## Supplementary Materials: Environmental Health Related Socio-Spatial Inequalities: Identifying "Hotspots" of Multiple Environmental Burdens and Social Vulnerability

Rehana Shrestha, Johannes Flacke, Javier Martinez and Martin van Maarseveen Supplementary Information S1: Maps on individual environmental indicators







**Figure S1.** Spatial patterns of individual indicator on environmental benefits normalized with respect to environmental standards (legend shows deviation above and below given threshold value), (**a**) Accessibility to green areas (parks, cemeteries) (**b**) Accessibility to forests (**c**) Accessibility to green areas in general (including parks, cemeteries and forests).



(a)



(**b**)



(**d**)

**Figure S2.** Spatial patterns of individual indicators on noise exposure from each source normalized with respect to environmental standards (legend shows deviation above and below given threshold value), (**a**) Noise exposure from industry (**b**) Noise exposure from trams (**c**) Noise exposure from traffics on major streets and highways (**d**) Combined noise exposure including all three sources (street, tram, industry) using logarithmic addition method.



**Figure S3.** Spatial patterns of individual indicators on air pollutants normalized with respect to environmental standards (legend shows deviation above and below given threshold value), (**a**) Annual average NO<sub>2</sub> concentration (**b**) Annual average PM<sub>10</sub> concentration.

# Supplementary Information S2: Calculating concentration index, standard error and *t*-test for each indicator across social vulnerability

## **Concentration Index**

The concentration index (CI) for individual observations is computed using the following formula by Kakwani et al. [1]

$$CI = \frac{2}{n \times \mu} \sum_{i=1}^{n} x_i R_i - 1 \tag{1}$$

where, *n* is the sample size,  $x_i$  is the indicator of environmental burden for each social unit *i*,  $\mu$  is the mean of environmental burden indicator, and  $R_i$  is the fractional rank in percentage.

## **Standard Error**

A standard error of the estimator of concentration index (CI) can be computed using a formula given in Kakwani et al. [1]. The variance of the estimator of C is given by

$$var(\widehat{CI}) = \frac{1}{n} \left[ \frac{1}{n} \sum_{i=1}^{n} a_i^2 - (1+CI)^2 \right]$$
(2)

where *n* is the sample size and

$$a_i = \frac{y_i}{\mu} (2R_i - 1 - CI) + 2 - q_{i-1} - q_i$$
(3)

$$q_i = \frac{1}{\mu n} \sum_{\gamma=1}^i y_i \tag{4}$$

is the ordinate of the concentration curve L(p), and  $q_0 = 0$ .

### Calculating t for t-test

In the construction of a concentration index in this paper, the whole social units was taken into consideration, *t* could then be calculated by

$$t = \frac{CI}{\sqrt{var(\widehat{CI})}}\tag{5}$$

#### References

1. Kakwani, N.; Wagstaff, A.; Van Doorslaer, E. Socioeconomic inequalities in health: Measurement, computation, and statistical inference. *J. Econom.* **1997**, *77*, 87–103.



© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).