Risk Factors for Salmonella, Shiga Toxin-Producing Escherichia coli and Campylobacter Occurrence in Primary Production of Leafy Greens and Strawberries
Abstract
:1. Introduction
2. Experimental Section
2.1. Sampling Plan
Country | Product | Farms | Visits | Reference | Sample Types | Sampling Time | Total Samples | |||
---|---|---|---|---|---|---|---|---|---|---|
Planting | Two Weeks before Harvest | One Week before Harvest | Harvest | |||||||
Belgium | Lettuce | 8 | 3 | Holvoet et al. (2014) [30] | Contact surfaces | 0 | 0 | 0 | 104 | 104 |
Lettuce | 23 | 69 | 69 | 126 | 287 | |||||
Soil | 126 | 69 | 69 | 69 | 333 | |||||
Water | 0 | 37 | 36 | 47 | 120 | |||||
Total | 149 | 175 | 174 | 346 | 844 | |||||
Belgium | Strawberry | 6 | 4 | Delbeke et al. (2015) [34] | Contact surfaces | 57 | ||||
Soil | 48 | |||||||||
Strawberry | 72 | |||||||||
Water | 78 | |||||||||
Total | 255 | |||||||||
Brazil | Lettuce | 6 | 1 | Ceuppens et al. (2014) [32] | Contact surfaces | 0 | 0 | 0 | 36 | 36 |
Fertilizer | 18 | 0 | 0 | 0 | 18 | |||||
Lettuce | 6 | 18 | 18 | 33 | 75 | |||||
Soil | 24 | 18 | 18 | 18 | 78 | |||||
Water | 12 | 12 | 12 | 17 | 53 | |||||
Total | 60 | 48 | 48 | 104 | 260 | |||||
Egypt | Lettuce | 6 | 1 | Abdel-Moneim et al. (2014) [31] | Lettuce | 18 | 18 | |||
Soil | 6 | 6 | ||||||||
Water | 6 | 6 | ||||||||
Total | 30 | 30 | ||||||||
Egypt | Strawberry | 6 | 1 | Abdel-Moneim et al. (2014) [31] | Soil | 6 | ||||
Strawberry | 18 | |||||||||
Water | 6 | |||||||||
Total | 30 | |||||||||
Norway | Lettuce | 6 | 3 | Johannessen (2015) [39] | Contact surfaces | 0 | 0 | 0 | 31 | 31 |
Lettuce | 54 | 45 | 54 | 54 | 207 | |||||
Soil | 63 | 45 | 54 | 54 | 216 | |||||
Water | 0 | 14 | 20 | 18 | 52 | |||||
Total | 117 | 104 | 128 | 157 | 506 | |||||
Norway | Strawberry | 4 | 4 | Johannessen et al. (2015) [38] | Contact surfaces | 80 | ||||
Soil | 80 | |||||||||
Strawberry | 80 | |||||||||
Water | 16 | |||||||||
Total | 256 | |||||||||
Spain | Lettuce | 2 | 3 | Castro-Ibanez et al. (2015) [36] | Lettuce | 21 | ||||
Soil | 30 | |||||||||
Water | 18 | |||||||||
Total | 69 | |||||||||
Spain | Spinach | 3 | 3 | Castro-Ibanez et al. (2015) [37] | Contact surfaces | 0 | 0 | 0 | 216 | 216 |
Fertilizer | 54 | 0 | 0 | 0 | 54 | |||||
Spinach | 0 | 54 | 54 | 108 | 216 | |||||
Seeds | 54 | 0 | 0 | 0 | 54 | |||||
Soil | 78 | 54 | 54 | 54 | 240 | |||||
Water | 0 | 102 | 102 | 96 | 300 | |||||
Total | 186 | 210 | 210 | 474 | 1080 | |||||
Overall | − | 45 | − | This study | Contact surfaces | 524 | ||||
Fertilizer | 72 | |||||||||
Leafy greens | 824 | |||||||||
Seeds | 54 | |||||||||
Soil | 1037 | |||||||||
Strawberry | 170 | |||||||||
Water | 649 | |||||||||
Total | 3330 |
2.2. Microbiological Analyses
2.3. Agro-Technological Practices and Information on Climatic Conditions
2.4. Statistical Analyses
3. Results and Discussion
3.1. Occurrence of Pathogens and Generic E. coli
Salmonella | Analyses | Positives | Prevalence (%) | 95 % Confidence Interval | |
---|---|---|---|---|---|
Contact surfaces | 36 | 0 | 0.0 | 0.0 | 9.6 |
Fertilizer | 27 | 2 | 7.4 | 2.1 | 23.4 |
Seeds | 9 | 0 | 0.0 | 0.0 | 29.9 |
Strawberry | 170 | 5 | 2.9 | 1.3 | 6.7 |
Leafy greens | 377 | 10 | 2.7 | 1.4 | 4.8 |
Soil | 599 | 11 | 1.8 | 1.0 | 3.3 |
Water | 387 | 12 | 3.1 | 1.8 | 5.3 |
Total | 1605 | 40 | 2.5 | 1.8 | 3.4 |
Shiga toxin-producing E. coli (STEC) | Analyses | Positives * | Prevalence (%) * | 95 % confidence interval * | |
Contact surfaces | 36 | 0 (0) | 0.0 | 0.0 | 9.6 |
Fertilizer | 27 | 0 (0) | 0.0 | 0.0 | 12.5 |
Seeds | 9 | 0 (0) | 0.0 | 0.0 | 29.9 |
Strawberry | 152 | 0 (0) | 0.0 | 0.0 | 2.5 |
Leafy greens | 359 | 0 (1) | 0.0 | 0.0 | 1.1 |
Soil | 587 | 5 (34) | 0.9 (5.8) | 0.4 (4.2) | 2.0 (8.0) |
Water | 375 | 6 (33) | 1.6 (8.8) | 0.7 (6.3) | 3.4 (12.1) |
Total | 1545 | 11 (68) | 0.7 (4.4) | 0.4 (3.5) | 1.3 (5.5) |
Campylobacter | Analyses | Positives | Prevalence (%) | 95 % confidence interval | |
Strawberry | 80 | 0 | 0.0 | 0.0 | 4.6 |
Leafy greens | 241 | 8 | 3.3 | 1.7 | 6.4 |
Water | 188 | 36 | 19.1 | 14.2 | 25.4 |
Total | 509 | 44 | 8.6 | 6.5 | 11.4 |
All pathogens | Analyses | Positives | Prevalence (%) | 95 % confidence interval | |
Contact surfaces | 72 | 0 | 0.0 | 0.0 | 5.1 |
Fertilizer | 54 | 2 | 3.7 | 1.0 | 12.5 |
Seeds | 18 | 0 | 0.0 | 0.0 | 17.6 |
Strawberry | 402 | 5 | 1.2 | 0.5 | 2.9 |
Leafy greens | 977 | 18 | 1.8 | 1.2 | 2.9 |
Soil | 1186 | 16 | 1.3 | 0.8 | 2.2 |
Water | 950 | 54 | 5.7 | 4.4 | 7.3 |
Total | 3659 | 95 | 2.6 | 2.1 | 3.2 |
Predictor | Salmonella | STEC | Campylobacter |
---|---|---|---|
Overall | |||
Logistic regression | AUC = 0.927 (n = 1530) | AUC = 0.870 (n = 1545) | AUC = 0.878 (n = 476) |
E. coli | AUC = 0.838 (n = 1605) | AUC = 0.665 (n = 1545) | AUC = 0.697 (n = 509) |
Produce | |||
E. coli | AUC = 0.910 (n = 547) | No positives (n = 511) | AUC = 0.135 (n = 321) |
Water | |||
E. coli | AUC = 0.820 (n = 387) | AUC = 0.850 (n = 375) | AUC = 0.763 (n = 188) |
Soil | |||
E. coli | AUC = 0.847 (n = 599) | Not significant (n = 587) | No data (n = 0) |
3.2. Risk Factors for Increased Likelihood of Finding Pathogens
Factors | Salmonella | STEC | Campylobacter |
---|---|---|---|
Country (Belgium, Brazil, Egypt, Norway, Spain) | p < 0.001 | p = 0.004 | p < 0.001 |
Generic E. coli (log CFU/g or 100 mL) | p < 0.001 | p < 0.001 | p < 0.001 |
Irrigation water type (surface water, rain water, ground water, drinking water) | p < 0.001 | p = 0.002 | p < 0.001 |
Flooding (yes/no) | p = 0.001 | p = 0.010 | p < 0.001 |
Average daily temperature (°C) | p < 0.001 | p = 0.252 | p < 0.001 |
Presence of farm animals (yes/no) | p = 0.444 | p = 0.001 | p < 0.001 |
Sample type (leafy greens, strawberry, water, soil, contact surfaces, seeds, fertilizer) | p < 0.001 | p = 0.335 | p < 0.001 |
Daily precipitation (mm) | p = 0.991 | p = 0.992 | p = 0.024 |
Water treatment (yes/no) | p = 0.200 | p = 0.993 | p = 0.002 |
Irrigation water storage type (no storage, open reservoir) | p = 0.051 | p = 0.232 | p < 0.001 |
Irrigation method (drip irrigation, spray irrigation, flood irrigation) | p < 0.001 | p = 0.054 | p = 0.494 |
Farm type (open field, greenhouse) | p < 0.001 | p = 0.621 | p = 0.053 |
Fertilizer type (manure-based (=raw or composted manure, pure or mixed with other types), other fertilizers (=inorganic or organic from purely vegetable origin) | p < 0.001 | p = 0.418 | p = 0.302 |
3.3. Prediction of Pathogen Occurrence Based on Significant Microbiological and Agro-Technical Factors
Parameter | Estimation | Standard Error | 95 % Confidence Interval | Significance (p-value) | Odds Ratio | |
---|---|---|---|---|---|---|
Salmonella (n = 1530, p = 40) | ||||||
Constant | –4.97 | 0.60 | –6.14 | –3.81 | 0.000 | 0.01 |
Generic E. coli | 1.00 | 0.20 | 0.60 | 1.40 | 0.000 | 2.73 |
Spain | Reference | 0.000 | ||||
Belgium | 0.75 | 1.43 | –2.05 | 3.55 | 0.600 | 2.12 |
Brazil | 1.26 | 1.36 | –1.40 | 3.91 | 0.355 | 3.51 |
Egypt | 3.07 | 0.52 | 2.05 | 4.09 | 0.000 | 21.48 |
Norway | –1.54 | 0.82 | –3.14 | 0.06 | 0.060 | 0.21 |
Surface water | Reference | 0.095 | ||||
Drinking water | –15.98 | 2604.76 | –5121.30 | 5089.35 | 0.995 | 0.00 |
Rain water | –3.27 | 1.37 | –5.95 | –0.58 | 0.017 | 0.04 |
Ground water | –2.61 | 1.09 | –4.74 | –0.48 | 0.016 | 0.07 |
Flooding | 2.39 | 0.71 | 1.00 | 3.78 | 0.001 | 10.90 |
STEC (n = 1545, p = 11) | ||||||
Constant | –6.87 | 0.70 | –8.25 | –5.49 | 0.000 | 0.00 |
Generic E. coli | 0.83 | 0.21 | 0.41 | 1.25 | 0.000 | 2.29 |
Flooding | 1.94 | 0.82 | 0.34 | 3.54 | 0.017 | 6.96 |
Campylobacter (n = 476, p = 44) | ||||||
Constant | –2.57 | 0.59 | –3.73 | –1.41 | 0.001 | 0.08 |
Norway | Reference | |||||
Belgium | 1.28 | 0.44 | 0.42 | 2.15 | 0.004 | 3.61 |
No storage of irrigation water | Reference | |||||
Open reservoir | 1.26 | 0.54 | 0.020 | 3.51 | ||
Farm type: open field | Reference | |||||
Farm type: greenhouse | –1.69 | 0.49 | –2.64 | –0.74 | 0.001 | 0.18 |
Water | Reference | 0.000 | ||||
Lettuce | –2.54 | 0.57 | –3.66 | –1.42 | 0.000 | 0.08 |
Strawberry | –19.89 | 4803.98 | –9435.68 | 9395.91 | 0.997 | 0.00 |
Farm type * Water | Reference | 0.042 | ||||
Farm type * Lettuce | 2.18 | 0.86 | 0.48 | 3.87 | 0.012 | |
Farm type * Strawberry | 1.69 | 13587.70 | –26630.21 | 26633.59 | 1.000 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- He, F.J.; Nowson, C.A.; Lucas, M.; MacGregor, G.A. Increased consumption of fruit and vegetables is related to a reduced risk of coronary heart disease: Meta-analysis of cohort studies. J. Human Hypertens. 2007, 21, 717–728. [Google Scholar] [CrossRef] [PubMed]
- He, F.J.; Nowson, C.A.; MacGregor, G.A. Fruit and vegetable consumption and stroke: Meta-analysis of cohort studies. Lancet 2006, 367, 320–326. [Google Scholar] [CrossRef]
- Muraki, I.; Imamura, F.; Manson, J.E.; Hu, F.B.; Willett, W.C.; van Dam, R.M.; Sun, Q. Fruit consumption and risk of type 2 diabetes: Results from three prospective longitudinal cohort studies. BMJ 2013. [Google Scholar] [CrossRef] [PubMed]
- Laidler, M.R.; Tourdjman, M.; Buser, G.L.; Hostetler, T.; Repp, K.K.; Leman, R.; Samadpour, M.; Keene, W.E. Escherichia coli O157:H7 infections associated with consumption of locally grown strawberries contaminated by deer. Clin. Infect. Dis. 2013, 57, 1129–1134. [Google Scholar] [CrossRef] [PubMed]
- Slayton, R.B.; Turabelidze, G.; Bennett, S.D.; Schwensohn, C.A.; Yaffee, A.Q.; Khan, F.; Butler, C.; Trees, E.; Ayers, T.L.; Davis, M.L.; et al. Outbreak of shiga toxin-producing Escherichia coli (STEC) O157:H7 associated with romaine lettuce consumption, 2011. PLoS ONE 2013. [Google Scholar] [CrossRef] [PubMed]
- Gelting, R.J.; Baloch, M.A.; Zarate-Bermudez, M.A.; Selman, C. Irrigation water issues potentially related to the 2006 multistate E. coli O157:H7 outbreak associated with spinach. Agric. Water Manage. 2011, 98, 1395–1402. [Google Scholar] [CrossRef]
- Behravesh, C.B.; Mody, R.K.; Jungk, J.; Gaul, L.; Redd, J.T.; Chen, S.; Cosgrove, S.; Hedican, E.; Sweat, D.; Chavez-Hauser, L.; et al. 2008 outbreak of salmonella saintpaul infections associated with raw produce. New Engl. J. Med. 2011, 364, 918–927. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, C.; Dallman, T.J.; Launders, N.; Willis, C.; Byrne, L.; Jorgensen, F.; Eppinger, M.; Adak, G.K.; Aird, H.; Elviss, N.; et al. Public health investigation of two outbreaks of Shiga toxin-producing Escherichia coli O157 associated with consumption of watercress. Appl. Environ. Microbiol. 2015, 81, 3946–3952. [Google Scholar] [CrossRef] [PubMed]
- Soderstrom, A.; Osterberg, P.; Lindqvist, A.; Jonsson, B.; Lindberg, A.; Ulander, S.B.; Welinder-Olsson, C.; Lofdahl, S.; Kaijser, B.; De Jong, B.; et al. A large escherichia coli o157 outbreak in sweden associated with locally produced lettuce. Foodborne Pathog Dis. 2008, 5, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Friesema, I.; Sigmundsdottir, G.; van der Zwaluw, K.; Heuvelink, A.; Schimmer, B.; de Jager, C.; Rump, B.; Briem, H.; Hardardottir, H.; Atladottir, A.; et al. An international outbreak of shiga toxin-producing Escherichia coli O157 infection due to lettuce, September–October 2007. Eurosurveillance 2008, 13, 3029–3035. [Google Scholar]
- Beutin, L.; Martin, A. Outbreak of shiga toxin-producing escherichia coli (stec) o104:H4 infection in germany causes a paradigm shift with regard to human pathogenicity of stec strains. J. Food Prot. 2012, 75, 408–418. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Felicio, M.T.; Hald, T.; Liebana, E.; Allende, A.; Hugas, M.; Nguyen-The, C.; Johannessen, G.S.; Niskanen, T.; Uyttendaele, M.; McLauchlin, J. Risk ranking of pathogens in ready-to-eat unprocessed foods of non-animal origin (FoNAO) in the EU: Initial evaluation using outbreak data (2007–2011). Int. J. Food Microbiol. 2015, 195, 9–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Food Safety Authority, European Centre for Disease Prevention and Control. The european union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2013. EFSA J. 2015, 13, 3991–4153. [Google Scholar]
- Pielaat, A.; van Leusden, F.M.; Wijnands, L.M. Microbiological risk from minimally processed packaged salads in the dutch food chain. J. Food Prot. 2014, 77, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Verhoeff-Bakkenes, L.; Jansen, H.A.P.M.; In’t Veld, P.H.; Beumer, R.R.; Zwietering, M.H.; van Leusden, F.M. Consumption of raw vegetables and fruits: A risk factor for campylobacter infections. Int. J. Food Microbiol. 2011, 144, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Braeye, T.; de Schrijver, K.; Wollants, E.; van Ranst, M.; Verhaegen, J. A large community outbreak of gastroenteritis associated with consumption of drinking water contaminated by river water, Belgium, 2010. Epidemiol. Infect. 2015, 143, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Hynds, P.D.; Thomas, M.K.; Pintar, K.D.M. Contamination of groundwater systems in the U.S. and Canada by enteric pathogens, 1990–2013: A review and pooled-analysis. PloS ONE 2014. [Google Scholar] [CrossRef]
- Gardner, T.J.; Fitzgerald, C.; Xavier, C.; Klein, R.; Pruckler, J.; Stroika, S.; McLaughlin, J.B. Outbreak of campylobacteriosis associated with consumption of raw peas. Clin. Infect. Dis. 2011, 53, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Hung, Y.C.; Tilly, P.; Kim, C. Efficacy of electrolyzed oxidizing (eo) water and chlorinated water for inactivation of Escherichia coli O157:H7 on strawberries and broccoli. J. Food Quality 2010, 33, 559–577. [Google Scholar] [CrossRef]
- Rodgers, S.L.; Cash, J.N.; Siddiq, M.; Ryser, E.T. A comparison of different chemical sanitizers for inactivating Escherichia coli O157:H7 and Listeria monocytogenes in solution and on apples, lettuce, strawberries, and cantaloupe. J. Food Prot. 2004, 67, 721–731. [Google Scholar] [PubMed]
- Beuchat, L.R.; Nail, B.V.; Adler, B.B.; Clavero, M.R.S. Efficacy of spray application of chlorinated water in killing pathogenic bacteria on raw apples, tomatoes, and lettuce. J. Food Prot. 1998, 61, 1305–1311. [Google Scholar] [PubMed]
- Lopez-Galvez, F.; Allende, A.; Selma, M.V.; Gil, M.I. Prevention of Escherichia coli cross-contamination by different commercial sanitizers during washing of fresh-cut lettuce. Int. J. Food Microbiol. 2009, 133, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Baert, L.; Vandekinderen, I.; Devlieghere, F.; Van Coillie, E.; Debevere, J.; Uyttendaele, M. Efficacy of sodium hypochlorite and peroxyacetic acid to reduce murine norovirus 1, b40–8, Listeria monocytogenes, and Escherichia coli O157:H7 on shredded iceberg lettuce and in residual wash water. J. Food Prot. 2009, 72, 1047–1054. [Google Scholar] [PubMed]
- Akbas, M.Y.; Olmez, H. Inactivation of Escherichia coli and Listeria monocytogenes on iceberg lettuce by dip wash treatments with organic acids. Lett. Appl. Microbiol. 2007, 44, 619–624. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.G.; Nou, X.W.; Yang, Y.; Alegre, I.; Turner, E.; Feng, H.; Abadias, M.; Conway, W. Determination of free chlorine concentrations needed to prevent Escherichia coli O157:H7 cross-contamination during fresh-cut produce wash. J. Food Prot. 2011, 74, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Van Haute, S.; Uyttendaele, M.; Sampers, I. Organic acid based sanitizers and free chlorine to improve the microbial quality and shelf-life of sugar snaps. Int J. Food Microbiol. 2013, 167, 161–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexandre, E.M.C.; Brandao, T.R.S.; Silva, C.L.M. Efficacy of non-thermal technologies and sanitizer solutions on microbial load reduction and quality retention of strawberries. J. Food Eng. 2012, 108, 417–426. [Google Scholar] [CrossRef]
- Hernandez-Munoz, P.; Almenar, E.; Ocio, M.J.; Gavara, R. Effect of calcium dips and chitosan coatings on postharvest life of strawberries (Fragaria x ananassa). Postharvest Biol. Technol. 2006, 39, 247–253. [Google Scholar] [CrossRef]
- Gil, M.I.; Selma, M.V.; Suslow, T.; Jacxsens, L.; Uyttendaele, M.; Allende, A. Pre- and postharvest preventive measures and intervention strategies to control microbial food safety hazards of fresh leafy vegetables. Crit. Rev. Food Sci. 2015, 55, 453–468. [Google Scholar] [CrossRef] [PubMed]
- Holvoet, K.; Sampers, I.; Seynnaeve, M.; Uyttendaele, M. Relationships among hygiene indicators and enteric pathogens in irrigation water, soil and lettuce and the impact of climatic conditions on contamination in the lettuce primary production. Int. J. Food Microbiol. 2014, 171, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Moneim, A.; Ceuppens, S.; El-Tahan, F.; Uyttendaele, M. Microbiological safety of strawberry and lettuce during primary production and retail in Egypt. J. Food Process. Technol. 2014. [Google Scholar] [CrossRef]
- Ceuppens, S.; Hessel, C.T.; Rodrigues, R.Q.; Bartz, S.; Tondo, E.C.; Uyttendaele, M. Microbiological quality and safety assessment of lettuce production in Brazil. Int. J. Food Microbiol. 2014, 181, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Uyttendaele, M.; Jaykus, L.-A.; Amoah, P.; Chiodini, A.; Cunliffe, D.; Jacxsens, L.; Holvoet, K.; Korsten, L.; Lau, M.; McClure, P.; et al. Microbial hazards in irrigation water: Standards, norms, and testing to manage use of water in fresh produce primary production. Compr. Rev. Food Sci. Food Saf. 2015, 14, 336–356. [Google Scholar] [CrossRef]
- Delbeke, S.; Ceuppens, S.; Hessel, C.T.; Castro-Ibanez, I.; Jacxsens, L.; De Zutter, L.; Uyttendaele, M. Microbial safety and sanitary quality of strawberry primary production in Belgium: Risk factors for Salmonella and Shiga toxin producing Escherichia coli (STEC) contamination. Appl. Environ. Microb. 2015, 81, 2562–2570. [Google Scholar] [CrossRef] [PubMed]
- Holvoet, K.; Sampers, I.; Seynnaeve, M.; Jacxsens, L.; Uyttendaele, M. Agricultural and management practices and bacterial contamination in greenhouse vs. open field lettuce production. Int. J. Environ. Res. Public Health 2015, 12, 32–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro-Ibanez, I.; Gil, M.I.; Tudela, J.A.; Allende, A. Microbial safety considerations of flooding in primary production of leafy greens: A case study. Food Res. Int. 2015, 68, 62–69. [Google Scholar] [CrossRef]
- Castro-Ibanez, I.; Gil, M.I.; Tudela, J.A.; Ivanek, R.; Allende, A. Assessment of microbial risk factors and impact of meteorological conditions during production of baby spinach in the southeast of Spain. Food Microbiol. 2015, 49, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Johannessen, G.S.; Eckner, K.F.; Heiberg, N.; Monshaugen, M.; Begum, M.; Økland, M.; Høgåsen, H.R. Occurrence of Escherichia coli, Campylobcter, Salmonella and Shiga-toxin producing E. coli in Norwegian primary production of strawberries. Int. J. Environ. Res. Public Health 2015. Accepted. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johannessen, G.S. Occurrence of Escherichia coli, Campylobcter, Salmonella and Shiga-toxin producing E. coli in Norwegian primary production of lettuce. Manuscript in preparation 2015. [Google Scholar]
- Water Quality—Detection and Enumeration of Escherichia coli and Coliform Bacteria—part 1: Membrane Filtration; International Organization for Standardization (ISO): Geneva, Switserland, 2000.
- American Public Health Association (APHA). Standard Methods for Examination of Water and Wastewater, 20th edition; American Public Health Association, American Water Works Association, and Water Pollution Control Federation: Washington DC, USA, 1998. [Google Scholar]
- Fecal Coliform Membrane Filter Procedure and MF Partition Procedures Escherichia coli Partition Methods; United States Environmental Protection Agency (US-EPA): Washington DC, USA, 2003.
- Thermotolerant Coliform Bacteria and Escherichia coli Enumeration in Food and Feed. Nordic Committee on Food Analysis (NMKL): Oslo, Norway, 2005.
- Water Quality—Detection of Salmonella spp.; International Organization for Standardization (ISO): Geneva, Switserland, 2010.
- Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Detection of Salmonella spp.; International Organization for Standardization (ISO): Geneva, Switserland, 2002.
- Salmonella Detection in Foods, 5th edition; Nordic Committee on Food Analysis (NMKL): Oslo, Norway, 1999.
- Water Quality—Detection and Enumeration of Thermotolerant Campylobacter Species; International Organization for Standardization (ISO): Geneva, Switserland, 2005.
- Microbiology of Food Animal Feeding Stuffs—Horizontal Method for the Detection and Enumeration of Campylobacter spp.—Part 1: Detection method; International Organization for Standardization (ISO): Geneva, Switserland, 2006.
- Thermotolerant Campylobacter. Detection, Semi-Quantitative Determination in Foods and Municipal Potable Water, 3rd Edition ed; Nordic Committee on Food Analysis (NMKL): Oslo, Norway, 2007.
- Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Detection of Escherichia coli O157; International Organization for Standardization (ISO): Geneva, Switserland, 2001.
- Microbiology of Food and Animal Feed—Real-Time Polymerase Chain Reaction (PCR)-Based Method for the Detection of Food-Borne Pathogens—Horizontal Method for the Detection of Shiga Toxin-Producing Escherichia coli (STEC) and the Determination of O157, O111, O26, O103 and 0145 Serogroups; International Organization for Standardization (ISO): Geneva, Switserland, 2012.
- Wilson, E.B. Probable inference, the law of succession, and statistical inference. J. Amer. Stat. Assoc. 1927, 22, 209–212. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd edition; Wiley-Interscience Publication: New York, NY, USA, 2000. [Google Scholar]
- Greiner, M.; Pfeiffer, D.; Smith, R.D. Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Prev. Vet. Med. 2000, 45, 23–41. [Google Scholar] [CrossRef]
- Rodrigues, R.D.; Loiko, M.R.; de Paula, C.M.D.; Hessel, C.T.; Jacxsens, L.; Uyttendaele, M.; Bender, R.J.; Tondo, E.C. Microbiological contamination linked to implementation of good agricultural practices in the production of organic lettuce in southern brazil. Food Control. 2014, 42, 152–164. [Google Scholar] [CrossRef]
- Wang, L.; Mankin, K.R.; Marchin, G.L. Survival of fecal bacteria in dairy cow manure. Amer. Soc. Agri. Biol. Eng. 2004, 47, 1239–1246. [Google Scholar] [CrossRef]
- Sinton, L.W.; Braithwaite, R.R.; Hall, C.H.; Mackenzie, M.L. Survival of indicator and pathogenic bacteria in bovine feces on pasture. Appl. Environ. Microb. 2007, 73, 7917–7925. [Google Scholar] [CrossRef] [PubMed]
- Joris, M.A.; Verstraete, K.; de Reu, K.; de Zutter, L. Longitudinal follow-up of the persistence and dissemination of EHEC on cattle farms in Belgium. Foodborne Path. Dis. 2013, 10, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Joris, M.A.; Verstraete, K.; de Reu, K.; de Zutter, L. Loss of vtx genes after the first subcultivation step of verocytotoxigenic Escherichia coli O157 and non-O157 during isolation from naturally contaminated fecal samples. Toxins 2011, 3, 672–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wijnands, L.M.; Delfgou-van Asch, E.H.; Beerepoot-Mensink, M.E.; van der Meij-Florijn, A.; Fitz-James, I.; van Leusden, F.M.; Pielaat, A. Prevalence and concentration of bacterial pathogens in raw produce and minimally processed packaged salads produced in and for the Netherlands. J. Food Prot. 2014, 77, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Johannessen, G.S.; Loncarevic, S.; Kruse, H. Bacteriological analysis of fresh produce in Norway. Int. J. Food Microbiol. 2002, 77, 199–204. [Google Scholar] [CrossRef]
- Kirezieva, K.; Luning, P.A.; Jacxsens, L.; Allende, A.; Johannessen, G.S.; Tondo, E.C.; Rajkovic, A.; Uyttendaele, M.; van Boekel, M.A.J.S. Factors affecting the status of food safety management systems in the global fresh produce chain. Food Control. 2015, 52, 85–97. [Google Scholar] [CrossRef]
- Nanyunja, J.; Jacxsens, L.; Kirezieva, K.; Kaaya, A.N.; Uyttendaele, M.; Luning, P.A. Assessing the status of food safety management systems for fresh produce production in east africa: Evidence from certified green bean farms in Kenya and noncertified hot pepper farms in Uganda. J. Food Prot. 2015, 78, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Galvez, F.; Allende, A.; Pedrero-Salcedo, F.; Alarcon, J.J.; Gil, M.I. Safety assessment of greenhouse hydroponic tomatoes irrigated with reclaimed and surface water. Int. J. Food Microbiol. 2014, 191, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Van Haute, S.; Sampers, I.; Jacxsens, L.; Uyttendaele, M. Selection criteria for water disinfection techniques in agricultural practices. Crit. Rev. Food Sci. 2015, 55, 1529–1551. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, M.V.; Luna, M.C.; Gil, M.I.; Allende, A. Ultrasound treatments improve the microbiological quality of water reservoirs used for the irrigation of fresh produce. Food Res. Int. 2015, 75, 140–147. [Google Scholar] [CrossRef]
- Jones, L.A.; Worobo, R.W.; Smart, C.D. Plant-pathogenic oomycetes, Escherichia coli strains, and Salmonella spp. frequently found in surface water used for irrigation of fruit and vegetable crops in New York state. Appl. Environ. Microb. 2014, 80, 4814–4820. [Google Scholar] [CrossRef] [PubMed]
- Vereen, E.; Lowrance, R.R.; Jenkins, M.B.; Adams, P.; Rajeev, S.; Lipp, E.K. Landscape and seasonal factors influence Salmonella and Campylobacter prevalence in a rural mixed use watershed. Water Res. 2013, 47, 6075–6085. [Google Scholar] [CrossRef] [PubMed]
- Line, J.E. Influence of relative humidity on transmission of Campylobacter jejuni in broiler chickens. Poultry Sci. 2006, 85, 1145–1150. [Google Scholar] [CrossRef]
- Luna, M.C.; Tudela, J.A.; Martinez-Sanchez, A.; Allende, A.; Marin, A.; Gil, M.I. Long-term deficit and excess of irrigation influences quality and browning related enzymes and phenolic metabolism of fresh-cut iceberg lettuce (Lactuca sativa L.). Postharvest Biol. Technol. 2012, 73, 37–45. [Google Scholar] [CrossRef]
- Strawn, L.K.; Grohn, Y.T.; Warchocki, S.; Worobo, R.W.; Bihn, E.A.; Wiedmann, M. Risk factors associated with Salmonella and Listeria monocytogenes contamination of produce fields. Appl. Environ. Microbiol. 2013, 79, 7618–7627. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Navratil, S.; Gregory, A.; Bauer, A.; Srinath, I.; Jun, M.; Szonyi, B.; Nightingale, K.; Anciso, J.; Ivanek, R. Generic Escherichia coli contamination of spinach at the preharvest stage: Effects of farm management and environmental factors. Appl. Environ. Microb. 2013, 79, 4347–4358. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Hofstra, N.; Franz, E. Impacts of climate change on the microbial safety of pre-harvest leafy green vegetables as indicated by Escherichia coli O157 and Salmonella spp. Int. J. Food Microbiol. 2013, 163, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Axelsson-Olsson, D.; Ellstrom, P.; Waldenstrom, J.; Haemig, P.D.; Brudin, L.; Olsen, B. Acanthamoeba-Campylobacter coculture as a novel method for enrichment of Campylobacter species. Appl. Environ. Microbiol. 2007, 73, 6864–6869. [Google Scholar] [CrossRef] [PubMed]
- Wilkes, G.; Edge, T.; Gannon, V.; Jokinen, C.; Lyautey, E.; Medeiros, D.; Neumann, N.; Ruecker, N.; Topp, E.; Lapen, D.R. Seasonal relationships among indicator bacteria, pathogenic bacteria, Cryptosporidium oocysts, Giardia cysts, and hydrological indices for surface waters within an agricultural landscape. Water Res. 2009, 43, 2209–2223. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, L.; Atwill, E.R.; Jay-Russell, M.; Cooley, M.; Carychao, D.; Gorski, L.; Mandrell, R.E. Occurrence of generic Escherichia coli, E. coli O157 and Salmonella spp. in water and sediment from leafy green produce farms and streams on the central California coast. Int. J. Food Microbiol. 2013, 165, 65–76. [Google Scholar] [CrossRef] [PubMed]
- McEgan, R.; Mootian, G.; Goodridge, L.D.; Schaffner, D.W.; Danyluk, M.D. Predicting Salmonella populations from biological, chemical, and physical indicators in Florida surface waters. Appl. Environ. Microb. 2013, 79, 4094–4105. [Google Scholar] [CrossRef] [PubMed]
- Edge, T.A.; El-Shaarawi, A.; Gannon, V.; Jokinen, C.; Kent, R.; Khan, I.U.H.; Koning, W.; Lapen, D.; Miller, J.; Neumann, N.; et al. Investigation of an Escherichia coli environmental benchmark for waterborne pathogens in agricultural watersheds in Canada. J. Environ. Qual. 2012, 41, 21–30. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ceuppens, S.; Johannessen, G.S.; Allende, A.; Tondo, E.C.; El-Tahan, F.; Sampers, I.; Jacxsens, L.; Uyttendaele, M. Risk Factors for Salmonella, Shiga Toxin-Producing Escherichia coli and Campylobacter Occurrence in Primary Production of Leafy Greens and Strawberries. Int. J. Environ. Res. Public Health 2015, 12, 9809-9831. https://doi.org/10.3390/ijerph120809809
Ceuppens S, Johannessen GS, Allende A, Tondo EC, El-Tahan F, Sampers I, Jacxsens L, Uyttendaele M. Risk Factors for Salmonella, Shiga Toxin-Producing Escherichia coli and Campylobacter Occurrence in Primary Production of Leafy Greens and Strawberries. International Journal of Environmental Research and Public Health. 2015; 12(8):9809-9831. https://doi.org/10.3390/ijerph120809809
Chicago/Turabian StyleCeuppens, Siele, Gro S. Johannessen, Ana Allende, Eduardo César Tondo, Fouad El-Tahan, Imca Sampers, Liesbeth Jacxsens, and Mieke Uyttendaele. 2015. "Risk Factors for Salmonella, Shiga Toxin-Producing Escherichia coli and Campylobacter Occurrence in Primary Production of Leafy Greens and Strawberries" International Journal of Environmental Research and Public Health 12, no. 8: 9809-9831. https://doi.org/10.3390/ijerph120809809
APA StyleCeuppens, S., Johannessen, G. S., Allende, A., Tondo, E. C., El-Tahan, F., Sampers, I., Jacxsens, L., & Uyttendaele, M. (2015). Risk Factors for Salmonella, Shiga Toxin-Producing Escherichia coli and Campylobacter Occurrence in Primary Production of Leafy Greens and Strawberries. International Journal of Environmental Research and Public Health, 12(8), 9809-9831. https://doi.org/10.3390/ijerph120809809