Micro RNA in Exosomes from HIV-Infected Macrophages
Abstract
:1. Introduction
2. Methods
2.1. Isolation and Culture of Primary Human Cells
2.2. Monocyte Differentiation and Infection of Macrophages with HIV-1 BaL
2.3. Isolation of Exosomes by Iodixanol Gradient
2.4. Characterization of Exosomes
2.5. Preparation of RNA from Exosomes
2.6. Pre-Amplification of RNA and Quantitative PCR (qPCR)
3. Results
3.1. Exosomes Were Purified from HIV-Infected Monocyte-Derived Macrophages (MDM)
3.2. Changes in Exosomal miRNA Content Were Observed after HIV-1 Infection
miR-106a# | miR-520d-5p |
---|---|
miR-1289 | miR-523 |
miR-136 | miR-548a-5p |
miR-184 | miR-548c-3p |
miR-194 | miR-601 |
miR-20a | miR-645 |
miR-211 | miR-758 |
miR-21 | miR-876-3p |
miR-30a | miR-891b |
miR-34a | miR-106b |
miR-361 | miR-1247 |
miR-367 | miR-133a |
miR-381 | miR-16-2# |
miR-422 | miR-16 |
miR-425 | miR-19b |
miR-483 | miR-331 |
miR-487a | miR-372 |
miR-506 | miR-520b |
miR-518e | miR-708 |
miRNA | 1-Infect | 2-Infect | Average | 1-Mock | 2-Mock | Average | ∆∆CT # | 2∆∆ CT @ |
---|---|---|---|---|---|---|---|---|
1243 | 32.39 * | 31.44 | 31.91 | 33.23 | 34.40 | 33.81 | 1.9 | 3.70 |
1274a | 28.75 | 28.18 | 28.46 | 30.18 | 29.64 | 29.91 | 1.45 | 2.73 |
150 | 27.10 | 28.68 | 27.89 | 32.49 | 33.64 | 33.07 | 5.18 | 36.25 |
29a | 26.48 | 30.62 | 28.55 | 34.19 | 33.85 | 34.02 | 5.47 | 44.32 |
302c | 18.74 | 19.91 | 19.33 | 21.62 | 21.95 | 21.79 | 2.46 | 5.50 |
30e | 29.47 | 31.07 | 30.27 | 31.58 | 33.16 | 32.37 | 2.10 | 4.28 |
338 | 30.75 | 32.82 | 31.79 | 34.05 | 32.91 | 33.48 | 1.69 | 3.22 |
454 | 24.88 | 26.57 | 25.73 | 25.67 | 30.61 | 28.14 | 2.41 | 5.31 |
518f | 20.36 | 22.24 | 21.3 | 25.98 | 25.94 | 25.96 | 4.66 | 25.28 |
548a | 33.17 | 32.80 | 32.99 | 34.22 | 33.19 | 33.71 | 0.72 | 1.65 |
636 | 20.20 | 24.00 | 23.1 | 26.34 | 25.69 | 26.02 | 2.92 | 7.50 |
872 | 25.72 | 26.16 | 25.94 | 27.09 | 28.09 | 37.59 | 1.65 | 3.14 |
875 | 25.05 | 25.77 | 25.41 | 29.11 | 29.68 | 29.39 | 3.98 | 15.78 |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef]
- Sun, G.; Li, H.; Wu, X.; Covarrubias, M.; Scherer, L.; Meinking, K.; Luk, B.; Chomchan, P.; Alluin, J.; Gombart, A.F.; et al. Interplay between HIV-1 Infection and Host MicroRNAs. Nucleic Acids Res. 2012, 40, 2181–2196. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Rossi, J.J. MicroRNAs and their potential involvement in HIV infection. Trends Pharmacol. Sci. 2011, 32, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Yeung, M.L.; Bennasser, Y.; Myers, T.G.; Jiang, G.; Benkirane, M.; Jeang, K.T. Changes in microRNA expression profiles in HIV-1-transfected human cells. Retrovirology 2005, 2. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.T.; Thomas, M.J.; Sova, P.; Green, R.R.; Palermo, R.E.; Katze, M.G. Next-generation sequencing of small RNAs from HIV-infected cells identifies phased microRNA expression patterns and candidate novel microRNAs differentially expressed upon infection. MBio 2013, 4. [Google Scholar] [CrossRef] [PubMed]
- Detsika, M.G.; Psarris, A.; Paraskevis, D. MicroRNA and HIV latency: A complex and Promising relationship. AIDS Rev. 2012, 14, 188–194. [Google Scholar] [PubMed]
- Campbell, T.D.; Khan, M.; Huang, M.B.; Bond, V.C.; Powell, M.D. HIV-1 Nef protein is secreted into vesicles that can fuse with target cells and virions. Ethn. Dis. 2008, 18, S2–S14. [Google Scholar] [PubMed]
- Shelton, M.N.; Huang, M.B.; Ali, S.A.; Powell, M.D.; Bond, V.C. Secretion modification region-derived peptide disrupts HIV-1 Nef’s interaction with mortalin and blocks virus and Nef exosome release. J. Virol. 2012, 86, 406–419. [Google Scholar] [CrossRef] [PubMed]
- Addae Konadu, K.; Huang, M.B.; Roth, W.W.; Armstrong, W.; Powell, M.D.; Villinger, F.; Bond, V.C. Isolation of exosomes from the plasma of HIV-1 positive individuals. JOVE-J. Vis. Exp. 2015, in press. [Google Scholar]
- Addae Konadu, K.; Chu, J.; Huang, M.B.; Kumar Amancha, P.; Armstrong, W.; Powell, M.D.; Villinger, F.; Bond, V.C. Association of cytokines with exosomes in the plasma of HIV-1-seropositive individuals. J. Infect. Dis. 2015, 211, 1712–1716. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Gelfond, J.A.; McManus, L.M.; Shireman, P.K. Reproducibility of quantitative RT-PCR array in miRNA expression profiling and comparison with microarray analysis. BMC Genomics 2009, 10. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Landgraf, P.; Rusu, M.; Sheridan, R.; Sewer, A.; Iovino, N.; Aravin, A.; Pfeffer, S.; Rice, A.; Kamphorst, A.O.; Landthaler, M.; et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007, 129, 1401–1414. [Google Scholar] [CrossRef] [PubMed]
- Van Niel, G.; Porto-Carreiro, I.; Simoes, S.; Raposo, G. Exosomes: A common pathway for a specialized function. J. Biochem. 2006, 140, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Caby, M.P.; Lankar, D.; Vincendeau-Scherrer, C.; Raposo, G.; Bonnerot, C. Exosomal-like vesicles are present in human blood plasma. Int. Immunol. 2005, 17, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Lasser, C.; Alikhani, V.S.; Ekström, K.; Eldh, M.; Paredes, P.T.; Bossios, A.; Sjöstrand, M.; Gabrielsson, S.; Lötvall, J.; Valad, H. Human saliva, plasma and breast milk exosomes contain RNA: Uptake by macrophages. J. Transl. Med. 2011, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanpain, C.; Libert, F.; Vassart, G.; Parmentier, M. CCR5 and HIV infection. Recept. Channels 2002, 8, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Yao, H.; Chaudhuri, A.D.; Duan, M.; Yelamanchili, S.V.; Wen, H.; Cheney, P.D.; Fox, H.S.; Buch, S. Exosome-mediated shuttling of microRNA-29 regulates HIV Tat and morphine-mediated Neuronal dysfunction. Cell Death Dis. 2003, 3. [Google Scholar] [CrossRef] [PubMed]
- Munshi, S.U.; Panda, H.; Holla, P.; Rewari, B.B.; Jameel, S. MicroRNA-150 is a potential biomarker of HIV/AIDS disease progression and therapy. PLoS ONE 2014, 9. [Google Scholar] [CrossRef]
- Wang, X.; Ye, L.; Hou, W.; Zhou, Y.; Wang, Y.J.; Metzger, D.S.; Ho, W.Z. Cellular microRNA expression correlates with susceptibility of monocytes/macrophages to HIV-1 infection. Blood 2009, 113, 671–674. [Google Scholar] [CrossRef] [PubMed]
- Tréhoux, S.; Lahdaoui, F.; Delpu, Y.; Renaud, F.; Leteurtre, E.; Torrisani, J.; Jonckheere, N.; van Seuningen, I. Micro-RNAs miR-29a and miR-330-5p function as tumor suppressors by targeting the MUC1 mucin in pancreatic cancer cells. Biochim. Biophys. Acta 2015, 1853, 2392–2403. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Yang, Y.; Zhang, P.; Wang, F.; Ma, Y.; Qin, H.; Wang, Y. miR-150 functions as a tumour suppressor in human colorectal cancer by targeting c-Myb. J. Cell Mol. Med. 2014, 18, 2125–2134. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Nagilla, P.; Le, H.S.; Bunney, C.; Zych, C.; Thalamuthu, A.; Bar-Joseph, Z.; Mathavan, S.; Ayyavoo, V. Comparative expression profile of miRNA and mRNA in primary peripheral blood mononuclear cells infected with human immunodeficiency virus (HIV-1). PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- Mittelbrunn, M.; Gutiérrez-Vázquez, C.; Villarroya-Beltri, C.; González, S.; Sánchez-Cabo, F.; González, M.A.; Bernad, A.; Sanchez-Madrid, F. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat. Commun. 2011, 2. [Google Scholar] [CrossRef] [PubMed]
- Aqil, M.; Raza Naqvi, A.; Mallik, S.; Bandyopadhyay, S.; Maulik, U.; Jameel, S. The HIV Nef protein modulates cellular and exosomal miRNA profiles in human monocytic cells. J. Extracell. Vesicles 2014, 3. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.A.; Huang, M.B.; Campbell, P.E.; Roth, W.W.; Campbell, T.; Khan, M.; Newman, G.; Villinger, F.; Powell, M.D.; Bond, V.C. Genetic characterization of HIV type 1 Nef-induced vesicle secretion. AIDS Res. Hum. Retrovir. 2010, 26, 173–192. [Google Scholar] [CrossRef] [PubMed]
- Lenassi, M.; Cagney, G.; Liao, M.; Vaupotic, T.; Bartholomeeusen, K.; Cheng, Y.; Krogan, N.J.; Plemenitas, A.; Peterlin, B.M. HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic 2010, 11, 110–122. [Google Scholar] [CrossRef] [PubMed]
- Madison, M.N.; Okeoma, C.M. Exosomes: Implications in HIV-1 pathogenesis. Viruses 2015, 7, 4093–4118. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roth, W.W.; Huang, M.B.; Addae Konadu, K.; Powell, M.D.; Bond, V.C. Micro RNA in Exosomes from HIV-Infected Macrophages. Int. J. Environ. Res. Public Health 2016, 13, 32. https://doi.org/10.3390/ijerph13010032
Roth WW, Huang MB, Addae Konadu K, Powell MD, Bond VC. Micro RNA in Exosomes from HIV-Infected Macrophages. International Journal of Environmental Research and Public Health. 2016; 13(1):32. https://doi.org/10.3390/ijerph13010032
Chicago/Turabian StyleRoth, William W., Ming Bo Huang, Kateena Addae Konadu, Michael D. Powell, and Vincent C. Bond. 2016. "Micro RNA in Exosomes from HIV-Infected Macrophages" International Journal of Environmental Research and Public Health 13, no. 1: 32. https://doi.org/10.3390/ijerph13010032
APA StyleRoth, W. W., Huang, M. B., Addae Konadu, K., Powell, M. D., & Bond, V. C. (2016). Micro RNA in Exosomes from HIV-Infected Macrophages. International Journal of Environmental Research and Public Health, 13(1), 32. https://doi.org/10.3390/ijerph13010032