Recent Advances in the Determination of Pesticides in Environmental Samples by Capillary Electrophoresis
Abstract
:1. Introduction
2. Sample Pretreatment Techniques
2.1. Dispersive Liquid-Liquid Microextraction
2.2. Solid Phase Extraction
2.3. Solid-Phase Microextraction
2.4. Matrix Solid-Phase Dispersion
2.5. Quick, Easy, Cheap, Effective, Rugged, and Safe
3. Pesticide Analysis Using Capillary Electrophoresis
3.1. Capillary Zone Electrophoresis
3.2. Micellar Electrokinetic Chromatography
3.3. Other Approaches
4. On-Line Preconcentration of Pesticides by Capillary Electrophoresis
4.1. pH-Mediated Stacking
4.2. Field-Amplified Sample Stacking and Large-Volume Sample Stacking
4.3. Sweeping
4.4. Other Stacking Strategies
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
C4D | Capacitively coupled contactless conductivity detection |
CE | Capillary electrophoresis |
CZE | Capillary zone electrophoresis |
DLLME | Dispersive liquid-liquid microextraction |
FASS | Field-amplified sample stacking |
GC | Gas chromatography |
HPLC | High performance liquid chromatography |
LIF | Laser-induced fluorescence |
LLE | Liquid-liquid extraction |
LOD | Limit of detection |
LVSS | Large-volume sample stacking |
MEKC | Micellar electrokinetic chromatography |
MRLs | Maximal residue limits |
MS | Mass spectrometry |
MSPD | Matrix solid-phase dispersion |
QuEChERS | Quick, easy, cheap, effective, rugged, and safe |
SDS | Sodium dodecyl sulfate |
SPE | Solid phase extraction |
SPME | Solid-phase microextraction |
References
- Andreu, V.; Picó, Y. Determination of currently used pesticides in biota. Anal. Bioanal. Chem. 2012, 404, 2659–2681. [Google Scholar] [CrossRef] [PubMed]
- Inglezakis, V.J.; Moustakas, K. Household hazardous waste management: A review. J. Environ. Manag. 2015, 150, 310–321. [Google Scholar] [CrossRef] [PubMed]
- Damalas, C.A. Understanding benefits and risks of pesticide use. Sci. Res. Essays 2009, 4, 945–949. [Google Scholar]
- Mahour, R.; Khan, M.F.; Forbes, S.; Perez-Estrada, L.A. Pesticides and herbicides. Water Environ. Res. 2014, 86, 1545–1578. [Google Scholar] [CrossRef]
- Koureas, M.; Tsakalof, A.; Tsatsakis, A.; Hadjichristodoulou, C. Systematic review of biomonitoring studies to determine the association between exposure to organophosphorus and pyrethroid insecticides and human health outcomes. Toxicol. Lett. 2012, 210, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Odukkathil, G.; Vasudevan, N. Toxicity and bioremediation of pesticides in agricultural soil. Rev. Environ. Sci. Biotechnol. 2013, 12, 421–444. [Google Scholar] [CrossRef]
- Rodrigo, M.A.; Oturan, N.; Oturan, M.A. Electrochemically assisted remediation of pesticides in soils and water: A review. Chem. Rev. 2014, 114, 8720–8745. [Google Scholar] [CrossRef] [PubMed]
- Handford, C.E.; Elliott, C.T.; Campbell, K. A review of the global pesticide legislation and the scale of challenge in reaching the global harmonization of food safety standards. Integrated Environ. Assess. Manag. 2015, 11, 525–536. [Google Scholar] [CrossRef] [PubMed]
- Pesticide Residues in Food and Feeds. Codex Pesticides Residues in Food Online Database. Available online: http://www.codexalimentarius.org/standards/pestres/en/ (accessed on 5 February 2016).
- Li, L.; Zhou, S.; Jin, L.; Zhang, C.; Liu, W. Enantiomeric separation of organophosphorus pesticides by high-performance liquid chromatography, gas chromatography and capillary electrophoresis and their applications to environmental fate and toxicity assays. J. Chromatogr. B 2010, 878, 1264–1276. [Google Scholar] [CrossRef] [PubMed]
- Tankiewicz, M.; Fenik, J.; Biziuk, M. Determination of organophosphorus and organonitrogen pesticides in water samples. Trends Anal. Chem. 2010, 29, 1050–1063. [Google Scholar] [CrossRef]
- González-Curbelo, M.Á.; Herrera-Herrera, A.V.; Ravelo-Pérez, L.M.; Hernández-Borges, J. Sample-preparation methods for pesticide-residue analysis in cereals and derivatives. Trends Anal. Chem. 2012, 38, 32–51. [Google Scholar] [CrossRef]
- Cserháti, T.; Szőgyi, M. Chromatographic determination of fungicides in biological and environmental matrices. New achievements. Biomed. Chromatogr. 2012, 26, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Pateiro-Moure, M.; Arias-Estévez, M.; Simal-Gándara, J. Critical review on the environmental fate of quaternary ammonium herbicides in soils devoted to vineyards. Environ. Sci. Technol. 2013, 47, 4984–4998. [Google Scholar] [CrossRef] [PubMed]
- Bruzzoniti, M.C.; Checchini, L.; De Carlo, R.M.; Orlandini, S.; Rivoira, L.; Del Bubba, M. QuEChERS sample preparation for the determination of pesticides and other organic residues in environmental matrices: A critical review. Anal. Bioanal. Chem. 2014, 406, 4089–4116. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.-Y.; He, Y.-Z. Green analytical methodologies combining liquid-phase microextraction with capillary electrophoresis. Trends Anal. Chem. 2010, 29, 629–635. [Google Scholar] [CrossRef]
- Kumar, A.; Malik, A.K.; Picó, Y. Sample preparation methods for the determination of pesticides in foods using CE-UV/MS. Electrophoresis 2010, 31, 2115–2125. [Google Scholar] [CrossRef] [PubMed]
- Piñero, M.-Y.; Bauza, R.; Arce, L. Thirty years of capillary electrophoresis in food analysis laboratories: Potential applications. Electrophoresis 2011, 32, 1379–1393. [Google Scholar] [CrossRef] [PubMed]
- Rojano-Delgado, A.M.; Luque de Castro, M.D. Capillary electrophoresis and herbicide analysis: Present and future perspectives. Electrophoresis 2014, 35, 2509–2519. [Google Scholar] [CrossRef] [PubMed]
- Elbashir, A.A.; Aboul-Enein, H.Y. Separation and analysis of triazine herbcide residues by capillary electrophoresis. Biomed. Chromatogr. 2015, 29, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Duan, C.; Guan, Y. Sorptive extraction techniques in sample preparation for organophosphorus pesticides in complex matrice. J. Chromatogr. B 2010, 878, 1216–1225. [Google Scholar] [CrossRef] [PubMed]
- Tankiewicz, M.; Fenik, J.; Biziuk, M. Solventless and solvent-minimized sample preparation techniques for determining currently used pesticides in water samples: A review. Talanta 2011, 86, 8–22. [Google Scholar] [CrossRef] [PubMed]
- Ojeda, C.B.; Rojas, F.S. Separation and preconcentration by dispersive liquid–liquid microextraction procedure: Recent applications. Chromatographia 2011, 74, 651–679. [Google Scholar] [CrossRef]
- Vidal, L.; Riekkola, M.-L.; Canals, A. Ionic liquid-modified materials for solid-phase extraction and separation: A review. Anal. Chem. Acta 2012, 715, 19–41. [Google Scholar] [CrossRef] [PubMed]
- Ramautar, R.; de Jong, G.J.; Somsen, G.W. Developments in coupled solid-phase extraction–capillary electrophoresis 2009–2011. Electrophoresis 2012, 33, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Kohler, I.; Schappler, J.; Rudaz, S. Microextraction techniques combined with capillary electrophoresis in bioanalysis. Anal. Bioanal. Chem. 2013, 405, 125–141. [Google Scholar] [CrossRef] [PubMed]
- Santaladchaiyakit, Y.; Srijaranai, S.; Burakham, R. Methodological aspects of sample preparation for the determination of carbamate residues: A review. J. Sep. Sci. 2012, 35, 2373–2389. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Li, J.; Ma, J.; Chen, L. Recent advances in enrichment techniques for trace analysis in capillary electrophoresis. Electrophoresis 2012, 33, 2933–2952. [Google Scholar] [CrossRef] [PubMed]
- Abdulra’uf, L.B.; Sirhan, A.Y.; Tan, G.H. Recent developments and applications of liquid phase microextraction in fruits and vegetables analysis. J. Sep. Sci. 2012, 35, 3540–3553. [Google Scholar] [CrossRef] [PubMed]
- Escudero, L.B.; Grijalba, A.C.; Martinis, E.M.; Wuilloud, R.G. Bioanalytical separation and preconcentration using ionic liquids. Anal. Bioanal. Chem. 2013, 405, 7597–7613. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, C.; Ribeiro, A.R.; Maia, A.S.; Gonçalves, V.M.F.; Tiritan, M.E. New trends in sample preparation techniques for environmental analysis. Crit. Rev. Anal. Chem. 2014, 44, 142–185. [Google Scholar] [CrossRef] [PubMed]
- Farajadeh, M.A.; Sorouraddin, S.M.; Mogaddam, M.R.A. Liquid phase microextraction of pesticides: A review on current methods. Microchim. Acta 2014, 181, 829–851. [Google Scholar] [CrossRef]
- He, Y. Recent advances in application of liquid-based micro-extraction. Chem. Pap. 2014, 68, 995–1007. [Google Scholar] [CrossRef]
- Viñas, P.; Campillo, N.; López-García, I.; Hernández-Córdoba, M. Dispersive liquid–liquid microextraction in food analysis. A critical review. Anal. Bioanal. Chem. 2014, 406, 2067–2099. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, C.; Song, S.; Feng, T.; Wang, C.; Wang, Z. Application of dispersive liquid–liquid microextraction combined with sweeping micellar electrokinetic chromatography for trace analysis of six carbamate pesticides in apples. Anal. Methods 2010, 2, 54–62. [Google Scholar] [CrossRef]
- Moreno-González, D.; Gámiz-Gracia, L.; García-Campaña, A.M.; Bosque-Sendra, J.M. Use of dispersive liquid–liquid microextraction for the determination of carbamates in juice samples by sweeping-micellar electrokinetic chromatography. Anal. Bioanal. Chem. 2011, 400, 1329–1338. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yang, X.; Yin, X.; Wang, C.; Wang, Z. Dispersive liquid–liquid microextraction combined with sweeping micellar electrokinetic chromatography for the determination of some neonicotinoid insecticides in cucumber samples. Food Chem. 2012, 133, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Soisungnoen, P.; Burakham, R.; Srijaranai, S. Determination of organophosphorus pesticides using dispersive liquid–liquid microextraction combined with reversed electrode polarity stacking mode—Micellar electrokinetic chromatography. Talanta 2012, 98, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wen, Y.; Li, J.; Wang, H.; Ding, Y.; Chen, L. Determination of three phenoxyacid herbicides in environmental water samples by the application of dispersive liquid-liquid microextraction coupled with micellar electrokinetic chromatography. Cent. Eur. J. Chem. 2013, 11, 394–403. [Google Scholar] [CrossRef]
- Xu, L.; Luan, F.; Liu, H.; Gao, Y. Dispersive liquid-liquid microextraction combined with non-aqueous capillary electrophoresis for the determination of imazalil, prochloraz and thiabendazole in apples, cherry tomatoes and grape juice. J. Sci. Food Agric. 2015, 95, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Wu, Y.; Zheng, M.; Yang, L.; Wu, X.; Lin, X.; Xie, Z. Pressurized capillary electrochromatography with indirect amperometric detection for analysis of organophosphorus pesticide residues. Analyst 2010, 135, 2150–2156. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Peng, H.; Wang, W.; Xu, Y.; Zhang, X. Determination of a novel fungicide phenazine-1-carboxylic acid in soil samples using sample stacking capillary electrophoresis combined with solid phase extraction. Anal. Lett. 2010, 43, 1823–1833. [Google Scholar] [CrossRef]
- Quesada-Molina, C.; del Olmo-Iruela, M.; García-Campaña, A.M. Trace determination of sulfonylurea herbicides in water and grape samples by capillary zone electrophoresis using large volume sample stacking. Anal. Bioanal. Chem. 2010, 397, 2593–2601. [Google Scholar] [CrossRef] [PubMed]
- Ettiene, G.; Bauza, R.; Plata, M.R.; Contento, A.M.; Ríos, Á. Determination of neonicotinoid insecticides in environmental samples by micellar electrokinetic chromatography using solid-phase treatments. Electrophoresis 2012, 33, 2969–2977. [Google Scholar] [CrossRef] [PubMed]
- Santalad, A.; Zhou, L.; Shang, F.; Fitzpatrick, D.; Burakham, R.; Srijaranai, S.; Glennon, J.D.; Luong, J.H.T. Micellar electrokinetic chromatography with amperometric detection and off-line solid-phase extraction for analysis of carbamate insecticides. J. Chromatogr. A 2010, 1217, 5288–5297. [Google Scholar] [CrossRef] [PubMed]
- Ravelo-Pérez, L.M.; Herrera-Herrera, A.V.; Hernández-Borges, J.; Rodríguez-Delgado, M.Á. Carbon nanotubes: Solid-phase extraction. J. Chromatogr. A 2010, 1217, 2618–2641. [Google Scholar] [CrossRef] [PubMed]
- Pyrzynska, K. Carbon nanotubes as sorbents in the analysis of pesticides. Chemosphere 2011, 83, 1407–1413. [Google Scholar] [CrossRef] [PubMed]
- Wierucka, M.; Biziuk, M. Application of magnetic nanoparticles for magnetic solid-phase extraction in preparing biological, environmental and food samples. Trends Anal. Chem. 2014, 59, 50–58. [Google Scholar] [CrossRef]
- Springer, V.H.; Lista, A.G. A simple and fast method for chlorsulfuron and metsulfuron methyl determination in water samples using multiwalled carbon nanotubes (MWCNTs) and capillary electrophoresis. Talanta 2010, 83, 126–129. [Google Scholar] [CrossRef] [PubMed]
- Tabani, H.; Fakhari, A.R.; Shahsavani, A.; Behbahani, M.; Salarian, M.; Bagheri, A.; Nojavan, S. Combination of graphene oxide-based solid phase extraction and electro membrane extraction for the preconcentration of chlorophenoxy acid herbicides in environmental samples. J. Chromatogr. A 2013, 1300, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Mao, J.; Xiao, J.; Xie, G. Determination of paraquat and diquat preconcentrated with N doped TiO2 nanotubes solid phase extraction cartridge prior to capillary electrophoresis. Anal. Methods 2010, 2, 1063–1068. [Google Scholar] [CrossRef]
- Dong, Y.-L.; Guo, D.-Q.; Cui, H.; Li, X.-J.; He, Y.-J. Magnetic solid phase extraction of glyphosate and aminomethylphosphonic acid in river water using Ti4+-immobilized Fe3O4 nanoparticles by capillary electrophoresis. Anal. Methods 2015, 7, 5862–5868. [Google Scholar] [CrossRef]
- Kataoka, H.; Saito, K. Recent advances in SPME techniques in biomedical analysis. J. Pharm. Biomed. Anal. 2011, 54, 926–950. [Google Scholar] [CrossRef] [PubMed]
- Spietelun, A.; Marcinkowski, Ł.; de la Guardia, M.; Namieśnik, J. Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry. J. Chromatogr. A 2013, 1321, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Spietelun, A.; Pilarczyk, M.; Kloskowski, A.; Namieśnik, J. Polyethylene glycol-coated solid-phase microextraction fibres for the extractionof polar analytes—A review. Talanta 2011, 87, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhang, X.; Long, Z.; Zhang, J.; Zheng, C. Molecularly imprinted dispersive solid-phase microextraction for determination of sulfamethazine by capillary electrophoresis. Microchim. Acta 2012, 178, 293–299. [Google Scholar] [CrossRef]
- Baker, S.A.; Long, A.R.; Short, C.R. Isolation of drug residues from tissues by solid phase dispersion. J. Chromatogr. 1989, 475, 353–361. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, L.; Cheng, M. Determination of phenylureas herbicides in food stuffs based on matrix solid-phase dispersion extraction and capillary electrophoresis with electrochemiluminescence detection. J. Chromatogr. A 2011, 1218, 9115–9119. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y. Simultaneous determination of phenylurea herbicides in yam by capillary electrophoresis with electrochemiluminescence detection. J. Chromatogr. B 2015, 986–987, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [PubMed]
- Official Methods of Analysis. Pesticide Residues in Foods by Acetonitrile Extraction and Partitioning with Magnesium Sulfate. Available online: http://www.eoma.aoac.org/methods/info.asp?ID=48938 (accessed on 5 February 2016).
- Daniel, D.; dos Santos, V.B.; Vidal, D.T.R.; do Lago, C.L. Determination of halosulfuron-methyl herbicide in sugarcane juice and tomato by capillary electrophoresis—Tandem mass spectrometry. Food Chem. 2015, 175, 82–84. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Cao, J.; Tian, K.; Hu, Y.; Su, H.; Wan, J.; Li, P. Trace determination of five organophosphorus pesticides by using QuEChERS coupled with dispersive liquid–liquid microextraction and stacking before micellar electrokinetic chromatography. Anal. Methods 2015, 7, 5801–5807. [Google Scholar] [CrossRef]
- Geiger, M.; Hogerton, A.L.; Bowser, M.T. Capillary electrophoresis. Anal. Chem. 2012, 84, 577–596. [Google Scholar] [CrossRef] [PubMed]
- Poinsot, V.; Ong-Meang, V.; Gavard, P.; Couderc, F. Recent advances in amino acids analysis by capillary electromigration methods, 2011–2013. Electrophoresis 2014, 35, 50–68. [Google Scholar] [CrossRef] [PubMed]
- Iwamuro, Y.; Iio-Ishimaru, R.; Chinaka, S.; Takayama, N.; Kodama, S.; Hayakawa, K. Analysis of phosphorus-containing amino acid-type herbicides by capillary electrophoresis/mass spectrometry using a chemically modified capillary having amino groups. J. Health Sci. 2010, 56, 606–612. [Google Scholar] [CrossRef]
- Rojano-Delgado, A.M.; Ruiz-Jiménez, J.; Luque de Castro, M.D.; De Prado, R. Determination of glyphosate and its metabolites in plant material by reversed-polarity CE with indirect absorptiometric detection. Electrophoresis 2010, 31, 1423–1430. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Liang, S.; Tan, X.; Meng, J. Capillary electrophoresis analysis for glyphosate, glufosinate and aminomethylphosphonic acid with laser-induced fluorescence detection. Chinese J. Chromatogr. 2012, 30, 1295–1300. [Google Scholar] [CrossRef]
- See, H.H.; Hauser, P.C.; Sanagi, M.M.; Ibrahim, W.A.W. Dynamic supported liquid membrane tip extraction of glyphosate and aminomethylphosphonic acid followed by capillary electrophoresis with contactless conductivity detection. J. Chromatogr. A 2010, 1217, 5832–5838. [Google Scholar] [CrossRef] [PubMed]
- Sung, I.H.; Lee, Y.W.; Chung, D.S. Liquid extraction surface analysis in-line coupled with capillary electrophoresis for direct analysis of a solid surface sample. Anal. Chim. Acta 2014, 838, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Horčičiak, M.; Masár, M.; Bodor, R.; Danč, L.; Bel, P. Trace analysis of glyphosate in water by capillary electrophoresis on a chip with high sample volume loadability. J. Sep. Sci. 2012, 35, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Gao, X.; Zhao, L.; Peng, X.; Zhou, L.; Wang, J.; Pu, Q. Fast and interference-free determination of glyphosate and glufosinate residues through electrophoresis in disposable microfluidic chips. J. Chromatogr. A 2013, 1281, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Mao, J.; Xiao, J.; Xie, G. Uses of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate as a good separation electrolyte for direct electrophoretic separation of quaternary ammonium herbicides. J. Sep. Sci. 2010, 33, 1288–1293. [Google Scholar] [CrossRef] [PubMed]
- Wuethrich, A.; Haddad, P.R.; Quirino, J.P. Green sample preparation for liquid chromatography and capillary electrophoresis of anionic and cationic analytes. Anal. Chem. 2015, 87, 4117–4123. [Google Scholar] [CrossRef] [PubMed]
- Tabani, H.; Fakhari, A.R.; Zand, E. Low-voltage electromembrane extraction combined with cyclodextrin modified capillary electrophoresis for the determination of phenoxy acid herbicides in environmental samples. Anal. Methods 2013, 5, 1548–1555. [Google Scholar] [CrossRef]
- Li, R.-H.; Liu, D.-H.; Yang, Z.-H.; Zhou, Z.-Q.; Wang, P. Vortex-assisted surfactant-enhanced-emulsification liquid–liquid microextraction for the determination of triazine herbicides in water samples by microemulsion electrokinetic chromatography. Electrophoresis 2012, 33, 2176–2183. [Google Scholar] [CrossRef] [PubMed]
- Islam, K.; Jha, S.K.; Chand, R.; Han, D.; Kim, Y.-S. Fast detection of triazine herbicides on a microfluidic chip using capillary electrophoresis pulse amperometric detection. Microelectron. Eng. 2012, 97, 391–395. [Google Scholar] [CrossRef]
- Islam, K.; Chand, R.; Han, D.; Kim, Y.-S. Microchip capillary electrophoresis based electroanalysis of triazine herbicides. Bull. Environ. Contam. Toxicol. 2015, 94, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Liu, N.; Wang, L.; Wu, Y. Effective separation and simultaneous detection of cyromazine and melamine in food by capillary electrophoresis. Electrophoresis 2010, 31, 2236–2241. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Hernández, L.; Hernández-Domínguez, D.; Bernal, J.; Neusüß, C.; Martín, M.T.; Bernal, J.L. Capillary electrophoresis—Mass spectrometry as a new approach to analyze neonicotinoid insecticides. J. Chromatogr. A 2014, 1359, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Fang, G.; Deng, Q.; Zhang, Y.; Feng, J.; Wang, S. Determination of metolcarb in food by capillary electrophoresis immunoassay with a laser-induced fluorescence detector. Electrophoresis 2012, 33, 1471–1476. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-H.; Hu, C.-C.; Chiu, T.-C. Analysis of carbofuran, carbosulfan, isoprocarb, 3-hydroxycarbofuran, and 3-ketocarbofuran by micellar electrokinetic chromatography. J. Sep. Sci. 2012, 35, 1359–1364. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Fung, Y. Capillary electrophoresis with immobilized quantum dot fluorescence detection for rapid determination of organophosphorus pesticides in vegetables. Electrophoresis 2010, 31, 3107–3114. [Google Scholar] [CrossRef] [PubMed]
- Araujo, L.; Rojas, C.; Cubillan, D.; Villa, N.; Mercado, J.; Prieto, A. Determination of trifloxystrobin, tebufenozide, and halofenozide in foods by micellar electrokinetic capillary chromatography. Anal. Lett. 2010, 43, 2340–2348. [Google Scholar] [CrossRef]
- Liu, C.; Feng, X.; Qian, H.; Fang, G.; Wang, S. Determination of norfloxacin in food by capillary electrophoresis immunoassay with laser-induced fluorescence detector. Food Anal. Methods 2015, 8, 596–603. [Google Scholar] [CrossRef]
- Arribas, A.S.; Moreno, M.; Bermejo, E.; Zapardiel, A.; Chicharro, M. CZE separation of amitrol and triazine herbicides in environmental water samples with acid-assisted on-column preconcentration. Electrophoresis 2011, 32, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Yang, X.-D.; Fan, L.-Y.; Zhang, W.; Xu, Y.-Q.; Cao, C.-X. Stacking and determination of phenazine-1-carboxylic acid with low pK a in soil via moving reaction boundaryformed by alkaline and double acidic buffers in capillary electrophoresis. Anal. Bioanal. Chem. 2011, 399, 3441–3450. [Google Scholar] [CrossRef] [PubMed]
- Quirino, J.P.; Anres, P.; Sirieix-Plénet, J.; Delaunay, N.; Gareil, P. Potential of long chain ionic liquids for on-line sample concentration techniques: Application to micelle to solvent stacking. J. Chromatogr. A 2011, 1218, 5718–5724. [Google Scholar] [CrossRef] [PubMed]
- See, H.H.; Hauser, P.C.; Ibrahim, W.A.W.; Sanagi, M.M. Rapid and direct determination of glyphosate, glufosinate, and aminophosphonic acid by online preconcentration CE with contactless conductivity detection. Electrophoresis 2010, 31, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Gao, B.; Wang, W.; Fan, L.; Xu, Y.; Zhang, X.; Cao, C. Experimental study on the determination and degradation of pyoluteorin in soil via CE with Soxhlet’s extraction and field-amplified sample stacking. Chromatographia 2011, 73, 609–612. [Google Scholar] [CrossRef]
- Yi, L.-X.; Chen, G.-H.; Fang, R.; Zhang, L.; Shao, Y.-X.; Chen, P.; Tao, X.-X. On-line preconcentration and determination of six sulfonylurea herbicides in cereals by MEKC with large-volume sample stacking and polarity switching. Electrophoresis 2013, 34, 1304–1311. [Google Scholar] [CrossRef] [PubMed]
- Fang, R.; Chen, G.-H.; Yi, L.-X.; Shao, Y.-X.; Zhang, L.; Cai, Q.-H.; Xiao, J. Determination of eight triazine herbicide residues in cereal and vegetable by micellar electrokinetic capillary chromatography with on-line sweeping. Food Chem. 2014, 145, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yin, X.; Yang, Q.; Wang, C.; Wang, Z. Determination of some sulfonylurea herbicides in soil by a novel liquid-phase microextraction combined with sweeping micellar electrokinetic chromatography. Anal. Bioanal. Chem. 2011, 401, 1071–1081. [Google Scholar] [CrossRef] [PubMed]
- Santalad, A.; Srijaranai, S.; Burakham, R. Reversed electrode polarity stacking sample preconcentration combined with micellar electrokinetic chromatography for the analysis of carbamate insecticide residues in fruit juices. Food Anal. Methods 2012, 5, 96–103. [Google Scholar] [CrossRef]
- Kukusamude, C.; Srijaranai, S.; Quirino, J.P. Stacking and separation of neutral and cationic analytes in interface-free two-dimensional heart-cutting capillary electrophoresis. Anal. Chem. 2014, 86, 3159–3166. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2009. Available online: http://www.who.int/foodsafety/publications/classification-pesticides/en/ (accessed on 6 February 2016).
- Kazarian, A.A.; Hilder, E.F.; Breadmore, M.C. Online sample pre-concentration via dynamic pH junction in capillary and microchip electrophoresis. J. Sep. Sci. 2011, 34, 2800–2821. [Google Scholar] [CrossRef] [PubMed]
- Chiu, T.-C. Recent advances in on-line concentration and separation of amino acids using capillary electrophoresis. Anal. Bioanal. Chem. 2013, 405, 7919–7930. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, F.; Otsuka, K. Recent applications of on-line sample preconcentration techniques in capillary electrophoresis. J. Chromatogr. A 2014, 1335, 43–60. [Google Scholar] [CrossRef] [PubMed]
- Malá, Z.; Šlampová, A.; Křivánková, L.; Gebauer, P.; Boček, P. Contemporary sample stacking in analytical electrophoresis. Electrophoresis 2015, 36, 15–35. [Google Scholar] [CrossRef] [PubMed]
- Breadmore, M.C.; Tubaon, R.M.; Shallan, A.I.; Phung, S.C.; Keyon, A.S.A.; Gstoettenmayr, D.; Prapatpong, P.; Alhusban, A.A.; Ranjbar, L.; See, H.H.; et al. Recent advances in enhancing the sensitivity of electrophoresis and electromatography in capillary and microchips (2012–2014). Electrophoresis 2015, 36, 36–61. [Google Scholar] [CrossRef] [PubMed]
- Pundir, C.S.; Chauhan, N. Acetylcholinesterase inhibition-based biosensors for pesticide determination: A review. Anal. Biochem. 2012, 429, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kim, K.-H.; Deep, A. Recent advancements in sensing techniques based on functional materials for organophosphate pesticides. Biosens. Bioelectron. 2015, 70, 469–481. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, X. Aptamer-based technology for food analysis. Appl. Biochem. Biotechnol. 2015, 175, 603–624. [Google Scholar] [CrossRef] [PubMed]
Analytes | Matrix | Pretreatment | CE mode | Detection | Separation Buffer | LOD | Ref. |
---|---|---|---|---|---|---|---|
Glyphosate, aminomethylphosphonic acid | River water, Round® | Fe3O4@PDA-Ti4+ nanoparticles based mSPE | CZE | DAD (203 nm) | 25 mM tetraborate (pH 9.3) | 0.4 ng/mL | [52] |
Glyphosate, glufosinate, bialaphos, aminomethylphosphonic acid, 3-methylphosphinicopropionic acid | Soil, tea beverage | Filtration | CZE | MS | 100 mM formic acid adjusted with 100 mM ammonia (pH 3.4) | 0.5–10 μg/mL | [66] |
Glyphosate, aminomethylphosphonic acid, glyoxylate, sarcosine, formaldehyde | Lolium spp. | LLE | CZE | DAD (indirect, 220 nm) | 10mM potassium phthalate (pH 7.5), 0.5 mM CTAB, 10% ACN | 0.1–0.2 μg/mL | [67] |
Glyphosate, glufosinate, aminomethylphosphonic acid | Lake and tap water, soil | Filtration | CZE | LIF | 30 mM boric acid (pH 9.5), 15 mM Brij-35 | 1.99–6.14 ng/kg | [68] |
Glyphosate, aminomethylphosphonic acid | Tap and river water | SLMTE | MEKC | C4D | 12mM histidine, 8 mM MES (pH 6.3), 75 μM CTAB, 3% methanol | 0.06–0.005 μg/L | [69] |
Glyphosate, glufosinate-ammonium, aminomethylphosphonic acid | Apple surface | LE | MEKC | LIF (520 nm) | 10 mM sodium tetraborate (pH 9.90), 10 mM SDS,10% (v/v) ACN | 1–10 ppb | [70] |
Glyphosate | Tap water | Online ITP | microchip CE | C4D | 10 mM MES, Bis-Tris (pH 6.1), 0.1% MHEC | 2.5 μg/L | [71] |
Glyphosate, glufosinate | River water, broccoli, soybean | Water: filtration; broccoli, soybean: LLE | microchip CE | LIF | 10 mM tetraborate (pH 9.0), 2% (w/v) HPC | 0.02–0.05 μg/L | [72] |
Paraquat, diquat | CZE | DAD (220 nm, 254 nm) | 50 mM 1-butyl-3-methylimidazolium hexafluorophophate (pH 5.0), 10% ethanol | N.D. | [73] | ||
Paraquat, diquat, difenzoquat | Tap and river water | SECS | CZE | UV (200 nm) | 150 mM phosphate (pH 2.4) | 0.5 ng/mL | [74] |
Paraquat, diquat | Tap and mountain water | N doped TiO2 nanotube based SPE | CZE | DAD (220 nm, 254 nm) | 50 mM 1-butyl-3-methylimidazolium hexafluorophophate, 10% ethanol (pH 5.0) | 1.95–2.59 μg/L | [51] |
Isoproturon, linuron, diuron | Vegetables, rice | MSPD | CE | ECL | 20 mM phosphate (pH 7.5), 12 mg/mL poly-β-CD | 0.1–0.2 μg/L | [58] |
Monuron, monolinuron, diuron | yam | MSPD | CZE | ECL | 25 mM phosphate (pH 8.0) | 0.01–0.05 μg/L | [59] |
Halosulfuron-methyl | Sugarcane juice, tomato | QuEChERS | CZE | MS | 20 mM NH4HCO3 (pH 8.5) | 2 ppb | [62] |
Metsulfuron methyl, chlorsulfuron | Lake, creek, reservoir, underground water | MWCNT based SPE | CZE | DAD (231 nm) | 50 mM tetraborate (pH 9.0), 3% methanol | 0.36–0.40 μg/L | [49] |
2,4-dichlorophenoxybutyric acid, 3,6-dichloro-2-methoxybenzoic acid, 2,4-dichlorophenoxyacetic acid | River water | Low-voltage-EME | CE | UV (214 nm) | 100 mM phosphate (pH 9.0), 1 mM α-CD | 10–15 ng/mL | [75] |
2-methyl-4-chlorophenoxyacetic acid, 2-(2,4-dichlorophenoxy) propanoic acid, 2-(4-chloro-2-methylphenoxy) propanoicacid | River and sea water | Graphene oxide based SPE-EME | CZE | UV (214 nm) | 75 mM phosphate (pH 9.0) | 0.3–0.5 ng/mL | [50] |
2,4-dichlorophenoxybutyric acid, 3,6-dichloro-2-methoxybenzoic acid, 2,4-dichlorophenoxyacetic acid | Lake, river, reservoir water | DLLME | MEKC | DAD (230 nm) | 10 mM tetraborate (pH 9.75), 25 mM SDS, 15% (v/v) methanol | 1.56–1.91 ng/mL | [39] |
Atrazine, simazine, ametryn prometryn, terbutryn | Well, river, reservoir water | VSLLME | MEEKC | UV (220 nm) | 10 mM borate (pH 9.5), 2.5% (w/v) SDS, 0.8% (w/v) ethyl acetate, 6.0% (w/v) 1-butanol | 0.41–0.62 ng/mL | [76] |
Atrazine, simazine, ametryn | Soil | microchip CE | Amperometry (pulsed) | 1.5% agarose, 200 mM KCl in methanol:H2O (1:1) | 0.36–0.55 nM | [77] | |
Atrazine, simazine, ametryn | Soil | LLE | microchip CE | Amperometry | 1.5% agarose, 200 mM KCl in methanol:H2O (1:1) | 0.36–0.55 nM | [78] |
Analytes | Matrix | Pretreatment | CE Mode | Detection | Separation Buffer | LOD | Ref. |
---|---|---|---|---|---|---|---|
Cyromazine | Pig and chicken feed, milk, egg | LLE | CZE | DAD (214 nm) | 50 mM phosphate (pH 3.1) | 0.12–0.13 mg/kg | [79] |
Acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid, thiamethoxam | Beeswax | LLE | CE | MS | 0.5 M ammonia | 1.0–2.3 μg/L | [80] |
Acetamiprid, thiamethoxan, imidacloprid, 6-chloronicotinic acid | Drinking and river water, soil | Water: SPE Soil: MSPD | MEKC | DAD (254 nm) | 5 mM borate (pH 10.4), 40 mM SDS, 5%(v/v) methanol | 0.103–0.810 mg/L | [44] |
Metolcarb | Rice, cucumber | Filtration | CE | LIF (520 nm) | 20 mM Na2B4O7/10 mM NaH2PO4 (pH 9.0) | 0.07 μg/L | [81] |
Methomyl, carbaryl, carbofuran, propoxur, isoprocarb, promecarb | River water, soil | SPE | MEKC | Amperometry | 20 mM tetraborate (pH 10.2), 20 mM SDS | 0.1–3 μM | [45] |
Carbofuran, carbosulfan, isoprocarb, 3-hydroxycarbofuran, 3-ketocarbofuran | Rice | LLE | MEKC | UV (200 nm) | 20 mM phosphate (pH 8.0), 15 mM SDS | 0.3–4.0 μM | [82] |
Mevinphos, phosalone, methidathion, diazinon | Tomato | LLE | MEKC | LIF (532 nm) | 30 mM tetraborate (pH 9.6), 50 mM SDS, 3% methanol | 50–180 μg/kg | [83] |
Methyl parathion, ethyl parathion, chlorpyrifos, chlorpyrifos-methyl, dimethoate, trichlorfon | Cabbage, white radish, grape, pear, orange | LLE-SPE | CEC | Amperometry (indirect) | 0.1 mM DHBA, 50% (v/v) ACN 50% (v/v) 10 mM MES (pH 5.5) | 0.008–0.2 mg/kg | [41] |
Analytes | Matrix | Pretreatment | CE Mode | Detection | Separation Buffer | LOD | Ref. |
---|---|---|---|---|---|---|---|
Trifloxystrobin, tubefenozide, halofenozide | Tomato, celery, apple juices | SPE | MEKC | UV (202 nm) | 10 mM tetraborate (pH 9.0), 18 mM SDS, 22.5% (v/v) ACN | 0.088–0.094 mg/kg | [84] |
Imazalil, prochloraz, thiabendazole | Apple, cherry tomato, grape juice | DLLME | NACE | UV (204 nm) | Methanol-ACN mixture (35:65 v/v) containing 30 mM NH4Cl, 0.5% (v/v) H3PO4 | 0.47–0.72 μg/kg | [40] |
Sulfamethazine | Milk | MIP-DSPME | CZE | UV (267 nm) | 10 mM tetraborate (pH 9.1) | 1.1 μg/L | [56] |
Norfloxacin | Chicken, pork, fish, milk | LLE | CE | LIF (520 nm) | 30 mM Na2B4O7/NaH2PO4 (pH 9.0) | 0.005 μg/L | [85] |
Analytes | Matrix | Pretreatment | CE Method | Detection | LOD | EF | Ref. |
---|---|---|---|---|---|---|---|
Amitrol, atrazine, ametryn, atraton, 2-hydroxyatrazine | Mineral, spring, tap, river water | Filtration | pH-mediated-CZE | UV (200 nm), amperometry | UV: 0.054–0.31 μM amperometry: 9.6 nM (amitrol) | N.D. | [86] |
Phenazine-1-carboxylic acid | Soil | LLE | MRB-CE | UV (248 nm) | 17 ng/g | 214 | [87] |
(4-chloro-2-methylphenoxy)acetic acid, (R)-2-(2,4-dichlorophenoxy)- propanoic acid | Untreated | MSS-CZE | UV (210, 214, 240 nm) | 0.06–0.12 μg/L | 59–110 | [88] | |
Glyphosate, glufosinate, aminophosphonic acid | Tap water | Untreated | LVSS-CE FESI-CE | C4D | 0.1–2.2 μg/L | 245–1002 | [89] |
Phenazine-1-carboxylic acid | Soil | SPE | FASS-CZE | UV (254 nm) | 0.021 μg/L | N.D. | [42] |
Pylouteorin | Soil | LLE-Soxhlet extraction | FASS-CE | UV (214 nm) | 0.107 μg/mL | N.D. | [90] |
Triasulfuron, rimsulfuron, flazasulfuron, metsulfuron-methyl, chlorsulfuron | Ground water, grape | SPE | LVSS-CZE | DAD (226 nm, 240 nm) | water: 0.04–0.12 μg/L grape: 0.97–8.30 μg/kg | N.D. | [43] |
Nicosulfuron, thifensulfuon methyl , tribenuron methyl, sulfometuron methyl, pyrazosulfuron ethyl, chlorimuron ethyl | Rice, flour oatmeal, wholemeal | LLE | LVSS-MEKC with polarity switching | UV (254 nm) | 0.22–0.89 ng/g | 570– 835 | [91] |
Simazine, atrazine, simetryn, propazine, ametryn, terbuthylazine, prometryn, terbutryn | Cereal, chives, carrots | LLE | Sweeping-MEKC | DAD (220 nm) | 0.02–0.04 ng/g | 479–610 | [92] |
Methiocarb, fenobcarb, diethofencarb, carbaryl, isoprocarb, tsumacide | Apples | DLLME | Sweeping-MEKC | DAD (200 nm) | 2.0–3.0 ng/g | 491–1834 | [35] |
Carbofuran, carbaryl, methiocarb, promecarb, oxamyl, aldicarb, methomyl, baygon, asulam, benomyl, napropamid, carbendazim | Banana juice, pineapple juice, tomato juice | DLLME | Sweeping-MEKC | DAD (210 nm) | 1–7 μg/L | N.D. | [36] |
Chlorimuron ethyl, bensulfuron methyl, tribenuron methyl, chlorsulfuron, metsulfuron methyl | Soil | DSPE-DLLME | Sweeping-MEKC | DAD (220 nm) | 0.5–1. 0 ng/g | 3000–5000 | [93] |
Thiacloprid, acetamiprid, imidaclothiz, imidacloprid | Cucumber | DLLME | Sweeping-MEKC | DAD (243 nm, 268 nm) | 0.8–1.20 ng/g | 4000–10,000 | [37] |
Dimethoate, phosphamidon, paraoxon-methyl, paraoxon, fensulfothion | Astragalus membranaceus | QuEChERS-DLLME | Sweeping-MEKC | DAD (200 nm) | 0.010–0.018 μg/mL | 90.0–167.3 | [63] |
Parathion-methyl, malathion, diazinon, azin- phos-methyl, fenitrothion | Tap, surface water | DLLME | REPSM-MEKC | DAD (200 nm) | 3–15 ng/mL | 477–635 | [38] |
Methomyl, propoxur, carbofuran, carbaryl, isoprocarb, promecarb | Mangosteen, pomegranate, orange, apple, guava, kiwi, passion fruit juices | Filtration | REPSM-MEKC | DAD (205, 214, 225 nm) | 0.01–0.10 mg/L | 4.2–12.3 | [94] |
Diquat, paraquat, difenzoquat, parathion, fenitrothion, azinphos-methyl | Water | Untreated | Sweeping with AFMC-interface-free 2-D heart-cutting-CE | UV (200 nm) | 0.004–0.02 μg/mL | 15–100 | [95] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, P.-L.; Hsieh, M.-M.; Chiu, T.-C. Recent Advances in the Determination of Pesticides in Environmental Samples by Capillary Electrophoresis. Int. J. Environ. Res. Public Health 2016, 13, 409. https://doi.org/10.3390/ijerph13040409
Chang P-L, Hsieh M-M, Chiu T-C. Recent Advances in the Determination of Pesticides in Environmental Samples by Capillary Electrophoresis. International Journal of Environmental Research and Public Health. 2016; 13(4):409. https://doi.org/10.3390/ijerph13040409
Chicago/Turabian StyleChang, Po-Ling, Ming-Mu Hsieh, and Tai-Chia Chiu. 2016. "Recent Advances in the Determination of Pesticides in Environmental Samples by Capillary Electrophoresis" International Journal of Environmental Research and Public Health 13, no. 4: 409. https://doi.org/10.3390/ijerph13040409
APA StyleChang, P. -L., Hsieh, M. -M., & Chiu, T. -C. (2016). Recent Advances in the Determination of Pesticides in Environmental Samples by Capillary Electrophoresis. International Journal of Environmental Research and Public Health, 13(4), 409. https://doi.org/10.3390/ijerph13040409