Biomarker-Based Approaches for Assessing Alcohol Use Disorders
Abstract
:1. Introduction
2. Biomarkers of Alcohol Consumption per se
Biomarker | Abbreviation | Biological Sample Type | Marker Characteristics |
---|---|---|---|
Ethanol | EtOH | Blood Urine Breath | Restricted to conditions where ethanol is still present in circulation. |
Ethyl glucuronide /Ethyl sulfate | EtG/EtS | Urine Serum Cerebrospinal fluid Vitreous humour Hair Nails | Ethanol metabolite, which remains positive in urine samples 2–5 days after stopping ethanol use. Window of detection dependent on sample type. |
Phosphatidylethanol | PEth | Blood Dry blood spots | Ethanol metabolite, which remains detectable 1–2 weeks after alcohol use. Measured by LC-MS or immunological techniques. |
Fatty acid ethyl esters | FAEE | Plasma Hair Meconium | Ethanol metabolite derived from a combination of fatty acid with alcohol. |
Acetaldehyde adducts and associated immune responses | AA-Ab | Blood Tissue specimens | IgA response towards acetaldehyde adducts most specific for alcohol-related disorders. |
Carbohydrate-deficient transferrin | CDT | Serum Cerebrospinal fluid | Specific marker of chronic alcohol consumption. Lacks sensitivity for screening purposes. |
Gamma-glutamyltransferase | GGT | Serum/plasma | Sensitive marker of alcohol use, liver dysfunction and oxidative stress. Several sources of unspecificity. Normalization time 2–3 weeks. |
GGT-CDT combination | GGT-CDT | Serum/plasma | Improves sensitivity and specificity of detecting alcohol abuse. Relies on a mathematical model. |
Blood cell counts | Blood | Mean corpuscular volume (MCV) of erythrocytes typically elevated in alcoholics. Normalization time 2–4 months. Mean corpuscular haemoglobin (MCH) and thrombocytes (platelet counts) are also frequently altered in alcohol abusers. Several sources of unspecificity. | |
Transaminase enzymes | ALT, AST | Serum/plasma | Suitable for screening for liver dysfunction in alcohol users. Sensitive to effects of excess body weight. AST/ALT ratio increases in alcoholic liver disease. |
3. Liver Enzymes as Indicators of Hepatic and Extrahepatic Effects of Alcohol
4. Impacts of Gender, Age and Life Style
5. Differential Diagnosis of Alcoholic versus Non-Alcoholic Causes of Tissue Toxicity
Condition | Supporting Laboratory Data | Other Diagnostic Tools |
---|---|---|
Fatty liver | ||
Alcoholic | Alcohol, EtG, GT, CDT, ALT, AST, MCV | Questionnaires: AUDIT, TLFB, CAGE, MAST |
Non-alcoholic (obesity) | ALT, AST, glucose, OGT, triglycerides, PNPLA3 genotyping | BMI, waist circumference, abdominal ultrasonography |
Viral hepatitis | A: anti-HAV IgM; B: HBsAg, PCR, anti-HBc IgM; C: anti-HCV, PCR; D: anti-HDV; E: anti-HEV; G: anti-HGV | |
Liver cirrhosis | Albumin, bilirubin, prothrombin time, immunoglobulins, markers of immune activation and fibrogenesis | Liver biopsy, xenobiotic metabolism and excretion tests, liver imaging: ultrasound, MRI, Fibroscan, measures of hepatic function: Child-Pugh, CCLI, CMI |
Drug toxicity | Transaminases, therapeutic drug monitoring, blood eosinophils | Case history |
Hemochromatosis | Iron status, transferrin iron saturation, ferritin, HFE-genotyping (C282Y mutation) | Liver biopsy (hepatic iron index) |
Autoimmune diseases | ||
Autoimmune hepatitis | Immunoglobulins, antinuclear antibodies, antismooth muscle antigen | |
Primary biliary cirrhosis | AP, IgM, antimitochondrial antibodies | |
Primary sclerosing cholangitis | ANCA, AP | ERCP |
α1-antitrypsin deficiency | α-1-antitrypsin phenotyping | |
Wilson’s disease | Ceruloplasmin, urine and hepatic copper | |
Celiac disease | Tissue transglutaminase antibodies | |
Strenuous exercise | AST, ALT, myoglobin, creatinine kinase | |
Malignant condition | AFP | Ultrasound |
Idiopathic | Absence of markers | Liver biopsy |
6. Markers of Disease Prognosis
Score | Full Name | Clinical and Histological Components | Laboratory Components |
---|---|---|---|
CPT | Child-Pugh-Turcotte | Ascites, encephalopathy | Albumin, bilirubin, prothrombin time |
MELD | Model of end-stage liver disease | Bilirubin, creatinine, INR | |
MDF | Maddrey discriminant function | Bilirubin, prothrombin time | |
GAH | Glascow alcoholic hepatitis score | Age | White blood cell count, urea, prothrombin time, bilirubin |
CCLI | Combined clinical and laboratory index | Ascites, encephalopathy, collateral circulation, edema | Hemoglobin, albumin, bilirubin, alkaline phosphatase, prothrombin time |
CMI | Combined morphological index | Necrosis, inflammation, cMallory bodies | Correlates with laboratory indices of prognostic significance |
7. Biomarkers of Fibrogenesis
Marker | Abbreviation | Components in Combination |
---|---|---|
Connective tissue derived peptides | ||
Aminopropeptide of procollagen type III | PIIINP | |
Aminopropeptide of procollagen type I | PINP | |
Carboxypropeptide of procollagen type I | PICP | |
Carboxyterminal telopeptide of type I collagen | ICTP | |
Hyaluronic acid | HA | |
β-Crosslaps | β-CTX | |
Tissue inhibitor of matrix metalloproteinase | TIMP | |
Combination markers | ||
Fibrotest | GGT, ALT, α-2-macroglobulin, haptoglobin, apo A1, bilirubin | |
Enhanced liver fibrosis | ELF | PIIINP, hyaluronic acid, TIMP |
AST/platelet ratio | APRI | AST, platelet count |
Traffic light test | TLT | PIIINP, hyaluronic acid, thrombocytes |
8. Markers of Immune Activation in Alcohol Use Disorders
9. Reference Values for Biomarkers
Marker | Abbreviations | Characteristics |
---|---|---|
Macrophage receptor for haptoglobin-hemoglobin complexes | CD163 | Marks Kupffer cell activation. Elevated levels are associated with poor prognosis. |
Soluble urokinase plasminogen activator receptor | suPAR | Marks activation of inflammatory cells. Associated with disease severity. |
Cytokines Proinflammatory Anti-inflammatory | TNF-α, IL-6, IL-8 IL-10, TGF-β | An altered balance in the ratio of proinflammatory and anti-inflammatory cytokines is typical during the course of liver disease progression in alcoholics. |
Immune responses towards ethanol metabolites | Anti-acetaldehyde adduct IgA, IgG, IgM | Anti-adduct IgAs are typical in ALD. Useful for differential diagnosis between alcoholic and non-alcoholic causes of liver disease. |
High sensitivity C-reactive protein | hs-CRP | A marker of low-grade-inflammation. Associated with pro-inflammatory status, which also contributes to multiple alcohol-induced mood disorders, including depression. |
Liver Enzyme | Reference Population | ||
---|---|---|---|
Normal Weight Non-Drinkers | Moderate Drinkers with or without Overweight | Difference | |
ALT (U/L) | |||
Men | 50 | 70 | +40% |
Women | 35 | 45 | +29% |
GGT (U/L) | |||
Men | 60 | 80 (age < 40 yrs) 115 (age ≥ 40 yrs) | +33% +92% |
Women | 40 | 45 (age < 40 yrs) 75 (age ≥ 40 yrs) | +12% +88% |
10. Conclusions
Acknowledgments
Conflicts of Interest
References
- Connor, J.P.; Haber, P.S.; Hall, W.D. Alcohol use disorders. Lancet 2015. [Google Scholar] [CrossRef]
- Leon, D.A.; McCambridge, J. Liver cirrhosis mortality rates in Britain from 1950 to 2002: An analysis of routine data. Lancet 2006, 367, 52–56. [Google Scholar] [PubMed]
- Lieber, C.S. Medical disorders of alcoholism. N. Engl. J. Med. 1995, 333, 1058–1065. [Google Scholar] [PubMed]
- Rehm, J.; Samokhvalov, A.V.; Shield, K.D. Global burden of alcoholic liver diseases. J. Hepatol. 2013, 59, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.S.; Fan, J.G.; Zhang, Z.; Gao, B.; Wang, H.Y. The global burden of liver disease: The major impact of China. Hepatology 2014, 60, 2099–2108. [Google Scholar] [CrossRef] [PubMed]
- Corrao, G.; Bagnardi, V.; Zambon, A.; La, V.C. A meta-analysis of alcohol consumption and the risk of 15 diseases. Prev. Med. 2004, 38, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Gunzerath, L.; Faden, V.; Zakhari, S.; Warren, K. National institute on alcohol abuse and alcoholism report on moderate drinking. Alcohol Clin. Exp. Res. 2004, 28, 829–847. [Google Scholar] [CrossRef] [PubMed]
- Van Faassen, E.; Niemelä, O. Biochemistry of Prenatal Alcohol Exposure; Nova Science Publishers: New York, NY, USA, 2011. [Google Scholar]
- Alatalo, P.I.; Koivisto, H.M.; Hietala, J.P.; Puukka, K.S.; Bloigu, R.; Niemelä, O.J. Effect of moderate alcohol consumption on liver enzymes increases with increasing body mass index. Am. J. Clin. Nutr. 2008, 88, 1097–1103. [Google Scholar] [PubMed]
- Breitling, L.P.; Raum, E.; Müller, H.; Rothenbacher, D.; Brenner, H. Synergism between smoking and alcohol consumption with respect to serum gamma-glutamyltransferase. Hepatology 2009, 49, 802–808. [Google Scholar] [CrossRef] [PubMed]
- Jou, J.; Choi, S.S.; Diehl, A.M. Mechanisms of disease progression in nonalcoholic fatty liver disease. Semin. Liver Dis. 2008, 28, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Missiha, S.B.; Ostrowski, M.; Heathcote, E.J. Disease progression in chronic hepatitis C: Modifiable and nonmodifiable factors. Gastroenterology 2008, 134, 1699–1714. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Cederbaum, A.I. Oxidative stress and alcoholic liver disease. Semin. Liver Dis. 2009, 29, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Yki-Järvinen, H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol. 2014, 2, 901–910. [Google Scholar] [CrossRef]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Diehl, A.M.; Brunt, E.M.; Cusi, K.; Charlton, M.; Sanyal, A.J. The diagnosis and management of non-alcoholic fatty liver disease: Practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 2012, 55, 2005–2023. [Google Scholar] [CrossRef] [PubMed]
- Rehm, J.; Gmel, G.; Probst, C.; Shield, K.D. Lifetime-Risk of Alcohol-Attributable Mortality Based on Different Levels of Alcohol Consumption in Seven European Countries. Implications for Low-Risk Drinking Guidelines. Available online: http://www.camh.ca/en/research/news_and_publications/reports_and_books/Documents/Lifetime%20Risk%20of%20Alcohol-Attributable%20Mortality.pdf (accessed on 14 January 2016).
- Niemelä, O. Biomarkers in alcoholism. Clin. Chim. Acta 2007, 377, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Niemelä, O.; Alatalo, P. Biomarkers of alcohol consumption and related liver disease. Scand. J. Clin. Lab. Invest. 2010, 70, 305–312. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, R.S.; Dasarathy, S.; McCullough, A.J.; Practice guideline committee of the American Association for the Study of Liver Diseases; Practice Parameters Committee of the American College of Gastroenterology. Alcoholic liver disease. Hepatology 2010, 51, 307–328. [Google Scholar]
- Rockey, D.C.; Bissell, D.M. Noninvasive measures of liver fibrosis. Hepatology 2006, 43, S113–S120. [Google Scholar] [CrossRef] [PubMed]
- Rosman, A.S.; Lieber, C.S. Diagnostic utility of laboratory tests in alcoholic liver disease. Clin. Chem. 1994, 40, 1641–1651. [Google Scholar] [PubMed]
- Pletcher, M.J.; Pignone, M. Evaluating the clinical utility of a biomarker: A review of methods for estimating health impact. Circulation 2011, 123, 1116–1124. [Google Scholar] [CrossRef] [PubMed]
- Cabarcos, P.; Álvarez, I.; Tabernero, M.J.; Bermejo, A.M. Determination of direct alcohol markers: A review. Anal. Bioanal. Chem. 2015, 407, 4907–4925. [Google Scholar] [CrossRef] [PubMed]
- Aalto, M.; Alho, H.; Halme, J.T.; Seppä, K. AUDIT and its abbreviated versions in detecting heavy and binge drinking in a general population survey. Drug Alcohol Depend. 2009, 103, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Leeman, R.F.; Heilig, M.; Cunningham, C.L.; Stephens, D.N.; Duka, T.; O’Malley, S.S. Ethanol consumption: How should we measure it? Achieving consilience between human and animal phenotypes. Addict. Biol. 2010, 15, 109–124. [Google Scholar] [CrossRef] [PubMed]
- Savola, O.; Niemelä, O.; Hillbom, M. Blood alcohol is the best indicator of hazardous alcohol drinking in young adults and working-age patients with trauma. Alcohol Alcohol. 2004, 39, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, H.L.; Hund, L.; Shrestha, S.; Rayburn, W.F.; Leeman, L.; Savage, D.D.; Bakhireva, L.N. Ethylglucuronide in maternal hair as a biomarker of prenatal alcohol exposure. Alcohol 2015, 49, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Helander, A.; Böttcher, M.; Fehr, C.; Dahmen, N.; Beck, O. Detection times for urinary ethyl glucuronide and ethyl sulfate in heavy drinkers during alcohol detoxification. Alcohol Alcohol. 2009, 44, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Joya, X.; Marchei, E.; Salat-Batlle, J.; Garcia-Algar, O.; Calvaresi, V.; Pacifici, R.; Pichini, S. Fetal exposure to ethanol: Relationship between ethyl glucuronide in maternal hair during pregnancy and ethyl glucuronide in neonatal meconium. Clin. Chem. Lab. Med. 2015. [Google Scholar] [CrossRef] [PubMed]
- Rainio, J.; Ahola, S.; Kangastupa, P.; Kultti, J.; Tuomi, H.; Karhunen, P.J.; Helander, A.; Niemelä, O. Comparison of ethyl glucuronide and carbohydrate-deficient transferrin in different body fluids for post-mortem identification of alcohol use. Alcohol Alcohol. 2014, 49, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Berger, L.; Fendrich, M.; Jones, J.; Fuhrmann, D.; Plate, C.; Lewis, D. Ethyl glucuronide in hair and fingernails as a long-term alcohol biomarker. Addiction 2014, 109, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Lees, R.; Kingston, R.; Williams, T.M.; Henderson, G.; Lingford-Hughes, A.; Hickman, M. Comparison of ethyl glucuronide in hair with self-reported alcohol consumption. Alcohol Alcohol. 2012, 47, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Himes, S.K.; Dukes, K.A.; Tripp, T.; Petersen, J.M.; Raffo, C.; Burd, L.; Odendaal, H.; Elliott, A.J.; Hereld, D.; Signore, C.; et al. Clinical sensitivity and specificity of meconium fatty acid ethyl ester, ethyl glucuronide, and ethyl sulfate for detecting maternal drinking during pregnancy. Clin. Chem. 2015, 61, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Pragst, F.; Yegles, M. Determination of Fatty Acid Ethyl Esters (FAEE) and Ethyl Glucuronide (EtG) in hair: A promising way for retrospective detection of alcohol abuse during pregnancy? Ther. Drug Monit. 2008, 30, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Staufer, K.; Andresen, H.; Vettorazzi, E.; Tobias, N.; Nashan, B.; Sterneck, M. Urinary ethyl glucuronide as a novel screening tool in patients pre- and post-liver transplantation improves detection of alcohol consumption. Hepatology 2011, 54, 1640–1649. [Google Scholar] [CrossRef] [PubMed]
- Dahl, H.; Hammarberg, A.; Franck, J.; Helander, A. Urinary ethyl glucuronide and ethyl sulfate testing for recent drinking in alcohol-dependent outpatients treated with acamprosate or placebo. Alcohol Alcohol. 2011, 46, 553–557. [Google Scholar] [CrossRef] [PubMed]
- Jatlow, P.I.; Agro, A.; Wu, R.; Nadim, H.; Toll, B.A.; Ralevski, E.; Nogueira, C.; Shi, J.; Dziura, J.D.; Petrakis, I.L.; et al. Ethyl glucuronide and ethyl sulfate assays in clinical trials, interpretation, and limitations: Results of a dose ranging alcohol challenge study and 2 clinical trials. Alcohol Clin. Exp. Res. 2014, 38, 2056–2065. [Google Scholar] [CrossRef] [PubMed]
- Nissinen, A.E.; Mäkelä, S.M.; Vuoristo, J.T.; Liisanantti, M.K.; Hannuksela, M.L.; Hörkkö, S.; Savolainen, M.J. Immunological detection of in vitro formed phosphatidylethanol—An alcohol biomarker—With monoclonal antibodies. Alcohol Clin. Exp. Res. 2008, 32, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Piano, M.R.; Tiwari, S.; Nevoral, L.; Phillips, S.A. Phosphatidylethanol levels are elevated and correlate strongly with AUDIT scores in young adult binge drinkers. Alcohol Alcohol. 2015, 50, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Beck, O.; Helander, A. Method development for routine liquid chromatography-mass spectrometry measurement of the alcohol biomarker phosphatidylethanol (PEth) in blood. Clin. Chim. Acta 2011, 412, 1428–1435. [Google Scholar] [CrossRef] [PubMed]
- Bakhireva, L.N.; Shrestha, S.; Gutierrez, H.L.; Berry, M.; Schmitt, C.; Sarangarm, D. Stability of phosphatidylethanol in dry blood spot cards. Alcohol Alcohol. 2015. [Google Scholar] [CrossRef] [PubMed]
- De Giovanni, N.; Donadio, G.; Chiarotti, M. The reliability of fatty acid ethyl esters (FAEE) as biological markers for the diagnosis of alcohol abuse. J. Anal. Toxicol. 2007, 31, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Ren, J. Alcohol and acetaldehyde in public health: From marvel to menace. Int. J. Environ. Res. Public Health 2010, 7, 1285–1301. [Google Scholar] [CrossRef] [PubMed]
- Freeman, T.L.; Tuma, D.J.; Thiele, G.M.; Klassen, L.W.; Worrall, S.; Niemela, O.; Parkkila, S.; Emery, P.W.; Preedy, V.R. Recent advances in alcohol-induced adduct formation. Alcohol Clin. Exp. Res. 2005, 29, 1310–1316. [Google Scholar] [CrossRef] [PubMed]
- Hietala, J.; Koivisto, H.; Latvala, J.; Anttila, P.; Niemelä, O. IgAs against acetaldehyde-modified red cell protein as a marker of ethanol consumption in male alcoholic subjects, moderate drinkers, and abstainers. Alcohol Clin. Exp. Res. 2006, 30, 1693–1698. [Google Scholar] [CrossRef] [PubMed]
- Niemelä, O. Distribution of ethanol-induced protein adducts in vivo: Relationship to tissue injury. Free Radic. Biol. Med. 2001, 31, 1533–1538. [Google Scholar] [CrossRef]
- Jeppsson, J.O.; Arndt, T.; Schellenberg, F.; Wielders, J.P.; Anton, R.F.; Whitfield, J.B.; Helander, A. Toward standardization of carbohydrate-deficient transferrin (CDT) measurements: I. Analyte definition and proposal of a candidate reference method. Clin. Chem. Lab. Med. 2007, 45, 558–562. [Google Scholar] [CrossRef] [PubMed]
- Anton, R.F.; Lieber, C.; Tabakoff, B. Carbohydrate-deficient transferrin and gamma-glutamyltransferase for the detection and monitoring of alcohol use: Results from a multisite study. Alcohol Clin. Exp. Res. 2002, 26, 1215–1222. [Google Scholar] [CrossRef] [PubMed]
- Romppanen, J.; Punnonen, K.; Anttila, P.; Jakobsson, T.; Blake, J.; Niemelä, O. Serum sialic acid as a marker of alcohol consumption: Effect of liver disease and heavy drinking. Alcohol Clin. Exp. Res. 2002, 26, 1234–1238. [Google Scholar] [CrossRef] [PubMed]
- Chrostek, L.; Cylwik, B.; Krawiec, A.; Korcz, W.; Szmitkowski, M. Relationship between serum sialic acid and sialylated glycoproteins in alcoholics. Alcohol Alcohol. 2007, 42, 588–592. [Google Scholar] [CrossRef] [PubMed]
- Viitala, K.; Lähdesmäki, K.; Niemelä, O. Comparison of the Axis %CDT TIA and the CDTect method as laboratory tests of alcohol abuse. Clin. Chem. 1998, 44, 1209–1215. [Google Scholar] [PubMed]
- Burke, V.; Puddey, I.B.; Rakic, V.; Swanson, N.R.; Dimmitt, S.B.; Beilin, L.J.; Ching, S.; Beilby, J.P. Carbohydrate-deficient transferrin as a marker of change in alcohol intake in men drinking 20 to 60 g of alcohol per day. Alcohol Clin. Exp. Res. 1998, 22, 1973–1980. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, I.M.; Kanitz, R.D.; Nilssen, O.; Huseby, N.E. Carbohydrate-deficient transferrin: Marker of actual alcohol consumption or chronic alcohol misuse? Alcohol Alcohol. 1998, 33, 646–650. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, L.G.; Schmidt, K.; Dufeu, P.; Ohse, A.; Rommelspacher, H.; Muller, C. Superiority of carbohydrate-deficient transferrin to gamma-glutamyltransferase in detecting relapse in alcoholism. Am. J. Psychiatry 1997, 154, 75–80. [Google Scholar] [PubMed]
- Giannini, E.G.; Testa, R.; Savarino, V. Liver enzyme alteration: A guide for clinicians. CMAJ 2005, 172, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Whitfield, J.B. Gamma glutamyl transferase. Crit. Rev. Clin. Lab. Sci. 2001, 38, 263–355. [Google Scholar] [CrossRef] [PubMed]
- Salaspuro, M. Carbohydrate-deficient transferrin as compared to other markers of alcoholism: A systematic review. Alcohol 1999, 19, 261–271. [Google Scholar] [CrossRef]
- Hietala, J.; Koivisto, H.; Anttila, P.; Niemelä, O. Comparison of the combined marker GGT-CDT and the conventional laboratory markers of alcohol abuse in heavy drinkers, moderate drinkers and abstainers. Alcohol Alcohol. 2006, 41, 528–533. [Google Scholar] [CrossRef] [PubMed]
- Latvala, J.; Parkkila, S.; Niemelä, O. Excess alcohol consumption is common in patients with cytopenia: Studies in blood and bone marrow cells. Alcohol Clin. Exp. Res. 2004, 28, 619–624. [Google Scholar] [CrossRef] [PubMed]
- Koivisto, H.; Hietala, J.; Anttila, P.; Parkkila, S.; Niemelä, O. Long-term ethanol consumption and macrocytosis: Diagnostic and pathogenic implications. J. Lab. Clin. Med. 2006, 147, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Lindenbaum, J. Hematologic complications of alcohol abuse. Semin. Liver Dis. 1987, 7, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Alatalo, P.I.; Koivisto, H.M.; Hietala, J.P.; Bloigu, R.S.; Niemelä, O.J. Gender-dependent impacts of body mass index and moderate alcohol consumption on serum uric acid—An index of oxidant stress status? Free Radic. Biol. Med. 2009, 46, 1233–1238. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.J.; Rivard, C.; Nakagawa, T.; Sautin, Y.Y.; Sanchez-Lozada, L.G. Uric acid: More to learn, more experiments to do. Am. J. Hypertens. 2009, 22, 952–953. [Google Scholar] [CrossRef] [PubMed]
- Kurra, V.; Eräranta, A.; Jolma, P.; Vehmas, T.I.; Riutta, A.; Moilanen, E.; Tahvanainen, A.; Kalliovalkama, J.; Niemelä, O.; Myllymäki, J.; et al. Hyperuricemia, oxidative stress, and carotid artery tone in experimental renal insufficiency. Am. J. Hypertens. 2009, 22, 964–970. [Google Scholar] [CrossRef] [PubMed]
- Cali, A.M.; De Oliveira, A.M.; Kim, H.; Chen, S.; Reyes-Mugica, M.; Escalera, S.; Dziura, J.; Taksali, S.E.; Kursawe, R.; Shaw, M.; et al. Glucose dysregulation and hepatic steatosis in obese adolescents: Is there a link? Hepatology 2009, 49, 1896–1903. [Google Scholar] [CrossRef] [PubMed]
- Daeppen, J.B.; Smith, T.L.; Schuckit, M.A. Influence of age and body mass index on gamma-glutamyltransferase activity: A 15-year follow-up evaluation in a community sample. Alcohol Clin. Exp. Res. 1998, 22, 941–944. [Google Scholar] [CrossRef] [PubMed]
- Lam, G.M.; Mobarhan, S. Central obesity and elevated liver enzymes. Nutr. Rev. 2004, 62, 394–399. [Google Scholar] [CrossRef] [PubMed]
- Lawlor, D.A.; Sattar, N.; Smith, G.D.; Ebrahim, S. The associations of physical activity and adiposity with alanine aminotransferase and gamma-glutamyltransferase. Am. J. Epidemiol. 2005, 161, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Puukka, K.; Hietala, J.; Koivisto, H.; Anttila, P.; Bloigu, R.; Niemelä, O. Additive effects of moderate drinking and obesity on serum gamma-glutamyl transferase activity. Am. J. Clin. Nutr. 2006, 83, 1351–1354. [Google Scholar] [PubMed]
- Halsted, C.H. Obesity: Effects on the liver and gastrointestinal system. Curr. Opin. Clin. Nutr. Metab. Care 1999, 2, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Ruhl, C.E.; Everhart, J.E. Joint effects of body weight and alcohol on elevated serum alanine aminotransferase in the United States population. Clin. Gastroenterol. Hepatol. 2005, 3, 1260–1268. [Google Scholar] [CrossRef]
- Tsai, J.; Ford, E.S.; Zhao, G.; Li, C.; Greenlund, K.J.; Croft, J.B. Co-occurrence of obesity and patterns of alcohol use associated with elevated serum hepatic enzymes in U.S. adults. J. Behav. Med. 2012, 35, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Danielsson, J.; Kangastupa, P.; Laatikainen, T.; Aalto, M.; Niemelä, O. Individual and joint impacts of ethanol use, BMI, age and gender on serum gamma-glutamyltransferase levels in healthy volunteers. Int. J. Mol. Sci. 2013, 14, 11929–11941. [Google Scholar] [CrossRef] [PubMed]
- Emdin, M.; Pompella, A.; Paolicchi, A. Gamma-glutamyltransferase, atherosclerosis, and cardiovascular disease: Triggering oxidative stress within the plaque. Circulation 2005, 112, 2078–2080. [Google Scholar] [CrossRef] [PubMed]
- Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Lanҫa, A.J.; Israel, Y. Histochemical demonstration of sinusoidal gamma-glutamyltransferase activity by substrate protection fixation: Comparative studies in rat and guinea pig liver. Hepatology 1991, 14, 857–863. [Google Scholar]
- Speisky, H.; Shackel, N.; Varghese, G.; Wade, D.; Israel, Y. Role of hepatic gamma-glutamyltransferase in the degradation of circulating glutathione: Studies in the intact guinea pig perfused liver. Hepatology 1990, 11, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Forman, H.J. Redox regulation of gamma-glutamyl transpeptidase. Am. J. Respir. Cell Mol. Biol. 2009, 41, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Ha, M.H.; Kam, S.; Chun, B.; Lee, J.; Song, K.; Boo, Y.; Steffen, L.; Jacobs, D.R., Jr. A strong secular trend in serum gamma-glutamyltransferase from 1996 to 2003 among South Korean men. Am. J. Epidemiol. 2006, 163, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Blomhoff, R.; Jacobs, D.R., Jr. Is serum gamma glutamyltransferase a marker of oxidative stress? Free Radic. Res. 2004, 38, 535–539. [Google Scholar] [CrossRef] [PubMed]
- Fentiman, I.S.; Allen, D.S. Gamma-glutamyl transferase and breast cancer risk. Brit. J. Cancer 2010, 103, 90–93. [Google Scholar] [CrossRef] [PubMed]
- Franzini, M.; Paolicchi, A.; Fornaciari, I.; Ottaviano, V.; Fierabracci, V.; Maltinti, M.; Ripoli, A.; Zyw, L.; Scatena, F.; Passino, C.; et al. Cardiovascular risk factors and gamma-glutamyltransferase fractions in healthy individuals. Clin. Chem. Lab. Med. 2010, 48, 713–717. [Google Scholar] [CrossRef] [PubMed]
- Franzini, M.; Fornaciari, I.; Rong, J.; Larson, M.G.; Passino, C.; Emdin, M.; Paolicchi, A.; Vasan, R.S. Correlates and reference limits of plasma gamma-glutamyltransferase fractions from the Framingham heart study. Clin. Chim. Acta 2013, 417, 19–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraser, A.; Harris, R.; Sattar, N.; Ebrahim, S.; Davey Smith, G.; Lawlor, D.A. Alanine aminotransferase, gamma-glutamyltransferase, and incident diabetes: The British women’s heart and health study and meta-analysis. Diabetes Care 2009, 32, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Targher, G.; Montagnana, M.; Salvagno, G.L.; Guidi, G.C. Relationship between gamma-glutamyltransferase, lipids and lipoprotein(a) in the general population. Clin. Chim. Acta 2007, 384, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Strasak, A.M.; Pfeiffer, R.M.; Klenk, J.; Hilbe, W.; Oberaigner, W.; Gregory, M.; Concin, H.; Diem, G.; Pfeiffer, K.P.; Ruttmann, E.; et al. Prospective study of the association of gamma-glutamyltransferase with cancer incidence in women. Int. J. Cancer 2008, 123, 1902–1906. [Google Scholar] [CrossRef] [PubMed]
- Sung, K.C.; Ryu, S.; Kim, B.S.; Cheong, E.S.; Park, D.I.; Kim, B.I.; Kwon, M.J.; Wild, S.H.; Byrne, C.D. Gamma-glutamyl transferase is associated with mortality outcomes independently of fatty liver. Clin. Chem. 2015, 61, 1173–1181. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Willett, W.C.; Rimm, E.B.; Stampfer, M.J.; Giovannucci, E.L. Light to moderate intake of alcohol, drinking patterns, and risk of cancer: Results from two prospective U.S. cohort studies. BMJ 2015, 351, h4238. [Google Scholar] [CrossRef] [PubMed]
- Sipilä, P.; Rose, R.J.; Kaprio, J. Drinking and mortality: Long-term follow-up of drinking-discordant twin pairs. Addiction 2015. [Google Scholar] [CrossRef] [PubMed]
- Haring, R.; Wallaschofski, H.; Nauck, M.; Dörr, M.; Baumeister, S.E.; Völzke, H. Ultrasonographic hepatic steatosis increases prediction of mortality risk from elevated serum gamma-glutamyl transpeptidase levels. Hepatology 2009, 50, 1403–1411. [Google Scholar] [CrossRef] [PubMed]
- Kazemi-Shirazi, L.; Endler, G.; Winkler, S.; Schickbauer, T.; Wagner, O.; Marsik, C. Gamma glutamyltransferase and long-term survival: Is it just the liver? Clin. Chem. 2007, 53, 940–946. [Google Scholar] [CrossRef]
- Ruhl, C.E.; Everhart, J.E. Elevated serum alanine aminotransferase and gamma-glutamyltransferase and mortality in the United States population. Gastroenterology 2009, 136, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Ruttmann, E.; Brant, L.J.; Concin, H.; Diem, G.; Rapp, K.; Ulmer, H.; The Vorarlberg Health Monitoring and Promotion Program Study Group. Gamma-glutamyltransferase as a risk factor for cardiovascular disease mortality: An epidemiological investigation in a cohort of 163,944 Austrian adults. Circulation 2005, 112, 2130–2137. [Google Scholar] [CrossRef] [PubMed]
- Kozakova, M.; Palombo, C.; Eng, M.P.; Dekker, J.; Flyvbjerg, A.; Mitrakou, A.; Gastaldelli, A.; Ferrannini, E. Fatty liver index, gamma-glutamyltransferase, and early carotid plaques. Hepatology 2012, 55, 1406–1415. [Google Scholar] [CrossRef] [PubMed]
- Danielsson, J.; Kangastupa, P.; Laatikainen, T.; Aalto, M.; Niemelä, O. Impacts of common factors of life style on serum liver enzymes. World J. Gastroenterol. 2014, 20, 11743–11752. [Google Scholar] [CrossRef] [PubMed]
- Pratt, D.S.; Kaplan, M.M. Evaluation of abnormal liver-enzyme results in asymptomatic patients. N. Engl. J. Med. 2000, 342, 1266–1271. [Google Scholar] [CrossRef] [PubMed]
- Brunt, E.M. Nonalcoholic steatohepatitis. Semin. Liver Dis. 2004, 24, 3–20. [Google Scholar] [PubMed]
- Clark, J.M.; Brancati, F.L.; Diehl, A.M. The prevalence and etiology of elevated aminotransferase levels in the United States. Am. J. Gastroenterol. 2003, 98, 960–967. [Google Scholar] [CrossRef] [PubMed]
- Loomba, R.; Bettencourt, R.; Barrett-Connor, E. Synergistic association between alcohol intake and body mass index with serum alanine and aspartate aminotransferase levels in older adults: The Rancho Bernardo study. Aliment. Pharmacol. Ther. 2009, 30, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, G.N. Implications of elevated serum alanine aminotransferase levels: Think outside the liver. Gastroenterology 2008, 135, 1851–1854. [Google Scholar] [CrossRef] [PubMed]
- St George, A.; Bauman, A.; Johnston, A.; Farrell, G.; Chey, T.; George, J. Independent effects of physical activity in patients with nonalcoholic fatty liver disease. Hepatology 2009, 50, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Ghouri, N.; Preiss, D.; Sattar, N. Liver enzymes, nonalcoholic fatty liver disease, and incident cardiovascular disease: A narrative review and clinical perspective of prospective data. Hepatology 2010, 52, 1156–1161. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.C.; Nam, C.M.; Jee, S.H.; Han, K.H.; Oh, D.K.; Suh, I. Normal serum aminotransferase concentration and risk of mortality from liver diseases: Prospective cohort study. BMJ 2004, 328, 983. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.H.; Kim, W.R.; Benson, J.T.; Therneau, T.M.; Melton, L.J., III. Serum aminotransferase activity and mortality risk in a United States community. Hepatology 2008, 47, 880–887. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Jacobs, D.R., Jr.; Gross, M.; Kiefe, C.I.; Roseman, J.; Lewis, C.E.; Steffes, M. Gamma-glutamyltransferase is a predictor of incident diabetes and hypertension: The Coronary Artery Risk Development in Young Adults (CARDIA) study. Clin. Chem. 2003, 49, 1358–1366. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Silventoinen, K.; Hu, G.; Jacobs, D.R., Jr.; Jousilahti, P.; Sundvall, J.; Tuomilehto, J. Serum gamma-glutamyltransferase predicts non-fatal myocardial infarction and fatal coronary heart disease among 28,838 middle-aged men and women. Eur. Heart J. 2006, 27, 2170–2176. [Google Scholar] [CrossRef] [PubMed]
- Söderberg, C.; Stål, P.; Askling, J.; Glaumann, H.; Lindberg, G.; Marmur, J.; Hultcrantz, R. Decreased survival of subjects with elevated liver function tests during a 28-year follow-up. Hepatology 2010, 51, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Bertolini, L.; Rodella, S.; Tessari, R.; Zenari, L.; Lippi, G.; Arcaro, G. Nonalcoholic fatty liver disease is independently associated with an increased incidence of cardiovascular events in type 2 diabetic patients. Diabetes Care 2007, 30, 2119–2121. [Google Scholar] [CrossRef] [PubMed]
- Nalpas, B.; Vassault, A.; Le Guillou, A.; Lesgourgues, B.; Ferry, N.; Lacour, B.; Berthelot, P. Serum activity of mitochondrial aspartate aminotransferase: A sensitive marker of alcoholism with or without alcoholic hepatitis. Hepatology 1984, 4, 893–896. [Google Scholar] [CrossRef] [PubMed]
- Salaspuro, M. Use of enzymes for the diagnosis of alcohol-related organ damage. Enzyme 1987, 37, 87–107. [Google Scholar] [PubMed]
- Sheth, S.G.; Flamm, S.L.; Gordon, F.D.; Chopra, S. AST/ALT ratio predicts cirrhosis in patients with chronic hepatitis C virus infection. Am. J. Gastroenterol. 1998, 93, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Diehl, A.M.; Potter, J.; Boitnott, J.; Van Duyn, M.A.; Herlong, H.F.; Mezey, E. Relationship between pyridoxal 5’-phosphate deficiency and aminotransferase levels in alcoholic hepatitis. Gastroenterology 1984, 86, 632–636. [Google Scholar] [PubMed]
- Angulo, P.; Keach, J.C.; Batts, K.P.; Lindor, K.D. Independent predictors of liver fibrosis in patients with nonalcoholic steatohepatitis. Hepatology 1999, 30, 1356–1362. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, A.; Lymp, J.; Sauver, J.S.; Angulo, P.; Lindor, K. Values and limitations of serum aminotransferases in clinical trials of nonalcoholic steatohepatitis. Liver Int. 2006, 26, 1209–1216. [Google Scholar] [CrossRef] [PubMed]
- Schenker, S. Medical consequences of alcohol abuse: Is gender a factor? Alcohol Clin. Exp. Res. 1997, 21, 179–181. [Google Scholar] [PubMed]
- Tynjälä, J.; Kangastupa, P.; Laatikainen, T.; Aalto, M.; Niemelä, O. Effect of age and gender on the relationship between alcohol consumption and serum GGT: Time to recalibrate goals for normal ranges. Alcohol Alcohol. 2012, 47, 558–562. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.A.; Giuli, L.; Gould, R.; Hu, P.; Zhou, K.; Reuben, D.; Greendale, G.; Karlamangla, A. Alcohol use, comorbidity, and mortality. J. Am. Geriatr. Soc. 2006, 54, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Fontana, L.; Zhao, E.; Amir, M.; Dong, H.; Tanaka, K.; Czaja, M.J. Aging promotes the development of diet-induced murine steatohepatitis but not steatosis. Hepatology 2013, 57, 995–1004. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, G.N.; Morrow, O.B.; Connole, M.L.; Lee, S.P. Association between dietary nutrient composition and the incidence of cirrhosis or liver cancer in the United States population. Hepatology 2009, 50, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Tsukamoto, H.; Horne, W.; Kamimura, S.; Niemelä, O.; Parkkila, S.; Ylä-Herttuala, S.; Brittenham, G.M. Experimental liver cirrhosis induced by alcohol and iron. J. Clin. Investig. 1995, 96, 620–630. [Google Scholar] [CrossRef] [PubMed]
- Halsted, C.H.; Villanueva, J.A.; Devlin, A.M.; Niemelä, O.; Parkkila, S.; Garrow, T.A.; Wallock, L.M.; Shigenaga, M.K.; Melnyk, S.; James, S.J. Folate deficiency disturbs hepatic methionine metabolism and promotes liver injury in the ethanol-fed micropig. Proc. Natl. Acad. Sci. USA 2002, 99, 10072–10077. [Google Scholar] [CrossRef] [PubMed]
- Breitling, L.P.; Arndt, V.; Drath, C.; Brenner, H. Liver enzymes: Interaction analysis of smoking with alcohol consumption or BMI, comparing AST and ALT to gamma-GT. PLoS ONE 2011, 6, e27951. [Google Scholar] [CrossRef] [PubMed]
- Danielsson, J.; Kangastupa, P.; Laatikainen, T.; Aalto, M.; Niemelä, O. Dose- and gender-dependent interactions between coffee consumption and serum GGT activity in alcohol consumers. Alcohol Alcohol. 2013, 48, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Freedman, N.D.; Park, Y.; Abnet, C.C.; Hollenbeck, A.R.; Sinha, R. Association of coffee drinking with total and cause-specific mortality. N. Engl. J. Med. 2012, 366, 1891–1904. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Sinha, R.; Graubard, B.I.; Freedman, N.D. Inverse associations of total and decaffeinated coffee with liver enzyme levels in National Health and Nutrition Examination Survey 1999–2010. Hepatology 2014, 60, 2091–2098. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.A.; Sachinwalla, T.; Walton, D.W.; Smith, K.; Armstrong, A.; Thompson, M.W.; George, J. Aerobic exercise training reduces hepatic and visceral lipids in obese individuals without weight loss. Hepatology 2009, 50, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Ristow, M.; Zarse, K.; Oberbach, A.; Kloting, N.; Birringer, M.; Kiehntopf, M.; Stumvoll, M.; Kahn, C.R.; Bluher, M. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc. Natl. Acad. Sci. USA 2009, 106, 8665–8670. [Google Scholar] [CrossRef] [PubMed]
- Room, R.; Babor, T.; Rehm, J. Alcohol and public health. Lancet 2005, 365, 519–530. [Google Scholar] [CrossRef]
- Jaakkola, M.; Sillanaukee, P.; Lof, K.; Koivula, T.; Nordback, I. Blood tests for detection of alcoholic cause of acute pancreatitis. Lancet 1994, 343, 1328–1329. [Google Scholar] [CrossRef]
- Blake, J.; Orrego, H. Monitoring treatment of alcoholic liver disease: evaluation of various severity indices. Clin. Chem. 1991, 37, 5–13. [Google Scholar] [PubMed]
- Arroyo, V. Human serum albumin: Not just a plasma volume expander. Hepatology 2009, 50, 355–357. [Google Scholar] [CrossRef] [PubMed]
- Tyulina, O.V.; Prokopieva, V.D.; Boldyrev, A.A.; Johnson, P. Erythrocyte and plasma protein modification in alcoholism: A possible role of acetaldehyde. Biochim. Biophys. Acta 2006, 1762, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Alatalo, P.; Koivisto, H.; Puukka, K.; Hietala, J.; Anttila, P.; Bloigu, R.; Niemelä, O. Biomarkers of liver status in heavy drinkers, moderate drinkers and abstainers. Alcohol Alcohol. 2009, 44, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, G.N.; Dominitz, J.A.; Weiss, N.S.; Heagerty, P.J.; Kowdley, K.V. The effect of alcohol consumption on the prevalence of iron overload, iron deficiency, and iron deficiency anemia. Gastroenterology 2004, 126, 1293–1301. [Google Scholar] [CrossRef] [PubMed]
- Bacon, B.R.; Britton, R.S. The pathology of hepatic iron overload: A free radical-mediated process? Hepatology 1990, 11, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, L.M.; Dixon, J.L.; Purdie, D.M.; Powell, L.W.; Crawford, D.H. Excess alcohol greatly increases the prevalence of cirrhosis in hereditary hemochromatosis. Gastroenterology 2002, 122, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Jacobs, D.R., Jr. Serum markers of stored body iron are not appropriate markers of health effects of iron: A focus on serum ferritin. Med. Hypotheses 2004, 62, 442–445. [Google Scholar] [CrossRef]
- Iredale, J.P. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J. Clin. Investig. 2007, 117, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Bataller, R.; Brenner, D.A. Liver fibrosis. J. Clin. Investig. 2005, 115, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Poynard, T.; Munteanu, M.; Deckmyn, O.; Ngo, Y.; Drane, F.; Castille, J.M.; Housset, C.; Ratziu, V.; Imbert-Bismut, F. Validation of liver fibrosis biomarker (FibroTest) for assessing liver fibrosis progression: Proof of concept and first application in a large population. J. Hepatol. 2012, 57, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Niemelä, O.; Risteli, J.; Blake, J.E.; Risteli, L.; Compton, K.V.; Orrego, H. Markers of fibrogenesis and basement membrane formation in alcoholic liver disease. Relation to severity, presence of hepatitis, and alcohol intake. Gastroenterology 1990, 98, 1612–1619. [Google Scholar] [PubMed]
- Koivisto, H.; Hietala, J.; Niemelä, O. An inverse relationship between markers of fibrogenesis and collagen degradation in patients with or without alcoholic liver disease. Am. J. Gastroenterol. 2007, 102, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Vidali, M.; Hietala, J.; Occhino, G.; Ivaldi, A.; Sutti, S.; Niemela, O.; Albano, E. Immune responses against oxidative stress-derived antigens are associated with increased circulating tumor necrosis factor-alpha in heavy drinkers. Free Radic. Biol. Med. 2008, 45, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Naveau, S.; Gaude, G.; Asnacios, A.; Agostini, H.; Abella, A.; Barri-Ova, N.; Dauvois, B.; Prevot, S.; Ngo, Y.; Munteanu, M.; et al. Diagnostic and prognostic values of noninvasive biomarkers of fibrosis in patients with alcoholic liver disease. Hepatology 2009, 49, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Tsochatzis, E.A.; Crossan, C.; Longworth, L.; Gurusamy, K.; Rodriguez-Peralvarez, M.; Mantzoukis, K.; O'Brien, J.; Thalassinos, E.; Papastergiou, V.; Noel-Storr, A.; et al. Cost-effectiveness of noninvasive liver fibrosis tests for treatment decisions in patients with chronic hepatitis C. Hepatology 2014, 60, 832–843. [Google Scholar] [CrossRef] [PubMed]
- Parkes, J.; Roderick, P.; Harris, S.; Day, C.; Mutimer, D.; Collier, J.; Lombard, M.; Alexander, G.; Ramage, J.; Dusheiko, G.; et al. Enhanced liver fibrosis test can predict clinical outcomes in patients with chronic liver disease. Gut 2010, 59, 1245–1251. [Google Scholar] [CrossRef] [PubMed]
- Sheron, N.; Moore, M.; Ansett, S.; Parsons, C.; Bateman, A. Developing a “traffic light” test with potential for rational early diagnosis of liver fibrosis and cirrhosis in the community. Brit. J. Gen. Pract. 2012, 62, e616–e624. [Google Scholar] [CrossRef] [PubMed]
- Tuomi, H.; Kultti, J.; Danielsson, J.; Kangastupa, P.; Åkerman, K.; Niemelä, O. Serum soluble urokinase plasminogen activator receptor in alcoholics: Relation to liver disease severity, fibrogenesis, and alcohol use. J. Gastroenterol. Hepatol. 2014, 29, 1991–1995. [Google Scholar] [CrossRef] [PubMed]
- Møller, H.J. Soluble CD163. Scand. J. Clin. Lab. Investig. 2012, 72, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sandahl, T.D.; Grønbaek, H.; Møller, H.J.; Støy, S.; Thomsen, K.L.; Dige, A.K.; Agnholt, J.; Hamilton-Dutoit, S.; Thiel, S.; Vilstrup, H. Hepatic macrophage activation and the LPS pathway in patients with alcoholic hepatitis: A prospective cohort study. Am. J. Gastroenterol. 2014, 109, 1749–1756. [Google Scholar] [CrossRef] [PubMed]
- Kazankov, K.; Barrera, F.; Møller, H.J.; Bibby, B.M.; Vilstrup, H.; George, J.; Grønbaek, H. Soluble CD163, a macrophage activation marker, is independently associated with fibrosis in patients with chronic viral hepatitis B and C. Hepatology 2014, 60, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Latvala, J.; Hietala, J.; Koivisto, H.; Järvi, K.; Anttila, P.; Niemelä, O. Immune responses to ethanol metabolites and cytokine profiles differentiate alcoholics with or without liver disease. Am. J. Gastroenterol. 2005, 100, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Niemelä, O.; Parkkila, S.; Ylä-Herttuala, S.; Villanueva, J.; Ruebner, B.; Halsted, C.H. Sequential acetaldehyde production, lipid peroxidation, and fibrogenesis in micropig model of alcohol-induced liver disease. Hepatology 1995, 22, 1208–1214. [Google Scholar] [CrossRef]
- Crews, F.T.; Bechara, R.; Brown, L.A.; Guidot, D.M.; Mandrekar, P.; Oak, S.; Qin, L.; Szabo, G.; Wheeler, M.; Zou, J. Cytokines and alcohol. Alcohol Clin. Exp. Res. 2006, 30, 720–730. [Google Scholar] [CrossRef] [PubMed]
- Neupane, S.P.; Lien, L.; Martinez, P.; Aukrust, P.; Ueland, T.; Mollnes, T.E.; Hestad, K.; Bramness, J.G. High frequency and intensity of drinking may attenuate increased inflammatory cytokine levels of major depression in alcohol-use disorders. CNS. Neurosci. Ther. 2014, 20, 898–904. [Google Scholar] [CrossRef] [PubMed]
- Gluud, C.; Gluud, L.L. Evidence based diagnostics. BMJ 2005, 330, 724–726. [Google Scholar] [CrossRef] [PubMed]
- Mu, R.; Chen, W.; Pan, B.; Wang, L.; Hao, X.; Huang, X.; Qiao, R.; Zhao, M.; Zhang, C.; Guo, W.; et al. First definition of reference intervals of liver function tests in China: A large-population-based multi-center study about healthy adults. PLoS ONE 2013, 8, e72916. [Google Scholar]
- Ruhl, C.E.; Everhart, J.E. Upper limits of normal for alanine aminotransferase activity in the United States population. Hepatology 2012, 55, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Rustad, P.; Felding, P.; Franzson, L.; Kairisto, V.; Lahti, A.; Mårtensson, A.; Hyltoft Petersen, P.; Simonsson, P.; Steensland, H.; Uldall, A. The Nordic Reference Interval Project 2000: Recommended reference intervals for 25 common biochemical properties. Scand. J. Clin. Lab. Investig. 2004, 64, 271–284. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niemelä, O. Biomarker-Based Approaches for Assessing Alcohol Use Disorders. Int. J. Environ. Res. Public Health 2016, 13, 166. https://doi.org/10.3390/ijerph13020166
Niemelä O. Biomarker-Based Approaches for Assessing Alcohol Use Disorders. International Journal of Environmental Research and Public Health. 2016; 13(2):166. https://doi.org/10.3390/ijerph13020166
Chicago/Turabian StyleNiemelä, Onni. 2016. "Biomarker-Based Approaches for Assessing Alcohol Use Disorders" International Journal of Environmental Research and Public Health 13, no. 2: 166. https://doi.org/10.3390/ijerph13020166
APA StyleNiemelä, O. (2016). Biomarker-Based Approaches for Assessing Alcohol Use Disorders. International Journal of Environmental Research and Public Health, 13(2), 166. https://doi.org/10.3390/ijerph13020166