25) | 21 (18–25) | 22 (19–27) †§¶ |
γ-GT (U/L) | 18 (14–25) | 22 (16–34) # | 25 (16–41) ‡ | 32 (22–46) †§¶ |
FPG (mmol/L) | 4.96 ± 0.82 | 5.84 ± 1.76 # | 5.17 ± 0.83 ‡∫ | 6.29 ± 2.04 †§¶ |
30 min OGTT glucose (mmol/L) | 8.29 ± 2.05 | 9.75 ± 3.00 # | 8.83 ± 2.15 ‡∫ | 10.61 ± 3.22 †§¶ |
2 h OGTT glucose (mmol/L) | 5.90 ± 2.33 | 8.05 ± 4.29 # | 6.82 ± 2.54 ‡∫ | 8.97 ± 4.54 †§¶ |
All Subjects | Men | Women | p Value * | ||||
---|---|---|---|---|---|---|---|
Healthy | Abnormal | Healthy | Abnormal | Healthy | Abnormal | ||
Overall | 196 (27.9) | 506 (72.1) | 86 (23.4) | 282 (76.4) | 110 (32.9) | 224 (67.1) | 0.005 |
Age group | |||||||
35– | 50 (35.0) | 93 (65.0) | 22 (25.3) | 65 (74.7) | 28 (50.0) | 28 (50.0) | 0.002 |
45– | 84 (31.0) | 187 (69.0) | 34 (26.0) | 97 (74.0) | 50 (35.7) | 90 (64.3) | 0.083 |
55– | 52 (21.5) | 190 (78.5) | 24 (19.4) | 101 (80.6) | 28 (23.7) | 90 (23.7) | 0.408 |
65– | 10 (21.7) | 36 (78.3) | 6 (23.1) | 19 (76.9) | 4 (20.0) | 16 (20.0) | 0.802 |
p trend | <0.001 | 0.349 | <0.001 | ||||
Region | |||||||
North China | 96 (22.3) | 335 (77.7) | 35 (15.8) | 186 (84.2) | 61 (29.3) | 147 (70.7) | 0.001 |
South China | 100 (36.8) | 171 (63.2) | 51 (34.9) | 96 (65.1) | 49 (38.9) | 77 (61.1) | 0.473 |
p value † | <0.001 | <0.001 | <0.001 |
Variables | MAO [N (%)] | MHO [N (%)] | Odds Ratio * | 95%CI | p Value |
---|---|---|---|---|---|
Central obesity | |||||
No | 14 (2.7) | 17 (8.7) | Reference | ||
Yes | 492 (97.3) | 179 (91.3) | 4.07 | 1.93–8.59 | <0.001 |
WC group (cm) | |||||
<80 | 4 (0.8) | 6 (3.1) | Reference | ||
80– | 53 (10.5) | 52 (26.5) | 1.74 | 0.38–8.00 | 0.360 |
90– | 252 (49.8) | 90 (45.9) | 4.00 | 0.89–17.88 | 0.070 |
≥100 | 197 (38.9) | 48 (24.5) | 6.01 | 1.30–27.79 | 0.022 |
p trend | <0.001 | ||||
Education level | |||||
Primary | 87 (17.3) | 25 (12.8) | Reference | ||
Secondary | 349 (68.9) | 148 (75.5) | 0.56 | 0.31–1.01 | 0.053 |
Senior | 70 (13.8) | 21 (10.7) | 0.83 | 0.38–1.81 | 0.634 |
Smoking status | |||||
Never | 280 (55.3) | 113 (57.7) | Reference | ||
Former | 46 (09.1) | 16 (08.2) | 0.65 | 0.30–1.41 | 0.276 |
Current | 180 (35.6) | 67 (34.1) | 0.75 | 0.43–1.30 | 0.303 |
Alcohol intake | |||||
Non-drinker | 264 (52.2) | 106 (54.0) | Reference | ||
Moderate drinker | 139 (27.5) | 55 (28.1) | 0.84 | 0.50–1.40 | 0.493 |
Heavy drinker | 103 (20.4) | 35 (17.9) | 0.73 | 0.39–1.36 | 0.327 |
Tea intake | |||||
<3/week | 181 (38.5) | 72 (39.3) | Reference | ||
3–5/week | 124 (26.3) | 49 (26.8) | 1.04 | 0.65–1.68 | 0.865 |
>5/week | 166 (35.2) | 62 (33.9) | 1.03 | 0.64–1.66 | 0.904 |
p trend | 0.518 | ||||
Physical activity † | |||||
Low activity | 249 (49.2) | 108 (55.1) | Reference | ||
Moderate or high activity | 257 (50.8) | 88 (44.9) | 0.67 | 0.45–0.98 | 0.039 |
Sedentary time ‡ | |||||
Short | 106 (20.9) | 61 (31.1) | Reference | ||
Moderate or long | 400 (79.1) | 135 (68.9) | 1.97 | 1.27–3.06 | 0.002 |
Grain intake § | |||||
Less | 255 (50.4) | 101 (51.5) | Reference | ||
More | 251 (49.6) | 95 (48.5) | 1.25 | 0.83–1.89 | 0.289 |
Meat intake § | |||||
Less | 345 (68.2) | 127 (64.8) | Reference | ||
More | 161 (31.8) | 69 (35.2) | 0.99 | 0.67–1.48 | 0.984 |
Fish intake § | |||||
Less | 400 (79.1) | 149 (76.0) | Reference | ||
More | 106 (20.9) | 47 (24.0) | 0.83 | 0.56–1.24 | 0.358 |
Fruits/vegetables intake § | |||||
Less | 199 (39.3) | 52 (26.5) | Reference | ||
More | 307 (60.7) | 144 (73.5) | 0.44 | 0.28–0.70 | 0.001 |
Milk intake § | |||||
Less | 283 (55.9) | 100 (51.0) | Reference | ||
More | 223 (44.1) | 96 (49.0) | 0.84 | 0.60–1.17 | 0.302 |
Egg intake | |||||
<1/week | 96 (19.0) | 40 (20.4) | Reference | ||
1–3/week | 247 (48.8) | 87 (44.4) | 1.29 | 0.82–2.02 | 0.278 |
>3/week | 163 (32.2) | 69 (35.2) | 1.01 | 0.63–1.62 | 0.974 |
Family history of diseases ∫ | |||||
No | 184 (36.4) | 84 (42.9) | Reference | ||
Yes | 322 (63.6) | 112 (57.1) | 1.85 | 1.26–2.71 | 0.002 |
Family history of cardiovascular disease | |||||
No | 327 (64.6) | 139 (70.9) | Reference | ||
Yes | 179 (35.4) | 57 (29.1) | 1.41 | 0.98–2.02 | 0.068 |
4. Discussion
Strengths and Limitations
5 Conclusions and Implications
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Simmonds, M.; Burch, J.; Llewellyn, A.; Griffiths, C.; Yang, H.; Owen, C.; Duffy, S.; Woolacott, N. The use of measures of obesity in childhood for predicting obesity and the development of obesity-related diseases in adulthood: A systematic review and meta-analysis. Health Technol. Assess. 2015, 19, 1–336. [Google Scholar] [CrossRef] [PubMed]
- Adams, K.F.; Schatzkin, A.; Harris, T.B.; Kipnis, V.; Mouw, T.; Ballard-Barbash, R.; Hollenbeck, A.; Leitzmann, M.F. Overweight, obesity, and mortality in a large prospective cohort of persons 50 to 71 years old. N. Engl. J. Med. 2006, 355, 763–778. [Google Scholar] [CrossRef] [PubMed]
- Boonchaya-anant, P.; Apovian, C.M. Metabolically healthy obesity—Does it exist? Curr. Atheroscler. Rep. 2014, 16, 441. [Google Scholar] [CrossRef] [PubMed]
- Rey-López, J.P.; de Rezende, L.F.; Pastor-Valero, M.; Tess, B.H. The prevalence of metabolically healthy obesity: A systematic review and critical evaluation of the definitions used. Obes. Rev. 2014, 15, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C.M. Metabolically healthy obesity: Definitions, determinants and clinical implications. Rev. Endocr. Metab. Disord. 2013, 14, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Wildman, R.P.; Muntner, P.; Reynolds, K.; McGinn, A.P.; Rajpathak, S.; Wylie-Rosett, J.; Sowers, M.R. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: Prevalence and correlates of 2 phenotypes among the US population (NHANES 1999–2004). Arch. Intern. Med. 2008, 168, 1617–1624. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.A.; Kivimaki, M.; Hamer, M. Metabolically healthy obesity and risk of incident type 2 diabetes: A meta-analysis of prospective cohort studies. Obes. Rev. 2014, 15, 504–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, C.K.; Zinman, B.; Retnakaran, R. Are metabolically healthy overweight and obesity benign conditions? A systematic review and meta-analysis. Ann. Intern. Med. 2013, 159, 758–769. [Google Scholar] [CrossRef] [PubMed]
- Hankinson, A.L.; Daviglus, M.L.; van Horn, L.; Chan, Q.; Brown, I.; Holmes, E.; Elliott, P.; Stamler, J. Diet composition and activity level of at risk and metabolically healthy obese American adults. Obesity (Silver Spring) 2013, 21, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Lee, K. Metabolically obese but normal weight (MONW) and metabolically healthy but obese (MHO) phenotypes in Koreans: Characteristics and health behaviors. Asia Pac. J. Clin. Nutr. 2009, 18, 280–284. [Google Scholar] [PubMed]
- Phillips, C.M.; Dillon, C.; Harrington, J.M.; McCarthy, V.J.; Kearney, P.M.; Fitzgerald, A.P.; Perry, I.J. Defining metabolically healthy obesity: Role of dietary and lifestyle factors. PLoS ONE 2013. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Mi, J.; Shan, X.Y.; Wang, Q.J.; Ge, K.Y. Is China facing an obesity epidemic and the consequences? The trends in obesity and chronic disease in China. Int. J. Obes. (Lond.) 2007, 31, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Bassett, D.R., Jr. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1396. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.F. Cooperative Meta-analysis group of the working group on obesity in C. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults—Study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomed. Environ. Sci. 2002, 15, 83–96. [Google Scholar] [PubMed]
- Alberti, K.G.; Zimmet, P.; Shaw, J. IDF Epidemiology task force consensus group. The metabolic syndrome—A new worldwide definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef]
- Kuk, J.L.; Ardern, C.I. Are metabolically normal but obese individuals at lower risk for all-cause mortality? Diabetes Care 2009, 32, 2297–2299. [Google Scholar] [CrossRef] [PubMed]
- Voulgari, C.; Tentolouris, N.; Dilaveris, P.; Tousoulis, D.; Katsilambros, N.; Stefanadis, C. Increased heart failure risk in normal-weight people with metabolic syndrome compared with metabolically healthy obese individuals. J. Am. Coll. Cardiol. 2011, 58, 1343–1350. [Google Scholar] [CrossRef] [PubMed]
- Iacobellis, G.; Ribaudo, M.C.; Zappaterreno, A.; Iannucci, C.V.; Leonetti, F. Prevalence of uncomplicated obesity in an Italian obese population. Obes. Res. 2005, 13, 1116–1122. [Google Scholar] [CrossRef] [PubMed]
- Heianza, Y.; Arase, Y.; Tsuji, H.; Fujihara, K.; Saito, K.; Hsieh, S.D.; Tanaka, S.; Kodama, S.; Hara, S.; Sone, H. Metabolically healthy obesity, presence or absence of fatty liver, and risk of type 2 diabetes in Japanese individuals: Toranomon hospital health management center study 20 (TOPICS 20). J. Clin. Endocrinol. Metab. 2014, 99, 2952–2960. [Google Scholar] [CrossRef] [PubMed]
- Geetha, L.; Deepa, M.; Anjana, R.M.; Mohan, V. Prevalence and clinical profile of metabolic obesity and phenotypic obesity in Asian Indians. J. Diabetes Sci. Technol. 2011, 5, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Skadhauge, L.R.; Christensen, K.; Kyvik, K.O.; Sigsgaard, T. Genetic and environmental influence on asthma: A population-based study of 11,688 Danish twin pairs. Eur. Respir. J. 1999, 13, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Otsuki, M.; Kasayama, S.; Morita, S.; Asanuma, N.; Saito, H.; Mukai, M.; Koga, M. Menopause, but not age, is an independent risk factor for fasting plasma glucose levels in nondiabetic women. Menopause 2007, 14, 404–407. [Google Scholar] [CrossRef] [PubMed]
- Gu, D.; Reynolds, K.; Wu, X.; Chen, J.; Duan, X.; Reynolds, R.F.; Whelton, P.K.; He, J. InterASIA Collaborative Group. Prevalence of the metabolic syndrome and overweight among adults in China. Lancet 2005, 365, 1398–1405. [Google Scholar] [CrossRef]
- Sung, K.C.; Cha, S.C.; Sung, J.W.; So, M.S.; Byrne, C.D. Metabolically healthy obese subjects are at risk of fatty liver but not of pre-clinical atherosclerosis. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Bays, H.E. Adiposopathy is “sick fat” a cardiovascular disease? J. Am. Coll. Cardiol. 2011, 57, 2461–2473. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.V.; Murthy, V.L.; Abbasi, S.A.; Blankstein, R.; Kwong, R.Y.; Goldfine, A.B.; Jerosch-Herold, M.; Lima, J.A.; Ding, J.; Allison, M.A. Visceral adiposity and the risk of metabolic syndrome across body mass index: The MESA Study. JACC Cardiovasc. Imaging. 2014, 7, 1221–1235. [Google Scholar] [CrossRef] [PubMed]
- Primeau, V.; Coderre, L.; Karelis, A.D.; Brochu, M.; Lavoie, M.E.; Messier, V.; Sladek, R.; Rabasa-Lhoret, R. Characterizing the profile of obese patients who are metabolically healthy. Int. J. Obes. 2011, 35, 971–981. [Google Scholar] [CrossRef] [PubMed]
- Katzmarzyk, P.T.; Church, T.S.; Blair, S.N. Cardiorespiratory fitness attenuates the effects of the metabolic syndrome on all-cause and cardiovascular disease mortality in men. Arch. Intern. Med. 2004, 164, 1092–1097. [Google Scholar] [CrossRef] [PubMed]
- Li, T.Y.; Rana, J.S.; Manson, J.E.; Willett, W.C.; Stampfer, M.J.; Colditz, G.A.; Rexrode, K.M.; Hu, F.B. Obesity as compared with physical activity in predicting risk of coronary heart disease in women. Circulation 2006, 113, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Conus, F.; Allison, D.B.; Rabasa-Lhoret, R.; St-Onge, M.; St-Pierre, D.H.; Tremblay-Lebeau, A.; Poehlman, E.T. Metabolic and behavioral characteristics of metabolically obese but normal-weight women. J. Clin. Endocrinol. Metab. 2004, 89, 5013–5020. [Google Scholar] [CrossRef] [PubMed]
- Visioli, F. Nutritional support in the pharmacological treatment of metabolic syndrome. Eur. J. Pharmacol. 2011, 668, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Kang, D.; Lee, S.A. Effect of dietary patterns on serum C-reactive protein level. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 1004–1011. [Google Scholar] [CrossRef] [PubMed]
- Sangun, Ö.; Dündar, B.; Köşker, M.; Pirgon, Ö.; Dündar, N. Prevalence of metabolic syndrome in obese children and adolescents using three different criteria and evaluation of risk factors. J. Clin. Res. Pediatr. Endocrinol. 2011, 3, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Martin, B.R.; Hickey, Y.; Teegarden, D.; Campbell, W.W.; Craig, B.A.; Schoeller, D.A.; Kerr, D.A.; Weaver, C.M. Comparison of self-reported, measured, metabolizable energy intake with total energy expenditure in overweight teens. Am. J. Clin. Nutr. 2009, 89, 1744–1750. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, R.; Yang, M.; Bao, Y.; Li, H.; Shan, Z.; Zhang, B.; Liu, J.; Lv, Q.; Wu, O.; Zhu, Y.; et al. Prevalence and Determinants of Metabolic Health in Subjects with Obesity in Chinese Population. Int. J. Environ. Res. Public Health 2015, 12, 13662-13677. https://doi.org/10.3390/ijerph121113662
Zheng R, Yang M, Bao Y, Li H, Shan Z, Zhang B, Liu J, Lv Q, Wu O, Zhu Y, et al. Prevalence and Determinants of Metabolic Health in Subjects with Obesity in Chinese Population. International Journal of Environmental Research and Public Health. 2015; 12(11):13662-13677. https://doi.org/10.3390/ijerph121113662
Chicago/Turabian StyleZheng, Ruizhi, Min Yang, Yuqian Bao, Hong Li, Zhongyan Shan, Bo Zhang, Juan Liu, Qinguo Lv, Ou Wu, Yimin Zhu, and et al. 2015. "Prevalence and Determinants of Metabolic Health in Subjects with Obesity in Chinese Population" International Journal of Environmental Research and Public Health 12, no. 11: 13662-13677. https://doi.org/10.3390/ijerph121113662
APA StyleZheng, R., Yang, M., Bao, Y., Li, H., Shan, Z., Zhang, B., Liu, J., Lv, Q., Wu, O., Zhu, Y., & Lai, M. (2015). Prevalence and Determinants of Metabolic Health in Subjects with Obesity in Chinese Population. International Journal of Environmental Research and Public Health, 12(11), 13662-13677. https://doi.org/10.3390/ijerph121113662