Nutrient Status and Contamination Risks from Digested Pig Slurry Applied on a Vegetable Crops Field
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pig Slurry and Soil Sampling
2.2. Nutrient and Physical Property Analysis
2.3. Metal Analysis
2.4. Hygienic Indictor Analysis
2.5. Statistical Methods
3. Results and Discussion
3.1. Characteristics of Raw and Digested Pig Slurries
3.2. Physical Properties and Nutrients Status of Vegetable Crops Soils Influenced by Digested Pig Slurry
3.3. Heavy Metals and Hgyenic Condition of Vegetable Crops Soil Fertilized with Digested Pig Slurry
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jiang, X.; Sommer, S.G.; Christensen, K.V. A review of the biogas industry in China. Energy Policy 2011, 39, 6073–6081. [Google Scholar] [CrossRef]
- Jin, H.; Chang, Z. Distribution of heavy metal contents and chemical fractions in anaerobically digested manure slurry. Appl. Biochem. Biotechnol. 2011, 164, 268–282. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, S.; Gropp, M.; Eichler-Löbermann, B. Phosphorus availability and soil microbial activity in a 3 year field experiment amended with digested dairy slurry. Biomass Bioenergy 2014, 70, 429–439. [Google Scholar] [CrossRef]
- Abubaker, J.; Risberg, K.; Pell, M. Biogas residues as fertilisers–Effects on wheat growth and soil microbial activities. Appl. Energy 2012, 99, 126–134. [Google Scholar] [CrossRef]
- Fu, B.; Zheng, B.; Hu, J.; Zhang, Y.; Zhang, Y.; Wang, X.; Yu, X.; Peng, R.; Qiu, X. Effects of biogas fertilizer on quality of bean vegetables and soil properties. China Biogas 2014, 32, 45–47. [Google Scholar]
- Wentzel, S.; Schmidt, R.; Piepho, H.-P.; Semmler-Busch, U.; Joergensen, R.G. Response of soil fertility indices to long-term application of biogas and raw slurry under organic farming. Appl. Soil Ecol. 2015, 96, 99–107. [Google Scholar] [CrossRef]
- Zhang, F.; Li, Y.; Yang, M.; Li, W. Content of heavy metals in animal feeds and manures from farms of different scales in northeast China. Int. J. Environ. Res. Public Health 2012, 9, 2658–2668. [Google Scholar] [CrossRef] [PubMed]
- Legros, S.; Doelsch, E.; Feder, F.; Moussard, G.; Sansoulet, J.; Gaudet, J.P.; Rigaud, S.; Doelsch, I.B.; Macary, H.S.; Bottero, J.Y. Fate and behaviour of Cu and Zn from pig slurry spreading in a tropical water-soil-plant system. Agric. Ecosyst. Environ. 2013, 164, 70–79. [Google Scholar] [CrossRef]
- Sidhu, J.P.S.; Toze, S.G. Human pathogens and their indicators in biosolids: A literature review. Environ. Int. 2009, 35, 187–201. [Google Scholar] [CrossRef] [PubMed]
- Bonetta, S.; Bonetta, S.; Ferretti, E.; Fezia, G.; Gilli, G.; Carraro, E. Agricultural reuse of the digestate from anaerobic co-digestion of organic waste: Microbiological contamination, metal hazards and fertilizing performance. Water Air Soil Pollut. 2014, 225. [Google Scholar] [CrossRef]
- Zhu, N.-M.; Luo, T.; Guo, X.-J.; Zhang, H.; Deng, Y. Nutrition potential of biogas residues as organic fertilizer regarding the speciation and leachability of inorganic metal elements. Environ. Technol. 2015, 36, 992–1000. [Google Scholar] [CrossRef] [PubMed]
- NEPA. Standard Method for the Examination of Water and Wastewater, 4th ed.; Environmental Science Press of China: Beijing, China, 2004. [Google Scholar]
- Bao, S. Soil and Agricultural Chemistry Analysis; China Agriculture Press: Beijing, China, 2005. [Google Scholar]
- Bowman, R.A.; Cole, C.V. An exploratory method for fractionation of organic phosphorus from grassland. Soil Sci. 1978, 125, 95–101. [Google Scholar] [CrossRef]
- Jiang, B.; Gu, Y. A suggested fractionation scheme for inorganic phosphorus in calcareous soils. Fertil. Res. 1989, 20, 159–165. [Google Scholar] [CrossRef]
- Rufete, B.; Perez-Murcia, M.D.; Perez-Espinosa, A.; Moral, R.; Moreno-Caselles, J.; Paredes, C. Total and faecal coliform bacteria persistence in a pig slurry amended soil. Livestock Sci. 2006, 102, 211–215. [Google Scholar] [CrossRef]
- Jiang, W.; Zeng, X.; Chen, H.; Yi, F.; Xie, S.; Chen, Z.; Yuan, Y. Investigation on prevalence of soil-transmitted helminth infections and edaphic contamination status in Poyang Lake region. Chin. J. Schistosomiasis Control 2006, 18, 449–452. [Google Scholar]
- Bernal, M.P.; Lax, A.; Roig, A. The effect of pig slurry on exchangeable potassium in calcareous soils. Biol. Fertil. Soils 1993, 16, 169–172. [Google Scholar] [CrossRef]
- Rong, J.; Zhao, A.; Xiao, L.; Liu, J. Evaluation of copper, zinc and chromium content in pig feed. Chem. Exam. Detect. 1998, 19, 17–19. [Google Scholar]
- Côté, C.; Massé, D.I.; Quessy, S. Reduction of indicator and pathogenic microorganisms by psychrophilic anaerobic digestion in swine slurries. Bioresour. Technol. 2006, 97, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Loza, L.A.; Noyola, A. Two-phase (acidogenic-methanogenic) anaerobic thermophilic/mesophilic digestion system for producing class A biosolids from municipal sludge. Bioresour. Technol. 2010, 101, 576–585. [Google Scholar] [CrossRef] [PubMed]
- Moral, R.; Perez-Murcia, M.D.; Perez-Espinosa, A.; Moreno-Caselles, J.; Paredes, C.; Rufete, B. Salinity, organic content, micronutrients and heavy metals in pig slurries from South-eastern Spain. Waste Manag. 2008, 28, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Lourenzi, C.R.; Ceretta, C.A.; da Silva, L.S.; Trentin, G.; Girotto, E.; Lorensini, F.; Tiecher, T.L.; Brunetto, G. Soil chemical properties related to acidity under successive pig slurry applications. R. Bras. Ci. Solo 2011, 35, 1827–1836. [Google Scholar] [CrossRef]
- Gunkel-Grillon, P.; Roth, E.; Laporte-Magoni, C.; Le Mestre, M. Effects of long term raw pig slurry inputs on nutrient and metal contamination of tropical volcanogenic soils, Uvea Island (South Pacific). Sci. Total Environ. 2015, 533, 339–346. [Google Scholar] [CrossRef] [PubMed]
- De la Fuente, C.; Clemente, R.; Martinez, J.; Pilar Bernal, M. Optimization of pig slurry application to heavy metal polluted soils monitoring nitrification processes. Chemosphere 2010, 81, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Guardini, R.; Comin, J.J.; dos Santos, D.R.; Gatiboni, L.C.; Tiecher, T.; Schmitt, D.; Bender, M.A.; Belli Filho, P.; Victoria de Oliveira, P.A.; Brunetto, G. Phosphorus accumulation and pollution potential in a hapludult fertilized with pig manure. Rev. Bras. Ci. Solo 2012, 36, 1333–1342. [Google Scholar] [CrossRef]
- Braos, L.B.; Cruz, M.C.P.; Ferreira, M.E.; Kuhnen, F. Organic phosphorus fractions in soil fertilized with cattle manure. Rev. Bras. Ci. Solo 2015, 39, 140–150. [Google Scholar] [CrossRef]
- Yin, J.-L.; Shen, Q.-R.; Zhou, C.-L.; Hong, L.-Z.; Wang, K.; Ding, J.-H.; Wang, M.-W. Effects of pig slurry and phosphatic fertilizer on organic-P fractions and their availabilities. Acta Pedol. Sin. 2001, 38, 295–300. [Google Scholar]
- Guo, S.-L.; Dang, T.-H.; Hao, M.-D. Phosphorus changes and sorption characteristics in a calcareous soil under long-term fertilization. Pedosphere 2008, 18, 248–256. [Google Scholar] [CrossRef]
- Roboredo, M.; Fangueiro, D.; Lage, S.; Coutinho, J. Phosphorus dynamics in soils amended with acidified pig slurry and derived solid fraction. Geoderma 2012, 189–190, 328–333. [Google Scholar] [CrossRef]
- Novak, J.M.; Watts, D.W.; Stone, K.C. Copper and zince accumulation, profile distribution, and crop removal in coastal plain soils receiving long-term, intensive applications of swine manure. Am. Soc. Agric. Eng. 2004, 47, 1513–1522. [Google Scholar] [CrossRef]
- Cools, D.; Merckx, R.; Vlassak, K.; Verhaegen, J. Survival of E. coli and Enterococcus spp. derived from pig slurry in soils of different texture. Appl. Soil Ecol. 2001, 17, 53–62. [Google Scholar] [CrossRef]
- Papajová, I.; Juriš, P.; Szabová, E.; Venglovský, J.; Sasáková, N.; Šefčíková, H.; Martinez, J.; Gáboň, T. Decontamination by anaerobic stabilisation of the environment contaminated with enteronematode eggs Toxocara canis and Ascaris suum. Bioresour. Technol. 2008, 99, 4966–4971. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, R.A.; Hu, C.J.; Ho, G.E.; Unkovich, I. Regrowth of faecal coliforms and salmonellae in stored biosolids and soil amended with biosolids. Water Sci. Technol. 1997, 35, 269–275. [Google Scholar] [CrossRef]
Item | Raw Slurry | Digested Slurry | ||||||
---|---|---|---|---|---|---|---|---|
Spring | Summer | Autumn | Winter | Spring | Summer | Autumn | Winter | |
OM(% dry matter) | 87.1 ± 10.8 | 42.3 ± 6.7 | 44.1 ± 8.0 | 42.9 ± 7.2 | 69.2 ± 8.9 | 24.7 ± 4.6 | 38.9 ± 5.9 | 36.2 ± 4.7 |
Total N | 3370.6 ± 229.2 | 2757.9 ± 160.9 | 2373.3 ± 197.1 | 779.7 ± 157.8 | 2723.4 ± 109.1 | 1320.0 ± 145.9 | 1457.0 ± 124.1 | 1578.2 ± 181.9 |
Total P | 904.6 ± 138.1 | 476.7 ± 89.7 | 1464.4 ± 95.8 | 381.9 ± 70.5 | 927.7 ± 93.2 | 167.8 ± 20.3 | 1067.8 ± 80.3 | 490.1 ± 12.9 |
Total K | 785.3 ± 65.4 | 810.6 ± 90.5 | 891.6 ± 69.6 | 936.7 ± 191.7 | 768.1 ± 49.9 | 416.4 ± 38.9 | 698.5 ± 35.7 | 1284.8 ± 65.3 |
NH4+-N | 1081.0 ± 156.8 | 1420.2 ± 159.3 | 1192.0 ± 149.6 | 293.9 ± 40.1 | 1366.6 ± 185.9 | 1047.5 ± 101.1 | 1398.7 ± 89.5 | 695.1 ± 90.3 |
NO3−-N | 58.5 ± 9.9 | 4.5 ± 1.8 | 6.0 ± 1.9 | 28.1 ± 5.0 | 19.1 ± 4.8 | 1.1 ± 0.6 | 3.9 ± 0.9 | 6.8 ± 1.0 |
NO2−-N | 0.1 ± 0.05 | 0.1 ± 0.04 | 0.1 ± 0.03 | 0.2 ± 0.04 | ND | 0.1 ± 0.03 | 0.4 ± 0.03 | 0.6 ± 0.06 |
Soluble P | 399.8 ± 45.1 | 307.0 ± 41.0 | 598.7 ± 85.7 | 48.3 ± 14.9 | 363.6 ± 31.5 | 108.7 ± 12.9 | 507.2 ± 74.1 | 36.8 ± 6.8 |
Soluble K | 744.3 ± 80.2 | 783.8 ± 115.3 | 850.3 ± 93.3 | 911.2 ± 154.5 | 722.5 ± 79.7 | 360.0 ± 27.9 | 681.5 ± 29.0 | 1109.2 ± 89.4 |
Hg | 0.012 ± 0.04 | 0.016 ± 0.02 | 0.074 ± 0.09 | 0.023 ± 0.07 | 0.002 ± 0.01 | 0.001 ± 0.01 | ND | 0.001 ± 0.01 |
Cr | 13.20 ± 1.23 | 0.01 ± 0.01 | ND | ND | 16.80 ± 3.89 | 0.10 ± 0.03 | 0.09 ± 0.01 | ND |
Cd | 0.06 ± 0.01 | 0.02 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.06 ± 0.02 | 0.02 ± 0.01 | 0.01 ± 0.01 | 0.07 ± 0.01 |
Pb | 0.79 ± 0.11 | 0.62 ± 0.08 | 1.36 ± 0.47 | 0.68 ± 0.08 | 1.13 ± 0.55 | 0.23 ± 0.05 | 0.20 ± 0.06 | 0.98 ± 0.29 |
As | 0.15 ± 0.04 | 0.13 ± 0.03 | 0.14 ± 0.02 | 0.11 ± 0.04 | 0.13 ± 0.03 | 0.16 ± 0.06 | 0.16 ± 0.03 | 0.09 ± 0.01 |
Zn | 107.2 ± 15.5 | 20.0 ± 4.1 | 27.8 ± 6.6 | 22.0 ± 6.1 | 217.1 ± 52.7 | 7.3 ± 0.9 | 6.1 ± 0.7 | 71.6 ± 17.7 |
Cu | 37.8 ± 7.5 | 9.6 ± 0.9 | 18.3 ± 4.3 | 7.2 ± 0.9 | 72.4 ± 15.9 | 10.3 ± 2.1 | 5.5 ± 0.9 | 24.2 ± 5.7 |
Item | Control Soil | Fertilized Soil | ||||
---|---|---|---|---|---|---|
1a | 2a | 3a | 1a | 2a | 3a | |
pH | 7.48 | 6.98 | 7.35 | 7.33 | 7.42 | 7.44 |
EC (ms·cm−1) | 0.831 | 0.619 | 0.725 | 0.915 | 0.844 | 0.896 |
Bulk density (g·cm−3) | 1.33 | 1.36 | 1.32 | 1.31 | 1.29 | 1.30 |
Total porosity (%) | 50.18 | 49.20 | 48.92 | 52.24 | 53.53 | 52.14 |
Grain size (%) | >5 mm: 52.0 | >5 mm: 49.7 | >5 mm: 52.4 | >5 mm: 48.0 | >5 mm: 40.8 | >5 mm: 42.6 |
5~2 mm: 17.6 | 5~2 mm: 20.4 | 5~2 mm: 19.4 | 5~2 mm: 23.6 | 5~2 mm: 27.5 | 5~2 mm: 25.7 | |
2~1 mm: 7.7 | 2~1 mm: 10.9 | 2~1 mm: 9.7 | 2~1 mm: 8.5 | 2~1 mm: 10.7 | 2~1 mm: 10.3 | |
1~0.5 mm: 9.4 | 1~0.5 mm: 9.2 | 1~0.5 mm: 8.5 | 1~0.5 mm: 9.5 | 1~0.5 mm: 9.6 | 1~0.5 mm: 10.2 | |
0.5~0.25 mm: 7.7 | 0.5~0.25 mm: 6.2 | 0.5~0.25 mm: 5.5 | 0.5~0.25 mm: 6.5 | 0.5~0.25 mm: 8.5 | 0.5~0.25 mm: 7.9 | |
<0.25 mm: 5.6 | <0.25 mm: 3.6 | <0.25 mm: 4.6 | <0.25 mm: 4.0 | <0.25 mm: 2.9 | <0.25 mm: 3.3 |
Item | OM (g·kg−1) | Total N (g·kg−1) | Total P (g·kg−1) | Total K (g·kg−1) | NH4+-N (mg·kg−1) | NO3—N (mg·kg−1) | Available K (mg·kg−1) |
---|---|---|---|---|---|---|---|
Control soil | 15.37 ± 3.37 | 1.13 ± 0.06 | 0.78 ± 0.04 | 23.13 ± 1.81 | 4.0 ± 0.7 | 27.0 ± 1.8 | 508.7 ± 46.9 |
Fertilized soil | 20.87 ± 2.56 | 1.29 ± 0.06 | 1.10 ± 0.10 | 22.80 ± 2.65 | 4.7 ± 1.5 | 17.9 ± 4.5 | 592.7 ± 34.9 |
Metals | Control Soil | Fertilized Soil | Maximum Permissible Content 1 | ||||||
---|---|---|---|---|---|---|---|---|---|
1a | 2a | 3a | Mean ± SD | 1a | 2a | 3a | Mean ± SD | ||
Hg | 0.42 | 0.17 | 0.31 | 0.30 ± 0.13 | 0.32 | 0.17 | 0.31 | 0.27 ± 0.08 | 1 |
Cr | 83.6 | 110 | 91.5 | 95.0 ± 13.6 | 77.6 | 100 | 84.3 | 87.3 ± 11.5 | 250 |
Cd | 1.7 | 2 | 1.91 | 1.9 ± 0.2 | 1.5 | 2.1 | 2.12 | 1.9 ± 0.4 | 0.6 |
Pb | 64.5 | 75 | 69.1 | 69.5 ± 5.3 | 59.4 | 71 | 78.9 | 69.8 ± 9.8 | 350 |
As | 38.5 | 30.1 | 34.6 | 34.4 ± 4.2 | 42.2 | 33.2 | 38.1 | 37.8 ± 4.5 | 25 |
Zn | 139.2 | 189 | 153 | 160.4 ± 25.7 | 223.6 | 210 | 213 | 215.5 ± 7.1 | 300 |
Cu | 92.9 | 90 | 92.7 | 91.9 ± 1.6 | 90.2 | 92 | 94.3 | 92.9 ± 2.1 | 100 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Hua, Y.; Deng, L. Nutrient Status and Contamination Risks from Digested Pig Slurry Applied on a Vegetable Crops Field. Int. J. Environ. Res. Public Health 2016, 13, 406. https://doi.org/10.3390/ijerph13040406
Zhang S, Hua Y, Deng L. Nutrient Status and Contamination Risks from Digested Pig Slurry Applied on a Vegetable Crops Field. International Journal of Environmental Research and Public Health. 2016; 13(4):406. https://doi.org/10.3390/ijerph13040406
Chicago/Turabian StyleZhang, Shaohui, Yumei Hua, and Liangwei Deng. 2016. "Nutrient Status and Contamination Risks from Digested Pig Slurry Applied on a Vegetable Crops Field" International Journal of Environmental Research and Public Health 13, no. 4: 406. https://doi.org/10.3390/ijerph13040406
APA StyleZhang, S., Hua, Y., & Deng, L. (2016). Nutrient Status and Contamination Risks from Digested Pig Slurry Applied on a Vegetable Crops Field. International Journal of Environmental Research and Public Health, 13(4), 406. https://doi.org/10.3390/ijerph13040406