Oxidative Profile and δ-Aminolevulinate Dehydratase Activity in Healthy Pregnant Women with Iron Supplementation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Sample Collection
2.3. Hematological, Biochemical and Clinical Parameters
2.4. Thiobarbituric Acid Reactive Substances
2.5. Protein Thiol Groups
2.6. Non-Protein Thiol Groups
2.7. Vitamin C
2.8. Activity of Catalase
2.9. δ-ALA-D Activity and Reactivity Index
2.10. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ALA | 5-aminolevulinic acid |
BMI | body mass index |
DTT | dithiothreitol |
NP | non-pregnant women |
NP-SH | non-protein thiol groups |
PIS | pregnant women who were on iron supplementation |
P-SH | Protein thiol groups |
PWS | pregnant women without supplementation |
ROS | reactive oxygen species |
SD | standard deviation |
TBARS | thiobarbituric acid reactive substances |
VIT C | vitamin C |
δ-ALA-D | delta-aminolevulinate dehydratase |
References
- Aversa, S.; Pellegrino, S.; Barberi, I.; Reiter, R.J.; Gitto, E. Potential utility of melatonin as an antioxidant during pregnancy and in the perinatal period. J. Matern. Fetal Neonatal Med. 2012, 25. [Google Scholar] [CrossRef] [PubMed]
- Gitto, E.; Pellegrino, S.; Gitto, P.; Barberi, I.; Reiter, R.J. Oxidative stress of the newborn in the pre-and postnatal period and the clinical utility of melatonin. J. Pineal Res. 2009, 46. [Google Scholar] [CrossRef] [PubMed]
- Al-Gubory, K.H.; Fowler, P.A.; Garrel, C. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int. J. Biochem. Cell. Biol. 2010, 42, 1634–1650. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Jauniaux, E. Oxidative stress. Best Pract. Res. Clin. Obstet. Gynaecol. 2011, 25. [Google Scholar] [CrossRef] [PubMed]
- Balsano, C.; Alisi, A. Antioxidant effects of natural bioactive compounds. Curr. Pharm. Des. 2009, 15. [Google Scholar] [CrossRef]
- Agarwal, A.; Aponte-Mellado, A.; Premkumar, B.J.; Shaman, A.; Gupta, S. The effects of oxidative stress on female reproduction: A review. Reprod. Biol. Endocrinol. 2012, 10, 49–80. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Gutteridge, J.M.C. Reactive Species Can Be Poisonous, in Free Radicals in Biology and Medicine, 4th ed.; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Valentini, J.; Grotto, D.; Paniz, C.; Roehrs, M.; Burg, G.; Garcia, S.C. The influence of the hemodialysis treatment time under oxidative stress biomarkers in chronic renal failure patients. Biomed. Pharmacother. 2008, 62. [Google Scholar] [CrossRef] [PubMed]
- Rocha, J.B.T.; Saraiva, R.A.; Garcia, S.C.; Gravina, F.S.; Nogueira, C.W. Aminolevulinate dehydratase (d-ALA-D) as marker protein of intoxication with metals and other pro-oxidant situations. Toxicol. Res. 2012, 1. [Google Scholar] [CrossRef]
- Agarwal, A.; Gupta, S.; Sharma, R.K. Role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol. 2005, 3, 28–48. [Google Scholar] [CrossRef] [PubMed]
- Lunardi-Maia, T.; Schuelter-Trevisol, F.; Galato, D. Medication use during the first trimester of pregnancy: Drug safety and adoption of folic acid and ferrous sulphate. Rev. Bras. Ginecol. Obstet. 2014, 36, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Leal, C.A.; Schetinger, M.R.; Leal, D.B.; Morsch, V.M.; da Silva, A.S.; Rezer, J.F.; de Bairros, A.V.; Jaques, J.A. Oxidative stress and antioxidant defences in pregnant women. Redox Rep. 2011, 16, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.S.V.; Thiapó, A.P.; Souza, G.G.; Saunders, C.; Ramalho, A. Micronutrients in pregnancy and lactation. Rev. Bras. Saude Matern. Infant. 2007, 7, 237–244. [Google Scholar]
- Devrim, E.; Tarhan, I.; Ergüder, I.B.; Durak, I. Oxidant/antioxidant status of placenta, blood, and cord blood samples from pregnant women supplemented with iron. J. Soc. Gynecol. Investig. 2006, 13. [Google Scholar] [CrossRef] [PubMed]
- Lapenna, D.; Ciofani, G.; Pierdomenico, S.D.; Giamberardino, M.A.; Cuccurullo, F. Reaction conditions affecting the relationship between thiobarbituric acid reactivity and lipid peroxides in human plasma. Free Radic. Biol. Med. 2001, 31, 331–335. [Google Scholar] [CrossRef]
- Boyne, A.F.; Ellman, G.L. A methodology for analysis of tissue sulfhydryl components. Anal. Biochem. 1972, 46, 639–653. [Google Scholar] [CrossRef]
- Jacques–Silva, M.C.; Nogueira, C.W.; Broch, L.C.; Flores, E.M.; Rocha, J.B. Dyphenyl disselenides and ascorbic acid changes deposition of selenium and brain of mice. Pharmacol. Toxicol. 2001, 88, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Galley, H.; Davies, M.J.; Webster, N.R. Ascorbil radical formation in patients with sepsis: Effects of ascorbate loading. Free Radic. Biol. Med. 1996, 20, 139–143. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. Meth. Enzymol. 1984, 105, 121–126. [Google Scholar] [PubMed]
- Berlin, K.; Schaller, H. European standardized method for the determination of δ–aminolevulinic dehydratase activity in blood. Z. Klin. Chem. Klin. Biochem. 1974, 12, 389–390. [Google Scholar] [PubMed]
- Souza, A.I.; Filho, M.B.; Ferreira, L.O.C. Hematological changes and pregnancy. Rev. Bras. Hematol. Hemoter. 2002, 24. [Google Scholar] [CrossRef]
- Hill, C.; Pickinpaugh, J. Physiologic changes in pregnancy. Surg. Clin. N. Am. 2008, 88, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, A.G.M.; Bruin, P.F.C. The role of oxidative stress in COPD: Current concepts and perspectives. J. Bras. Pneumol. 2009, 35, 1227–1237. [Google Scholar] [PubMed]
- Jacob, R.F.; Mason, R.P. Lipid peroxidation induces cholesterol domain formation in model membranes. J. Biol. Chem. 2005, 280. [Google Scholar] [CrossRef] [PubMed]
- Lima, E.S.; Abdalla, D.S.P. Lipid peroxidatiom: Mechanisms and evaluation in biological samples. Rev. Bras. Cienc. Farm. 2001, 37, 293–303. [Google Scholar]
- Chamy, V.M.; Lepe, J.; Catalán, A.; Retamal, D.; Escobar, J.A.; Madrid, E.M. Oxidative stress is closely related to clinical severity of pre-eclampsia. Biol. Res. 2006, 39. [Google Scholar] [CrossRef]
- Hu, M.L. Measurement of protein thiol groups and glutathione in plasma. Methods Enzymol. 1994, 233. [Google Scholar] [CrossRef]
- Yang, Y.; Guan, X. Rapid and thiol–specific high–throughput assay for simultaneous relative quantification of total thiols, protein thiols, and non– protein thiols in cells. Anal. Chem. 2015, 87, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Suhail, M.; Patil, S.; Khan, S.; Siddiqui, S. Antioxidant vitamins and lipoperoxidation in non–pregnant, pregnant, and gestational diabetic women: Erythrocytes osmotic fragility profiles. J. Clin. Med. Res. 2010, 2, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Hassan, G.I.; Onu, A.B. Total serum vitamin C concentration in pregnant women: Implications for a healthy pregnancy. Rev. Bras. Saude Matern. Infant. 2006, 6, 293–296. [Google Scholar] [CrossRef]
- Bloom, J.C.; Brandt, J.T. Toxic responses of the blood. In Casarett and Doull’s Toxicology: The Basic Science of Poisons, 6th ed.; Klaassen, C.D., Ed.; McGrawHill: New York, NY, USA, 2001; pp. 405–408. [Google Scholar]
- Ahamed, M.; Siddiqui, M.K.J. Environmental lead toxicity and nutritional factors. Clin. Nutr. 2007, 26, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.A.; Trivelato, G.C.; Pinto, A.M.; Bechara, E.J. Correlation between plasma 5–aminolevulinic acid concentrations and indicators of oxidative stress in lead–exposed workers. Clin. Chem. 1997, 43, 1196–1202. [Google Scholar] [PubMed]
- Gurer, H.; Ercal, N. Can antioxidants be beneficial in the treatment of lead poisoning? Free Radic. Biol. Med. 2000, 29, 927–945. [Google Scholar] [CrossRef]
- Ademuyiwa, O.; Odusoga, O.L.; Adebawo, O.O.; Ugbaja, R. Endogenous antioxidant defences in plasma and erythrocytes of pregnant women during different trimesters of pregnancy. Acta Obstet. Gynecol. Scand. 2007, 86, 1175–1182. [Google Scholar] [CrossRef] [PubMed]
- Sauer, E.; Moro, A.M.; Brucker, N.; Nascimento, S.; Gauer, B.; Fracasso, R.; Gioda, A.; Beck, R.; Moreira, J.C.F.; Eifler–Lima, V.L.; et al. Liver δ–aminolevulinate dehydratase activity is inhibited by neonicotinoids and restored by antioxidant agents. Int. J. Environ. Res. Public Health 2014, 11, 11676–11690. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, D.; Pivetta, L.; Folmer, V.; Soares, J.C.; Augusti, G.R.; Nogueira, C.W.; Zeni, G.; Rocha, J.B. Human erythrocyte δ–aminolevulinate dehydratase inhibition by monosaccharides is not mediated by oxidation of enzyme sulfhydryl groups. Cell Biol. Int. 2005, 29, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health. Attention to Prenatal Low Risk. Available online: http://bvsms.saude.gov.br/bvs/publicacoes/cadernos_atencao_basica_32_prenatal.pdf (accessed on 10 January 2016).
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014, 19, 164–174. [Google Scholar] [PubMed]
- Grotto, H.Z.W. Iron physiology and metabolism. Rev. Bras. Hematol. Hemoter. 2010, 32, 8–17. [Google Scholar] [CrossRef]
- Casanueva, E.; Viteri, F.E. Iron and oxidative stress in pregnancy. J. Nutr. 2003, 133, 1700S–1708S. [Google Scholar] [PubMed]
- Lachili, B.; Hininger, I.; Faure, H.; Arnaud, J.; Richard, M.J.; Favier, A.; Roussel, A.M. Increased lipid peroxidation in pregnant women after iron and Vitamin C supplementation. Biol. Trace Elem. Res. 2001, 38, 103–110. [Google Scholar] [CrossRef]
- Young, B.C.; Levine, R.J.; Karumanchi, S.A. Pathogenesis of preeclampsia. Annu. Rev. Pathol. 2010, 5, 173–192. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.C.; Roschel, H.; Ramos, S.; Benatti, F.B. Iron supplementation and its association with the incidence of gestational diabetes mellitus. J. Braz. Soc. Food Nutr. 2012, 37, 215–226. [Google Scholar]
- Barreiros, A.L.B.S.; David, J.M. Oxidative stress: Relations between the formation of reactive species and the organism’s defense. Quim. Nova 2006, 29, 113–123. [Google Scholar] [CrossRef]
- Han, X.X.; Sun, Y.Y.; Ma, A.G.; Yang, F.; Zhang, F.Z.; Jiang, D.C.; Li, Y. NaFeEDTA, iron and oxidative stress in pregnancy. Asia Pac. J. Clin. Nutr. 2011, 20, 514–520. [Google Scholar] [PubMed]
- Kurtoglu, E.; Ugur, A.; Baltaci, A.K.; Undar, L. Effect of iron supplementation on oxidative stress and antioxidant status in iron–deficiency anemia. Biol. Trace Elem. Res. 2003, 96, 117–123. [Google Scholar] [CrossRef]
- Papas, A.M. Diet and antioxidant status. Food Chem. Toxicol. 1999, 37, 999–1007. [Google Scholar] [CrossRef]
Characteristics of Subjects | NP (n = 25) | PWS (n = 25) | PIS (n = 25) |
---|---|---|---|
Age (years) | 26.50 (23.75–29.00) | 26.00 (22.25–30.00) | 23.00 (20.00–28.00) |
Height (cm) | 164.80 ± 6.08 | 161.90 ± 5.48 | 160.70 ± 6.50 |
Weight (kg) | 60.00 (56.00–68.25) | 78.00 (67.50–90.77) 1 | 73.20 (66.10–87.48) 1 |
BMI (kg/m²) | 22.23 (21.17–24.86) | 28.06 (26.87–34.55) 1 | 28.70 (26.60–32.59) 1 |
Gestational age (weeks) | - | 32.94 ± 3.13 | 33.55 ± 2.85 |
Systolic pressure (mmHg) | 110.00 (110.00–120.00) | 110.00 (102.50–120.00) | 110.00 (100.00–110.00) |
Diastolic pressure (mmHg) | 70.00 (60.00–80.00) | 70.00 (70.00–77.50) | 70.00 (60.00–70.00) |
Parameter | NP (n = 25) | PWS (n = 25) | PIS (n = 25) |
---|---|---|---|
Erythrocytes (106/mm³) | 4.66 ± 0.31 | 3.91 ± 0.24 1 | 4.13 ± 0.30 1 |
Hematocrit (%) | 40.85 (38.60–43.55) | 35.00 (33.93–36.90) 1 | 36.40 (35.20–38.15) 1 |
Hemoglobin (g/dL) | 13.25 (12.60–14.07) | 11.60 (11.23–12.25) 1 | 11.90 (11.43–13.20) 1 |
Platelets (MIL/mm³) | 248.50 (215.50–282.80) | 239.00 (191.50–263.80) | 218.00 (203.00–241.00) |
Glucose (mg/dL) | 77.88 ± 5.43 | 74.38 ± 6.60 | 75.90 ± 6.93 |
Parameter | NP (n = 25) | PWS (n = 25) | PIS (n = 25) |
---|---|---|---|
TBARS plasma (nmol/mL) | 3.45 ± 1.39 | 4.86 ± 1.47 1,2 | 3.59 ± 1.37 |
TBARS erythrocytes (nmol/mL) | 13.37 ± 4.86 | 14.13 ± 4.96 | 15.71 ± 4.96 |
P-SH (nmol P-SH/mL) | 149.60 ± 14.40 | 128.90 ± 22.34 1,2 | 150.10 ± 20.66 |
NP-SH (nmol NP-SH/mL) | 927.90 ± 163.40 | 694.90 ± 150.40 1,2 | 829.50 ± 155.90 |
VITAMIN C (μgvit C/mL) | 18.94 ± 5.69 | 14.30 ± 5.87 1 | 14.83 ± 6.18 |
CATALASE (K/mg·Hb) | 49.32 ± 7.65 | 48.04 ± 8.04 | 53.85 ± 9.01 |
Parameter | NP (n = 25) | PWS (n = 25) | PIS (n = 25) |
---|---|---|---|
δ-ALA-D (U/L) | 56.67 (46.66–68.73) | 41.18 (26.36–45.73) 1,2 | 47.67 (65.67–39.21) |
δ-ALA-D + DTT (U/L) | 73.70 (63.91–86.27) | 53.54 (41.05–61.70) 1,2 | 65.34 (59.98–84.04) |
Reactivation Index (%) | 16.10 (13.17–27.00) | 31.84 (29.39–34.71) 1,2 | 24.30 (21.50–29.30) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Lucca, L.; Rodrigues, F.; Jantsch, L.B.; Neme, W.S.; Gallarreta, F.M.P.; Gonçalves, T.L. Oxidative Profile and δ-Aminolevulinate Dehydratase Activity in Healthy Pregnant Women with Iron Supplementation. Int. J. Environ. Res. Public Health 2016, 13, 463. https://doi.org/10.3390/ijerph13050463
De Lucca L, Rodrigues F, Jantsch LB, Neme WS, Gallarreta FMP, Gonçalves TL. Oxidative Profile and δ-Aminolevulinate Dehydratase Activity in Healthy Pregnant Women with Iron Supplementation. International Journal of Environmental Research and Public Health. 2016; 13(5):463. https://doi.org/10.3390/ijerph13050463
Chicago/Turabian StyleDe Lucca, Leidiane, Fabiane Rodrigues, Letícia B. Jantsch, Walter S. Neme, Francisco M. P. Gallarreta, and Thissiane L. Gonçalves. 2016. "Oxidative Profile and δ-Aminolevulinate Dehydratase Activity in Healthy Pregnant Women with Iron Supplementation" International Journal of Environmental Research and Public Health 13, no. 5: 463. https://doi.org/10.3390/ijerph13050463
APA StyleDe Lucca, L., Rodrigues, F., Jantsch, L. B., Neme, W. S., Gallarreta, F. M. P., & Gonçalves, T. L. (2016). Oxidative Profile and δ-Aminolevulinate Dehydratase Activity in Healthy Pregnant Women with Iron Supplementation. International Journal of Environmental Research and Public Health, 13(5), 463. https://doi.org/10.3390/ijerph13050463