Development of Primer Sets for Loop-Mediated Isothermal Amplification that Enables Rapid and Specific Detection of Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae
Abstract
:1. Introduction
2. Experimental Section
2.1. Bacterial Strains, Culture Conditions and Genomic DNA Isolation
Bacterial Strains | Primer Set I | Primer Set II | Primer Set III | Primer Set IV |
---|---|---|---|---|
Streptococcus dysgalactiae ATCC 9542 | 4 a/4 b | 4/4 | 0/4 | 0/4 |
Streptococcus uberis ATCC 700407 | 4/4 | 0/4 | 4/4 | 0/4 |
Streptococcus agalactiae ATCC 27956 | 4/4 | 0/4 | 0/4 | 4/4 |
Staphylococcus aureus ATCC 25923 | 0/4 | 0/4 | 0/4 | 0/4 |
Listeria monocytogenes J2-020 (1/2a) | 0/4 | 0/4 | 0/4 | 0/4 |
Listeria monocytogenes J2-064 (1/2b) | 0/4 | 0/4 | 0/4 | 0/4 |
Listeria monocytogenes J1-169 (3b) | 0/4 | 0/4 | 0/4 | 0/4 |
Listeria monocytogenes J1-049 (3c) | 0/4 | 0/4 | 0/4 | 0/4 |
Listeria monocytogenes M1-004 (N/A) | 0/4 | 0/4 | 0/4 | 0/4 |
Listeria monocytogenes J1-094 (1/2c) | 0/4 | 0/4 | 0/4 | 0/4 |
Listeria monocytogenes C1-115 (3a) | 0/4 | 0/4 | 0/4 | 0/4 |
Listeria monocytogenes J1-031 (4a) | 0/4 | 0/4 | 0/4 | 0/4 |
Listeria monocytogenes W1-110 (4c) | 0/4 | 0/4 | 0/4 | 0/4 |
Listeria monocytogenes ATCC19115 (4b) | 0/4 | 0/4 | 0/4 | 0/4 |
Listeria innocua ATCC51742 | 0/4 | 0/4 | 0/4 | 0/4 |
Escherichia coli O157:H7 933 | 0/4 | 0/4 | 0/4 | 0/4 |
Listeria invanovii ATCC49954 | 0/4 | 0/4 | 0/4 | 0/4 |
Salmonella typhimuriam | 0/4 | 0/4 | 0/4 | 0/4 |
Escherichia coli O111:H8 | 0/4 | 0/4 | 0/4 | 0/4 |
Salmonella enterica serotype Newport | 0/4 | 0/4 | 0/4 | 0/4 |
Escherichia coli O26:H11 | 0/4 | 0/4 | 0/4 | 0/4 |
Escherichia coli O121:H19 | 0/4 | 0/4 | 0/4 | 0/4 |
Escherichia coli O103:H2 | 0/4 | 0/4 | 0/4 | 0/4 |
Escherichia coli O145:H2 | 0/4 | 0/4 | 0/4 | 0/4 |
Escherichia coli O45:H12 | 0/4 | 0/4 | 0/4 | 0/4 |
2.2. Primer Design
Target | Primer | Sequence (5’–3’) |
---|---|---|
16S rRNA gene of Streptococcus spp. (Primer set I) | FIP | CGGCACTAAGCCCCGGAAAGTTTTGTAGTCCACGCCGTAAACG |
BIP | CTGGGGAGTACGACCGCAAGTTTTCATGCTCCACCGCTTGTG | |
F3 | GTGGGGAGCAAACAGGATT | |
B3 | CCTGGTAAGGTTCTTCGCG | |
LF | GGCCTAACACCTAGCACTCAT | |
LB | GTTGAAACTCAAAGGAATTGACGG | |
16S-23S rRNA intergenic spacer of S. dysgalactiae (Primer set II) | FIP | TAATGGAGCCTAGCGGGATCTTTTTTAGCTCAGCTGGGAGAG |
BIP | TGTCCATTGAAAATTGAATATCTTTTTTCTTGTTACTATTCGTACAATCA | |
F3 | GTTTTGAGAGGTCTTGTGG | |
B3 | TTCACAGCGTTTTCGGTT | |
LF | TGCGTGCAAAGCAGGCG | |
16S-23S rRNA intergenic spacer of S. uberis (Primer set III) | FIP | CTCTCCCAGCTGAGCTAAGGTTTTATTTAGTTTTGAGAGGTCTT |
BIP | ATCCCGCTAGGCTCCATAGGTTTTCAATGGACTATACTAAGATACAATG | |
F3 | ACACGTTGGTTAAGTCTT | |
B3 | TTTCATGATCGTGGAATT | |
LF | CCCCACAGTTTGTCTCTG | |
LB | ATACAGTTCAACTGACCT | |
16S-23S rRNA intergenic spacer of S. agalactiae (Primer set IV) | FIP | CAATGGAGCCTAGCGGGATCTTTTCTTAGCTCAGCTGGGAGA |
BIP | ATATCAAATTCCACGATCTAGAAATTTTTTTCACAGCGTTTTCGGTT | |
F3 | AGTTTTGAGAGGTCTTGTG | |
B3 | GTTTCTTTAAAACTAGAAAACTCA | |
LF | CTGACCTCCTGCGTGCAAAGC |
2.3. Sensitivity of the LAMP Method
2.4. Specificity of the LAMP Method
3. Results and Discussion
3.1. Detection Limits of the LAMP Method
Bacterial strains | Primer Set I | Primer Set II | Primer Set III | Primer Set IV |
---|---|---|---|---|
S. dysgalactiae | 0.1 pg (4 a/4 b) | 0.1 pg (4/4) | – | – |
S. uberis | 0.1 pg (4/4) | – | 0.1 pg (4/4) | – |
S. agalactiae | 0.1 pg (4/4) | – | – | 0.1 pg (4/4) |
3.2. Specificity of the LAMP Method
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Watts, J.L. Etiological agents of bovine mastitis. Vet. Microbiol. 1988, 16, 41–66. [Google Scholar] [CrossRef] [PubMed]
- Riffon, R.; Sayasith, K.; Khalil, H.; Dubreuil, P.; Drolet, M.; Lagacé, J. Development of a rapid and sensitive test for identification of major pathogens in bovine mastitis by PCR. J. Clin. Microbiol. 2001, 39, 2584–2589. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.L.; Todhunter, D.A.; Schoenberger, P.S. Environmental mastitis: Cause, prevalence, prevention. J. Dairy Sci. 1985, 68, 1531–1553. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, K.N.; Isloor, S.; Hegde, R.; Rathnamma, D.; Beeregowda, B.M.; Murthy, H.N.N.; Shome, R.; Suryanarayana, V.V.S. Development of polymerase chain reaction for detection of predominant streptococcal isolates causing subclinical bovine mastitis. Indian J. Biochem. Biophys. 2013, 12, 208–212. [Google Scholar]
- Phuektes, P.; Browning, G.F.; Anderson, G.; Mansell, P.D. Multiplex polymerase chain reaction as a mastitis screening test for Staphylococcus aureus, Streptococcus agalactiae, Streptococcus dysgalactiae and Streptococcus uberis in bulk milk samples. J. Dairy Res. 2003, 70, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Koskinen, M.T.; Holopainen, J.; Pyörälä, S.; Bredbacka, P.; Pitkälä, A.; Barkema, H.W.; Bexiga, R.; Roberson, J.; Sølverød, L.; Piccinini, R.; Kelton, D.; Lehmusto, H.; Niskala, S.; Salmikivi, L. Analytical specificity and sensitivity of a real-time polymerase chain reaction assay for identification of bovine mastitis pathogens. J. Dairy Sci. 2009, 92, 952–959. [Google Scholar] [CrossRef] [PubMed]
- Španová, A.; Rittich, B.; Karpíšková, R.; Čechová, L.; Škapová, D. PCR identification of Salmonella cells in food and stool samples after immunomagnetic separation. Bioseparation 2000, 9, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Al-Soud, W.A.; Rådström, P. Purification and characterization of PCR-inhibitory components in blood cells. J. Clin. Microbiol. 2001, 39, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Wilson, I.G. Inhibition and facilitation of nucleic acid amplification. Appl. Environ. Microbiol. 1997, 63, 3741–3751. [Google Scholar] [PubMed]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acid Res. 2000. [Google Scholar] [CrossRef]
- Nagamine, K.; Hase, T.; Notomi, T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell. Probes 2002, 16, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Fakruddin, M. Loop mediated isothermal amplification (LAMP)—An alternative to polymerase chain reaction (PCR). Bangladesh Res. Publ. J. 2011, 5, 425–439. [Google Scholar]
- Maruyama, F.; Kenzaka, T.; Yamaguchi, N.; Tani, K.; Nasu, M. Detection of bacteria carrying the stx2 gene by in situ loop-mediated isothermal amplification. Appl. Environ. Microbiol. 2003, 69, 5023–5028. [Google Scholar] [CrossRef] [PubMed]
- Osawa, R.; Yoshida, A.; Masakiyo, Y.; Nagashima, S.; Ansai, T.; Watari, H.; Notomi, T.; Takehara, T. Rapid detection of Actinobacillus actinomycetemcomitans using a loop-mediated isothermal amplification method. Oral Microbiol. Immunol. 2007, 22, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, T.; Sonobe, T.; Hayashi, K. Loop-mediated isothermal amplification for direct detection of Mycobacterium tuberculosis complex, M. avium, and M. intracellulare in sputum samples. J. Clin. Microbiol. 2003, 41, 2616–2622. [Google Scholar] [CrossRef] [PubMed]
- Seki, M.; Yamashita, Y.; Torigoe, H.; Tsuda, H.; Sato, S.; Maeno, M. Loop-mediated isothermal amplification method targeting the lytA gene for detection of Streptococcus pneumoniae. J. Clin. Microbiol. 2005, 43, 1581–1586. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.J.; Zhou, S.; Zhang, X.Y.; Pu, J.H.; Ge, Q.L.; Tang, X.J.; Gao, Y.S. Rapid and sensitive detection of Listeria monocytogenes by loop-mediated isothermal amplification. Curr. Microbiol. 2011, 63, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.Y.; Kim, S.H.; Jang, E.J.; Kwon, N.H.; Park, Y.K.; Koo, H.C.; Jung, W.K.; Kim, J.M.; Park, Y.H. Novel multiplex PCR for the detection of the Staphylococcus aureus superantigen and its application to raw meat isolates in Korea. Int. J. Food Microbiol. 2007, 117, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.T.; Ju, C.S.; Thong, K.L. Loop-mediated isothermal amplification assay for the rapid detection of staphylococcus aureus. Biomed. Res. Int. 2013. [Google Scholar] [CrossRef]
- Kimura, K.; Yanagisawa, H.; Wachino, J.; Shibayama, K.; Arakawa, Y. Rapid and reliable loop-mediated isothermal amplification method for detecting streptococcus agalactiae. Jpn. J. Infect. Dis. 2013, 66, 546–548. [Google Scholar] [PubMed]
- Li, S.L.; Zhang, X.B.; Wang, D.G.; Kuang, Y.Y.; Xu, Y.G. Simple and rapid method for detecting foodborne shigella by a loop-mediated isothermal amplification. J. Rapid Meth. Aut. Mic. 2009, 17, 465–475. [Google Scholar] [CrossRef]
- Frackman, S.; Kobs, G.; Simpson, D.; Storts, D. Betaine and DMSO: Enhancing agents for PCR. Promega Notes 1998, 65, 27–29. [Google Scholar]
- Misawa, Y.; Yoshida, A.; Saito, R.; Yoshida, H.; Okuzumi, K.; Ito, N.; Okada, M.; Moriya, K.; Koike, K. Application of loop-mediated isothermal amplification technique to rapid and direct detection of methicillin-resistant Staphylococcus aureus (MRSA) in blood cultures. J. Infect. Chemother. 2007, 13, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Clarridge, J.E. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin. Microbiol. Rev. 2004, 17, 840–862. [Google Scholar] [CrossRef] [PubMed]
- Tilsala-Timisjärvi, A.; Alatossava, T. Development of oligonucleotide primers from the 16S-23S rRNA intergenic sequences for identifying different dairy and probiotic lactic acid bacteria by PCR. Int. J. Food Microbiol. 1997, 35, 49–56. [Google Scholar] [CrossRef] [PubMed]
- González, A.; Mas, A. Differentiation of acetic acid bacteria based on sequence analysis of 16S-23S rRNA gene internal transcribed spacer sequences. Int. J. Food Microbiol. 2011, 147, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Brown, E.W.; Feng, P.C.H.; Keys, C.E.; Fischer, M.; Monday, S.R. PCR-based method for targeting 16S-23S rRNA intergenic spacer regions among Vibrio species. BMC Microbiology 2010. [Google Scholar] [CrossRef]
- Forsman, P.; Tilsaia-Timisjärvi, A.; Alatossava, T. Identification of staphylococcal and streptococcal causes of bovine mastitis using 16S-23S rRNA spacer regions. Microbiology 1997, 143, 3491–3500. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Liu, Y. Development of Primer Sets for Loop-Mediated Isothermal Amplification that Enables Rapid and Specific Detection of Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae. Int. J. Environ. Res. Public Health 2015, 12, 5735-5742. https://doi.org/10.3390/ijerph120605735
Wang D, Liu Y. Development of Primer Sets for Loop-Mediated Isothermal Amplification that Enables Rapid and Specific Detection of Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae. International Journal of Environmental Research and Public Health. 2015; 12(6):5735-5742. https://doi.org/10.3390/ijerph120605735
Chicago/Turabian StyleWang, Deguo, and Yanhong Liu. 2015. "Development of Primer Sets for Loop-Mediated Isothermal Amplification that Enables Rapid and Specific Detection of Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae" International Journal of Environmental Research and Public Health 12, no. 6: 5735-5742. https://doi.org/10.3390/ijerph120605735
APA StyleWang, D., & Liu, Y. (2015). Development of Primer Sets for Loop-Mediated Isothermal Amplification that Enables Rapid and Specific Detection of Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae. International Journal of Environmental Research and Public Health, 12(6), 5735-5742. https://doi.org/10.3390/ijerph120605735