Effect of Disinfectants on Preventing the Cross-Contamination of Pathogens in Fresh Produce Washing Water
Abstract
:1. Introduction
2. Selection of Wash Water Disinfectants
3. Sanitizer Efficacy
4. Legislation and Disinfection By-Products
4.1. Chlorine
4.2. ClO2
4.3. O3
4.4. PAA
5. Process Wash Water Disinfectants
5.1. Chlorine
5.2. ClO2
5.3. O3
5.4. PAA
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Holvoet, K.; Jacxsens, L.; Sampers, I.; Uyttendaele, M. Insight into the prevalence and distribution of microbial contamination to evaluate water management in the fresh produce processing industry. J. Food Prot. 2012, 75, 671–681. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Surface Decontamination of Fruits and Vegetables Eaten Raw: A Review. Available online: http://apps.who.int/iris/handle/10665/64435 (accessed on 22 May 2015).
- Van Haute, S.; Sampers, I.; Holvoet, K.; Uyttendaele, M. Physicochemical quality and chemical safety of chlorine as a reconditioning agent and wash water disinfectant for fresh-cut lettuce washing. Appl. Environ. Microbiol. 2013, 79, 2850–2861. [Google Scholar] [CrossRef] [PubMed]
- Tirpanalan, Ö.; Zunabovic, M.; Domig, K.; Kneifel, W. Mini review: Antimicrobial strategies in the production of fresh-cut lettuce products. In Science against Microbial Pathogens: Communicating Current Research and Technological Advances; Méndez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2011; Volume 1, pp. 176–188. [Google Scholar]
- Olaimat, A.N.; Holley, R.A. Factors influencing the microbial safety of fresh produce: A review. Food Microbiol. 2012, 32, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Goodburn, C.; Wallace, C.A. The microbiological efficacy of decontamination methodologies for fresh produce: A review. Food Control. 2013, 32, 418–427. [Google Scholar] [CrossRef]
- Van Haute, S.; Uyttendaele, M.; Sampers, I. Organic acid based sanitizers and free chlorine to improve the microbial quality and shelf-life of sugar snaps. Int. J. Food Microbiol. 2013, 167, 161–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Gálvez, F.; Gil, M.I.; Truchado, P.; Selma, M.V.; Allende, A. Cross-contamination of fresh-cut lettuce after a short-term exposure during pre-washing cannot be controlled after subsequent washing with chlorine dioxide or sodium hypochlorite. Food Microbiol. 2010, 27, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Holvoet, K.; Sampers, I.; Callens, B.; Dewulf, J.; Uyttendaele, M. Moderate prevalence of antimicrobial resistance in Escherichia coli isolates from lettuce, irrigation water, and soil. Appl. Environ. Microbiol. 2013, 79, 6677–6683. [Google Scholar] [CrossRef] [PubMed]
- Sapers, G.M. Efficacy of washing and sanitizing methods for disinfection of fresh fruit and vegetable products. Food Technol. Biotechnol. 2001, 39, 305–311. [Google Scholar]
- Keskinen, L.A.; Burke, A.; Annous, B.A. Efficacy of chlorine, acidic electrolyzed water and aqueous chlorine dioxide solutions to decontaminate Escherichia coli O157:H7 from lettuce leaves. Int. J. Food Microbiol. 2009, 132, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.I.; Selma, M.V.; López-Gálvez, F.; Allende, A. Fresh-cut product sanitation and wash water disinfection: Problems and solutions. Int. J. Food Microbiol. 2009, 134, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Parish, M.E.; Beuchat, L.R.; Suslow, T.V.; Harris, L.J.; Garrett, E.H.; Farber, J.N.; Busta, F.F. Methods to reduce/eliminate pathogens from fresh and fresh-cut produce. Compr. Rev. Food Sci. Food Saf. 2003, 2, 161–173. [Google Scholar] [CrossRef]
- Van Haute, S.; Sampers, I.; Jacxsens, L.; Uyttendaele, M. Selection criteria for water disinfection techniques in agricultural practices. Crit. Rev. Food Sci. Nutr. 2015, 55, 1529–1551. [Google Scholar] [CrossRef] [PubMed]
- Van Haute, S.; López-Gálvez, F.; Gómez-López, V.M.; Eriksson, M.; Devlieghere, F.; Allende, A.; Sampers, I. Methodology for modeling the disinfection efficiency of fresh-cut leafy vegetables wash water applied on peracetic acid combined with lactic acid. Int. J. Food Microbiol. 2015, 208, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Davidson, G.R.; Buchholz, A.L.; Ryser, E.T. Efficacy of commercial produce sanitizers against nontoxigenic Escherichia coli O157:H7 during processing of iceberg lettuce in a pilot-scale leafy green processing line. J. Food Prot. 2013, 76, 1838–1845. [Google Scholar] [CrossRef] [PubMed]
- Al-Nabulsi, A.A.; Osaili, T.M.; Obaidat, H.M.; Shaker, R.R.; Awaisheh, S.S.; Holley, R.A. Inactivation of stressed Escherichia coli O157:H7 cells on the surfaces of rocket salad leaves by chlorine and peroxyacetic acid. J. Food Prot. 2014, 77, 32–39. [Google Scholar] [CrossRef] [PubMed]
- López-Gálvez, F.; Allende, A.; Selma, M.V.; Gil, M.I. Prevention of Escherichia coli cross-contamination by different commercial sanitizers during washing of fresh-cut lettuce. Int. J. Food Microbiol. 2009, 133, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Pao, S.; Long, W.; Kim, C.; Kelsey, D.F. Produce Washers. In Decontamination of Fresh and Minimally Processed Produce, 1st ed.; Gómez-López, V.M., Ed.; Wiley-Blackwell: Oxford, UK, 2012; pp. 87–103. [Google Scholar]
- Gómez-López, V.M.; Gil, M.I.; Allende, A.; Vanhee, B.; Selma, M.V. Water reconditioning by high power ultrasound combined with residual chemical sanitizers to inactivate foodborne pathogens associated with fresh-cut products. Food Control. 2015, 53, 29–34. [Google Scholar] [CrossRef]
- Van Haute, S.; Tryland, I.; Veys, A.; Sampers, I. Wash water disinfection of a full-scale leafy vegetables washing process with hydrogen peroxide and the use of a commercial metal ion mixture to improve disinfection efficiency. Food Control. 2015, 50, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Koutsoumanis, K.; Skandamis, P. New research on organic acids and pathogen behaviour. In Advances in Microbial Food Safety, 1st ed.; Sofos, J., Ed.; Woodhead Publishing: Cambridge, UK, 2013; Volume 1, pp. 355–384. [Google Scholar]
- Ölmez, H.; Kretzschmar, U. Potential alternative disinfection methods for organic fresh-cut industry for minimizing water consumption and environmental impact. Food Sci. Technol. Int. 2009, 42, 686–693. [Google Scholar] [CrossRef]
- Joyce, E.; Phull, S.S.; Lorimer, J.P.; Mason, T.J. The development and evaluation of ultrasound for the treatment of bacterial suspensions. A study of frequency, power and sonication time on cultured Bacillus species. Ultrason. Sonochem. 2003, 10, 315–318. [Google Scholar] [CrossRef]
- Gogate, P.R. Application of cavitational reactors for water disinfection: Current status and path forward. J. Environ. Manage. 2007, 85, 801–815. [Google Scholar] [CrossRef] [PubMed]
- Drakopoulou, S.; Terzakis, S.; Fountoulakis, M.S.; Mantzavinos, D.; Manios, T. Ultrasound-induced inactivation of Gram-negative and Gram-positive bacteria in secondary treated municipal wastewater. Ultrason. Sonochem. 2009, 16, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Gómez-López, V.M.; Lannoo, A.S.; Gil, M.I.; Allende, A. Minimum free chlorine residual level required for the inactivation of Escherichia coli O157:H7 and trihalomethane generation during dynamic washing of fresh-cut spinach. Food Control. 2014, 42, 132–138. [Google Scholar] [CrossRef]
- Gómez-López, V.M.; Gil, M.I.; Allende, A.; Blancke, J.; Schouteten, L.; Selma, M.V. Disinfection capacity of high-power ultrasound against E. coli O157:H7 in process water of the fresh-cut industry. Food Bioprocess. Technol. 2014, 7, 3390–3397. [Google Scholar] [CrossRef]
- Environmental Protection Agency (EPA). Ultraviolet Disinfection Guidance Manual for the Final Long Term 2 Enhanced Surface Water Treatment Rule. Available online: http://www.epa.gov/safewater/disinfection/lt2/pdfs/guide_lt2_uvguidance.pdf (accessed on 5 June 2015).
- Allende, A.; Selma, M.V.; Lopez-Galvez, F.; Villaescusa, R.; Gil, M.I. Impact of wash water quality on sensory and microbial quality, including Escherichia coli cross-contamination, of fresh-cut escarole. J. Food Prot. 2008, 71, 2514–2518. [Google Scholar] [PubMed]
- Baert, L.; Vandekinderen, I.; Devlieghere, F.; Van, E.C.; Debevere, J.; Uyttendaele, M. Efficacy of sodium hypochlorite and peroxyacetic acid to reduce murine norovirus 1, B40-8, Listeria monocytogenes, and Escherichia coli O157:H7 on shredded iceberg lettuce and in residual wash water. J. Food Prot. 2009, 72, 1047–1054. [Google Scholar] [PubMed]
- Zhang, G.; Ma, L.; Phelan, V.H.; Doyle, M.P. Efficacy of antimicrobial agents in lettuce leaf processing water for control of Escherichia coli O157:H7. J. Food Prot. 2009, 72, 1392–1397. [Google Scholar] [PubMed]
- Beuchat, L.R.; Adler, B.B.; Lang, M.M. Efficacy of chlorine and a peroxyacetic acid sanitizer in killing Listeria monocytogenes on iceberg and Romaine lettuce using simulated commercial processing conditions. J. Food Prot. 2004, 67, 1238–1242. [Google Scholar] [PubMed]
- European Commission (EC). Regulation (EU) No 528/2012 of the European Parliament and of the Council of 22 May 2012 Concerning the Making Available on the Market and Use of Biocidal Products. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32012R0528&rid=1 (accessed on 5 June 2015).
- European Commission (EC). Commission Delegated Regulation (EU) No 1062/2014 of 4 August 2014 on the Work Programme for the Systematic Examination of All Existing Active Substances Contained in Biocidal Products Referred to in Regulation (EU) No 528/2012 of the European Parliament and of the Council Text. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014R1062&rid=1 (accessed on 5 June 2015).
- European Chemicals Agency (ECHA). Biocidal Active Substances-Summary of Status of Applications for Approval of Active Substance/Product-Type Combinations under the BPD or the BPR. Available online: http://echa.europa.eu/information-on-chemicals/biocidal-active-substances (accessed on 8 June 2015).
- Artés, F.; Gómez, P.; Aguayo, E.; Escalona, V.; Artés-Hernández, F. Sustainable sanitation techniques for keeping quality and safety of fresh-cut plant commodities. Postharvest Biol. Biotechnol. 2009, 51, 287–296. [Google Scholar] [CrossRef]
- Chaidez, C.; Castro-del Campo, N.; Heredia, J.B.; Contreras-Angulo, L.; González-Aguilar, G.; Ayala-Zavala, J.F. Chlorine. In Decontamination of Fresh and Minimally Processed Produce, 1st ed.; Gómez-López, V.M., Ed.; Wiley-Blackwell: Oxford, UK, 2012; pp. 121–133. [Google Scholar]
- López-Gálvez, F.; Allende, A.; Truchado, P.; Martínez-Sánchez, A.; Tudela, J.A.; Selma, M.V.; Gil, M.I. Suitability of aqueous chlorine dioxide versus sodium hypochlorite as an effective sanitizer for preserving quality of fresh-cut lettuce while avoiding by-product formation. Postharvest Biol. Technol. 2010, 55, 53–60. [Google Scholar] [CrossRef]
- Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment (COT). COT Statement on a Commercial Survey Investigating the Occurrence of Disinfectants and Disinfection By-Products in Prepared Salads. Available online: http://cot.food.gov.uk/sites/default/files/cot/cotstatementwashaids200614.pdf (accessed on 9 July 2015).
- Gómez-López, V.M.; Marín, A.; Medina-Martínez, M.S.; Gil, M.I.; Allende, A. Generation of trihalomethanes with chlorine-based sanitizers and impact on microbial, nutritional and sensory quality of baby spinach. Postharvest Biol. Technol. 2013, 85, 210–217. [Google Scholar] [CrossRef]
- Chilled Food Association (CFA). Protocol for Produce Washing. Available online: http://www.chilledfood.org/Resources/Chilled%20Food%20Association/Public%20Resources/Produce%20Wash%20Protocol%20-%20for%20web%2021%205%2010%20(final).pdf (accessed on 5 June 2015).
- Direction générale de la concurrence, de la consommation et de la répression des fraudes (DGCCRF). Arrêté du 19 octobre 2006 relatif à l'emploi d'auxiliaires technologiques dans la fabrication de certaines denrées alimentaires. Available online: http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=LEGITEXT000020667468 (accessed on 5 June 2015).
- Black & Veatch Corporation. White’s Handbook of Chlorination and Alternative Disinfectants, 5th ed.; Desiderio, D.M., Nibbering, N.M.M., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Gómez-López, V.M. Chlorine dioxide. In Decontamination of Fresh and Minimally Processed Produce, 1st ed.; Gómez-López, V.M., Ed.; Wiley-Blackwell: Oxford, UK, 2012; pp. 165–175. [Google Scholar]
- Hebert, A.; Forestier, D.; Lenes, D.; Benanou, D.; Jacob, S.; Arfi, C.; Lambolez, L.; Levi, Y. Innovative method for prioritizing emerging disinfection by-products (DBPs) in drinking water on the basis of their potential impact on public health. Water Res. 2010, 44, 3147–3165. [Google Scholar] [CrossRef] [PubMed]
- Hua, G.; Reckhow, D.A. Comparison of disinfection byproduct formation from chlorine and alternative disinfectants. Water Res. 2007, 41, 1667–1678. [Google Scholar] [CrossRef] [PubMed]
- European Commission (EC). Regulation (EC) No. 396/2005 of the European Parliament and of the Council of 23 February 2005 on Maximum Residue Levels of Pesticides in or on Food and Feed of Plant and Animal Origin and Amending Council Directive 91/414/EEC. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32005R0396&rid=1 (accessed on 22 May 2015).
- European Commission (EC). Statement as Regards the Presence of Chlorate in Food and Feed SANCO-2014-11180-Rev0 Agreed by the Standing Committee of the Food Chain and Animal Health on 12-13 June 2014. Available online: https://www.wko.at/Content.Node/branchen/ooe/Lebensmittelgewerbe/RS065_2014_Clorat-Rueckstaende_B1.pdf (accessed on 5 June 2015).
- European Commission (EC). Summary Report of the Standing Committee on Plants, Animals, Food and Feed held in Brussels on 22 September 2014–23 September 2014 (Section Phytopharmaceuticals—Pesticides Residues). Available online: http://ec.europa.eu/food/plant/standing_committees/sc_phytopharmaceuticals/docs/sum_2014092223_ppr_en.pdf (accessed on 22 May 2015).
- Food and Drug Administration (FDA). Code of Federal Regulations. Sec. 173.300 Chlorine dioxide. Available online: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=173.300 (accessed on 14 April 2015).
- Rakness, K.L. Ozone in Drinking Water Treatment: Process. Design, Operation, and Optimization; American Water Works Association: Denver, CO, USA, 2005. [Google Scholar]
- Von Gunten, U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res. 2003, 37, 1443–1467. [Google Scholar] [CrossRef]
- Camel, V.; Bermond, A. The use of ozone and associated oxidation processes in drinking water treatment. Water Res. 1998, 32, 3208–3222. [Google Scholar] [CrossRef]
- Von Gunten, U. Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res. 2003, 37, 1469–1487. [Google Scholar] [CrossRef]
- Kim, D.I. Development and application of integrated ozone contactor design and optimization tools. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 2007. [Google Scholar]
- Wert, E.C.; Neemann, J.J.; Rexing, D.J.; Zegers, R.E. Biofiltration for removal of BOM and residual ammonia following control of bromate formation. Water Res. 2008, 42, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.J.; Fang, G.C.; Wang, C.C. The determination and fate of disinfection by-products from ozonation of polluted raw water. Sci. Total Environ. 2005, 345, 261–272. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (US) Safe Drinking Water Committee. Drinking Water and Health: Volume 2; National Academies Press: Washington, DC, USA, 1980.
- Hammes, F.; Salhi, E.; Köster, O.; Kaiser, H.P.; Egli, T.; von Gunten, U. Mechanistic and kinetic evaluation of organic disinfection by-product and assimilable organic carbon (AOC) formation during the ozonation of drinking water. Water Res. 2006, 40, 2275–2286. [Google Scholar] [CrossRef] [PubMed]
- Environmental Protection Agency (EPA). National Primary Drinking Water Standards. Available online: http://water.epa.gov/drink/contaminants/index.cfm#Microorganisms (accessed on 5 June 2015).
- European Communities. European Communities (Drinking Water) (NO. 2) Regulations 2007. Available online: https://www.fsai.ie/uploadedFiles/Legislation/SI_278_2007.pdf (accessed on 8 June 2015).
- Ölmez, H. Ozone. In Decontamination of Fresh and Minimally Processed Produce, 1st ed.; Gómez-López, V.M., Ed.; Wiley-Blackwell: Oxford, UK, 2012; pp. 177–195. [Google Scholar]
- Food and Drug Administration (FDA). Code of Federal Regulations. Sec. 173.368 Ozone. Available online: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=173.368 (accessed on 26 May 2015).
- Warburton, R. Peracetic Acid in the Fresh Food Industry. Available online: http://www.foodsafetymagazine.com/signature-series/peracetic-acid-in-the-fresh-food-industry/ (accessed on 14 April 2015).
- Vandekinderen, I.; Devlieghere, F.; De Meulenaer, B.; Ragaert, P.; Van Camp, J. Optimization and evaluation of a decontamination step with peroxyacetic acid for fresh-cut produce. Food Microbiol. 2009, 26, 882–888. [Google Scholar] [CrossRef] [PubMed]
- Joshi, K.; Mahendran, R.; Alagusundaram, K.; Norton, T.; Tiwari, B.K. Novel disinfectants for fresh produce. Trends Food Sci. Technol. 2013, 34, 54–61. [Google Scholar] [CrossRef]
- Luo, Y.; Nou, X.; Millner, P.; Zhou, B.; Shen, C.; Yang, Y.; Wu, Y.; Wang, Q.; Feng, H.; Shelton, D. A pilot plant scale evaluation of a new process aid for enhancing chlorine efficacy against pathogen survival and cross-contamination during produce wash. Int. J. Food Microbiol. 2012, 158, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Sapers, G.M. Chapter 17—Disinfection of Contaminated Produce with Conventional Washing and Sanitizing Technology. In The Produce Contamination Problem: Causes and Solutions, 2nd ed.; Matthews, K.R., Sapers, G.M., Gerba, C.P., Eds.; Academic Press: San Diego, CA, USA, 2014; pp. 389–431. [Google Scholar]
- Tapia, M.S.; Welti-Chanes, J. Hurdle Technology principles applied in decontamination of whole and fresh-cut produce. In Decontamination of Fresh and Minimally Processed Produce, 1st ed.; Gómez-López, V.M., Ed.; Wiley-Blackwell: Oxford, UK, 2012; pp. 417–449. [Google Scholar]
- Luo, Y.; Ingram, D.T.; Khurana, K. Preventing cross-contamination during produce wash operations. In Global Safety of Fresh Produce: A Handbook of Best-Practice Examples, Innovative Commercial Solutions and Case Studies; Hoorfar, J., Ed.; Woodhead Publishing: Oxford, UK, 2014; pp. 103–111. [Google Scholar]
- Hurst, W.C. Safety aspects of fresh-cut fruits and vegetables. In Fresh-Cut Fruits and Vegetables: Science, Technology, and Market; Lamikanra, O., Ed.; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Environmental Protection Agency (EPA). Alternative Disinfectants and Oxidants Guidance Manual. Available online: http://www.epa.gov/ogwdw/mdbp/alternative_disinfectants_guidance.pdf (accessed on 5 June 2015).
- Pascual, A.; Llorca, I.; Canut, A. Use of ozone in food industries for reducing the environmental impact of cleaning and disinfection activities. Trends Food Sci. Technol. 2007, 18, S29–S35. [Google Scholar] [CrossRef]
- Tarrass, F.; Benjelloun, M.; Benjelloun, O. Current understanding of ozone use for disinfecting hemodialysis water treatment systems. Blood Purif. 2010, 30, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, S.L.; Cash, J.N.; Siddiq, M.; Ryser, E.T. A comparison of different chemical sanitizers for inactivating Escherichia coli O157:H7 and Listeria monocytogenes in solution and on apples, lettuce, strawberries, and cantaloupe. J. Food Prot. 2004, 67, 721–731. [Google Scholar] [PubMed]
- Audenaert, W.T.M. Ozonation and UV/hydrogen peroxide treatment of natural water and secondary wastewater effluent: Experimental study and mathematical modeling. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2012. [Google Scholar]
- Rakness, K.; Gordon, G.; Langlais, B.; Masschelein, W.; Matsumoto, N.; Richard, Y.; Robson, C.M.; Somiya, I. Guideline for measurement of ozone concentration in the process gas from an ozone generator. Ozone: Science & Engineering 1996, 18, 209–229. [Google Scholar]
- Cheremisinoff, N.P. Handbook of Water and Wastewater Treatment Technologies; Butterworth-Heinemann: Boston, MA, USA, 2002. [Google Scholar]
- LeChevallier, M.W.; Au, K.K. Water Treatment and Pathogen Control: Process. Efficiency in Achieving Safe Drinking Water; IWA Publishing: London, UK, 2004. [Google Scholar]
- Choi, Y.; Cho, M.; Lee, Y.; Choi, J.; Yoon, J. Inactivation of Bacillus subtilis spores during ozonation in water treatment plant: Influence of pre-treatment and consequences for positioning of the ozonation step. Chemosphere 2007, 69, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Harakeh, M.S.; Butler, M. Factors increasing the ozone inactivation of enteric viruses in effluent. Ozone-Sci. Eng. 1984, 6, 235–243. [Google Scholar] [CrossRef]
- Lim, M.Y.; Kim, J.M.; Lee, J.E.; Ko, G. Characterization of ozone disinfection of murine norovirus. Appl. Environ. Microbiol. 2010, 76, 1120–1124. [Google Scholar] [CrossRef] [PubMed]
- Zuma, F.; Lin, J.; Jonnalagadda, S.B. Ozone-initiated disinfection kinetics of Escherichia coli in water. J. Environ. Sci. Health A 2009, 44, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Domingue, E.L.; Tyndall, R.L.; Mayberry, W.R.; Pancorbo, O.C. Effects of three oxidizing biocides on Legionella pneumophila serogroup 1. Appl. Environ. Microbiol. 1988, 54, 741–747. [Google Scholar] [PubMed]
- Li, H.; Gyürék, L.L.; Finch, G.R.; Smith, D.W.; Belosevic, M. Effect of temperature on ozone inactivation of Cryptosporidium parvum in oxidant demand-free phosphate buffer. J. Environ. Eng. 2001, 127, 456–467. [Google Scholar] [CrossRef]
- Rennecker, J.L.; Kim, J.H.; Corona-Vasquez, B.; Mariñas, B.J. Role of disinfectant concentration and pH in the inactivation kinetics of Cryptosporidium parvum oocysts with ozone and monochloramine. Environ. Sci. Technol. 2001, 35, 2752–2757. [Google Scholar] [CrossRef] [PubMed]
- Gyürék, L.L.; Li, H.; Belosevic, M.; Finch, G.R. Ozone inactivation kinetics of Cryptosporidium in phosphate buffer. J. Environ. Eng. 1999, 125, 913–924. [Google Scholar] [CrossRef]
- Beltrán, D.; Selma, M.V.; Marín, A.; Gil, M.I. Ozonated water extends the shelf life of fresh-cut Lettuce. J. Agric. Food Chem. 2005, 53, 5654–5663. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lu, Z.; Yu, Z.; Gao, X. Preservation of fresh-cut celery by treatment of ozonated water. Food Control. 2005, 16, 279–283. [Google Scholar] [CrossRef]
- Bialka, K.L.; Demirci, A. Decontamination of Escherichia coli O157:H7 and Salmonella enterica on blueberries using ozone and pulsed UV-Light. J. Food Sci. 2007, 72, M391–M396. [Google Scholar] [CrossRef] [PubMed]
- Wei, K.; Zhou, H.; Zhou, T.; Gong, J. Comparison of aqueous ozone and chlorine as sanitizers in the food processing industry: Impact on fresh agricultural produce quality. Ozone-Sci. Eng. 2007, 29, 113–120. [Google Scholar] [CrossRef]
- Ölmez, H.; Akbas, M.Y. Optimization of ozone treatment of fresh-cut green leaf lettuce. J. Food Eng. 2009, 90, 487–494. [Google Scholar] [CrossRef]
- González-Aguilar, G.; Ayala-Zavala, J.F.; Chaidez-Quiroz, C.; Heredia, J.B.; Castro-del Campo, N. Peroxyacetic acid. In Decontamination of Fresh and Minimally Processed Produce, 1st ed.; Gómez-López, V.M., Ed.; Wiley-Blackwell: Oxford, UK, 2012; pp. 215–223. [Google Scholar]
- Kitis, M. Disinfection of wastewater with peracetic acid: A review. Environ. Int. 2004, 30, 47–55. [Google Scholar] [CrossRef]
- Kunigk, L.; Almeida, M.C.B. Action of peracetic acid on Escherichia coli and Staphylococcus aureus in suspension and on stainless steel surfaces. Braz. J. Microbiol. 2001, 32, 38–41. [Google Scholar] [CrossRef]
- Mezzanotte, V.; Antonelli, M.; Citterio, S.; Nurizzo, C. Wastewater disinfection alternatives: Chlorine, ozone, peracetic acid, and UV light. Water Environ. Res. 2007, 79, 2373–2379. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, G.; Elizaquível, P.; Aznar, R.; Selma, M.V. Virucidal effect of high power ultrasound combined with a chemical sanitizer containing peroxyacetic acid for water reconditioning in the fresh-cut industry. Food Control 2015, 52, 126–131. [Google Scholar] [CrossRef]
- Grace Ho, K.L.; Luzuriaga, D.A.; Rodde, K.M.; Tang, S.; Phan, C. Efficacy of a novel sanitizer composed of lactic acid and peroxyacetic acid against single strains of nonpathogenic Escherichia coli K-12, Listeria innocua, and Lactobacillus plantarum in aqueous solution and on surfaces of romaine lettuce and spinach. J. Food Prot. 2011, 74, 1468–1474. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banach, J.L.; Sampers, I.; Van Haute, S.; Van der Fels-Klerx, H.J. Effect of Disinfectants on Preventing the Cross-Contamination of Pathogens in Fresh Produce Washing Water. Int. J. Environ. Res. Public Health 2015, 12, 8658-8677. https://doi.org/10.3390/ijerph120808658
Banach JL, Sampers I, Van Haute S, Van der Fels-Klerx HJ. Effect of Disinfectants on Preventing the Cross-Contamination of Pathogens in Fresh Produce Washing Water. International Journal of Environmental Research and Public Health. 2015; 12(8):8658-8677. https://doi.org/10.3390/ijerph120808658
Chicago/Turabian StyleBanach, Jennifer L., Imca Sampers, Sam Van Haute, and H.J. (Ine) Van der Fels-Klerx. 2015. "Effect of Disinfectants on Preventing the Cross-Contamination of Pathogens in Fresh Produce Washing Water" International Journal of Environmental Research and Public Health 12, no. 8: 8658-8677. https://doi.org/10.3390/ijerph120808658
APA StyleBanach, J. L., Sampers, I., Van Haute, S., & Van der Fels-Klerx, H. J. (2015). Effect of Disinfectants on Preventing the Cross-Contamination of Pathogens in Fresh Produce Washing Water. International Journal of Environmental Research and Public Health, 12(8), 8658-8677. https://doi.org/10.3390/ijerph120808658