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Abstract: The spatial distribution of urban service facilities is largely constrained by the road network.
In this study, network point pattern analysis and correlation analysis were used to analyze the
relationship between road network and healthcare facility distribution. The weighted network kernel
density estimation method proposed in this study identifies significant differences between the
outside and inside areas of the Ming city wall. The results of network K-function analysis show that
private hospitals are more evenly distributed than public hospitals, and pharmacy stores tend to
cluster around hospitals along the road network. After computing the correlation analysis between
different categorized hospitals and street centrality, we find that the distribution of these hospitals
correlates highly with the street centralities, and that the correlations are higher with private and
small hospitals than with public and large hospitals. The comprehensive analysis results could help
examine the reasonability of existing urban healthcare facility distribution and optimize the location
of new healthcare facilities.

Keywords: healthcare facilities; network kernel density estimation; network K-function; street
centrality; correlation analysis

1. Introduction

The Chinese economy has been growing at a spectacular rate and people’s living standards have
improved significantly since the reform and opening up. At the same time, Chinese healthcare
resources have developed significantly to cater for rising demand. Average bed numbers per
1000 people have grown from 0.15 in 1949 to 4.55 in 2013 [1]. However, imbalanced distribution
of health resources has led to severe inequality between cities and rural areas, which largely influences
social stability and harmony in China. According to the Chinese government, about 80 percent of
health resources (e.g., hospitals, bed numbers, and practitioners) are allocated in Chinese cities [2].
In addition, the size of large hospitals has been expanding excessively and the majority of health
resources are concentrated in large city hospitals [3]. For the rapid expansion of large Chinese cities,
there is an urgent need to study spatial organization and distribution of patterns of healthcare facilities
to optimize their location selection and spatial allocation [4].
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Spatial pattern analysis has been examined widely to explore global or local spatial distribution
patterns of urban activities. It can be classified into first-order and second-order effects of
a spatial process [5,6]. Kernel density estimation (KDE) and Ripley’s K-function are two of the
most popular methods for analyzing the first-order and second-order properties of a point event
distribution [6,7]. KDE has been used to analyze “hot spots” of point events, such as the traffic
hazard intensity of bicycles [8], wildlife–vehicle accident analysis [9], and road accident hot-spot
analysis and classification [10]. Ripley’s K-function has been used to test whether any pair of events
is spatially dependent or uniform by distance measure. In fact, these studies are based on the
assumption of infinitely continuous planar space in which distances are measured as a straight-line
(Euclidean) distance.

However, many kinds of point events associated with urban activities are constrained by
road networks in the real world. Those events can be classified into on-network events and
alongside-networks events. Almost all facilities in urbanized areas are regarded as alongside-network
events. The use of a planar point pattern analysis (PPA) method over a Euclidean space has limitations
for analyzing these events because they are often constrained to only the network portion of the 2-D
Euclidean space, the so-called network space [11]. Therefore, the traditional planar PPA methods
lead to false analysis results for the network-constrained point events. Borruso and Giuseppe [12,13]
introduced network density estimation (NDE) to analyze patterns of bank and insurance branch
location based on network distances. Xie and Yan [14,15] developed a network KDE (NetKDE)
approach to characterize the spatial patterns of traffic accidents on roadways over a network space.
Okabe et al. [16] showed that previous kernel methods may yield biased conclusions and developed
two unbiased kernel functions on a network for the density estimation of traffic accidents. Okabe
and Yamada [17] first proposed the concept of network K-function for analyzing the distribution of
points on a network. Yamada and Thill [18] proposed that the planar K-function analysis method
over-detected clustered patterns of point events and demonstrated the benefits of using a network
space for traffic accident data.

Urban road network plays a very important role in shaping the formation of urban activities.
Street centrality is one of the most powerful determinants for urban planners and designers to
understand how a city works and to decide where renovation and redevelopment need to be
placed [19,20]. Many studies have attempted to investigate the spatial relationship between urban
activities and road network by using their correlation results. Porta et al. [19,20] examined correlations
of economic activities with the urban road network. They found that the location of economic activities
is highly correlated with the road network. In addition, Wang et al. [21] found a high correlation
between population density distribution and road network. Rui and Ban [22] further explored the
relationship between different street centralities and land-use types in Stockholm.

Network point pattern and correlation analysis have been used widely to study the relationship
between road network and facility distribution. However, despite its relative popularity, few studies
have focused on the macroscopic distribution pattern of healthcare facilities using both of these
methods. Furthermore, a major limitation has been identified when using traditional NetKDE methods.
They probably calculate misleading hot spots because they are independent with non-spatial factors of
point events [23]. Even if the comprehensive strength of one facility point is thousands of times that of
another point event, both have the same influential intensity if they are at the same location. As we
know, a larger hospital has a greater ability to accommodate more patients. Therefore, in this study,
we proposed a weighted network KDE method based on a crucial non-spatial attribute of point events
to address this problem. Due to competition or cooperation, there may be significant relationships
between pairs of hospitals, and between hospitals and pharmacies on a distance measure. Network
auto K-function and cross K-function were used to explore the spatial cluster pattern analysis of
hospitals and interrelationships between hospitals and pharmacy stores along the network. To examine
spatial distribution differences of different kinds of hospitals along the network, the correlation analysis
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between different categorized hospitals and street centrality was investigated for further comparable
analysis of the results.

2. Study Area and Data Sources

2.1. Study Area

Nanjing is the capital of Jiangsu province, which is located slightly inland from the coast of China.
Nanjing has long been one of China’s most important cities. With an urban population of 6.43 million
in 2013 [24], Nanjing is the second largest city in the East China region, after Shanghai. The study
area is located in the main urban districts of Nanjing, which are surrounded by the beltway and
Yangtze River. The downtown area is defined as the area inside the 600-year-old Ming city wall of the
main urban districts (red color in Figure 1). There are 15 city centers within the main urban districts.
Figure 1 shows the locations of one city center and 14 sub-centers with roads representing 2801 edges.
In the center of the main urban districts, Xinjiekou is the central business and commercial district
of Nanjing.
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2.2. Data Sources

For this study, the data of healthcare facilities include hospitals and pharmacy stores, which are
all indicated by a point pattern in a geographic information system (GIS) environment, as shown
in Figure 2. There are 732 hospital points with 33,366 bed numbers in total, according to the 2012
Jiangsu Provincial Commission of Health and Family Planning [25]. Figure 2a shows the spatial
distribution of hospitals in the main urban districts of Nanjing. The blue circles of different sizes
represent different comprehensive strength of the hospitals in these locations. As shown in Table 1,
hospitals can be divided by ownership (private and public hospitals) and comprehensive strength
(first class to fifth class) [26]. The first- and fifth-class hospitals are the strongest and weakest hospitals,
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respectively, in terms of comprehensive strength. First- and second-class hospitals are usually large
hospitals belonging to the Chinese government. Third-class hospitals are community hospitals located
in residential areas. Fourth- and fifth-class hospitals are usually small hospitals or clinics. There are
569 pharmacy stores within the main urban districts. Figure 2b shows the spatial distribution of
pharmacy stores in main urban districts. Spatial data of the road networks are from the Nanjing
Transportation Bureau.
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Table 1. Numbers of hospitals divided by comprehensive strength and ownership in main urban districts.

Comprehensive Strength Numbers Ownership Numbers

First class 33 Private 376
Second class 38 Public 356
Third class 152

Fourth class 135
Fifth class 374

Total number 732 732

3. Methods

3.1. Network Kernel Density Estimation

Network kernel density estimation is one of the most important network analysis methods for
density measure, which estimates the density of point events on a network according to a kernel
density function. Instead of a planar Euclidean distance measure in planar KDE, NetKDE uses the
shortest-path distance along the network:

λ (s) =
n

∑
i=1

1
r

k(
dis
r
) (1)

where λ(s) is the NetKDE density at location s, i represents the point event, r is the bandwidth
of the NetKDE, and k() is a kernel function of the ratio of dis to r with the distance decay effect.
A number of forms of model functions, known as kernel functions, can be used to measure the
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“distance decay effect” in the spatial weights k, such as Gaussian, Conic, Quartic, negative exponential,
and Epanichnekov [14,27,28]. Here, we use the most commonly used Gaussian function:

k
(

dis
r

)
=

1√
2π
× exp

(
−

d2
is

2r2

)
× Bi, when 0 < dis ≤ r (2)

k
(

dis
r

)
= 0, when dis > r (3)

where Bi is the non-spatial factor of the point event i, and the function form of (1) is the common
Gaussian function if Bi = 1. In this study, the parameter Bi represents the bed numbers of the hospital in
location i; in other words, the more bed numbers that a hospital has, the higher is the hospital’s density.

3.2. Network K-Function

The network K-function method is one of the most important network analysis methods for
distance measure, which is used to test the hypothesis that points are uniformly and independently
distributed over a network [17]. The network K-function method includes the network auto K-function
method and the network cross K-function method. The main distinction is that the auto K-function
method deals with a set of points of a single kind (e.g., retail stores) and considers the shortest-path
network distances between these points. By contrast, the cross K-function method deals with two sets
of points of different kinds (e.g., retail stores and roads) and instead considers the shortest-path
network distances between these two different kinds of points. The network auto K-function K(t) at
place pi is defined as follows:

K(t) =
1
ρ

∑n
i=1 n(t|pi)

n
(4)

where n(t|pi) is the number of points that are within shortest-path distance t from point pi. In addition,
ρ = (n− 1)/|S̃| is the density of points on the network (the numerator n− 1 means pi is removed
from point set P; |S̃| is the length of a subnetwork of S̃). The Monte Carlo simulation (MCS) method is
often used to test the distribution pattern of point events constrained by the road network. Whether
these points are uniformly and independently distributed over a network depends on the differences
between the observed K-function values and the completely spatial random (CSR) point pattern test.
If the corresponding K-function values K(l) are in the range of the CSR, the point set P is in a random
distribution. If K(l) is above the upper CSR bound, the point set P is in a cluster distribution. If K(l)
is below the lower CSR bound, the point set P is in a dispersion distribution. In addition, the cross
K-function uncovers the spatial interrelationship of two point sets. It studies whether the distribution
of one point set influences the pattern of another point set. If the observed curve is above the upper
envelope curve, one point set tends to cluster around another point set. However, if the observed
curve is below the lower envelope curve, we can reject the CSR hypothesis with confidence. That is,
one point set tends to be dispersed from another point set.

3.3. Multiple Centrality Assessment Model and Correlation Coefficient

Street centrality has been one of the most useful indexes to describe the accessibility of one facility
or one place within a road network [29]. Exploring the relationship between street centrality and
facility could help analyze the spatial distribution pattern of healthcare facilities. Three major centrality
indexes usually exist: betweenness centrality (CB), closeness centrality (CC), and straightness centrality
(CS). Various centrality indexes represent road accessibility from different aspects. The CB measure
indicates the extent to which a node is passed by the shortest path between pairs of other nodes in the
network [30], such as:

CB
i =

1
(N − 1)(N − 2)

N

∑
j=1; k=1; j 6=k 6=i

njk(i)
njk

(5)
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where CB
i is the betweenness of node i, N is the number of nodes, njk is the number of shortest paths

from node j to node k, while njk(i) is the number of shortest paths through node i.
The CC measure illustrates how close a node is to all other surrounding nodes in the network,

such as:
CC

i =
N − 1

∑N
j 6=1, j 6=i dij

(6)

where CC
i is the closeness of node i and dij is the shortest-path distance between nodes i and j.

The CS measure indicates the extent to which a node can be reached directly on the Euclidean
distance from all other nodes, such as:

CS
i =

1
N − 1

N

∑
j=1; j 6=i

dEu
ij

dij
(7)

where CS
i is the straightness of node i, dEu

ij is the Euclidean distance between nodes i and j, and dij is
the shortest-path distance between them.

In this study, a simple linear correlation coefficient was computed to analyze the differences
between different categories or ownership of hospitals and road network in the same raster framework.
The linear correlation coefficient is Spearman’s r, ranging from−1 to 1, which was proposed by Charles
Spearman as a measure of the strength of an association between two variables [31].

4. Results

4.1. Weighted NetKDE Analysis for Detecting Hot Spots

In the NetKDE analysis, few studies consider the influence of non-spatial factors of service
facilities on the analysis. Bed numbers are considered the most crucial factor for hospitals in many
research studies [32–34]. Hence, to identify more details about the density of hospital locations, hospital
facilities were weighted by their bed numbers. The computation of NetKDE values was implemented
by Microsoft Visual C++ (Microsoft, Redmond, WA, USA) and ESRI ArcObjects (ESRI, Redlands, CA,
USA) programming languages. It is generally agreed that the choice of kernel functions do not affect
the results significantly [35]. However, the choice of bandwidth (h) is always an important issue in
KDE applications [14]. Porter and Reich [36] suggested that a 100–300 m bandwidth was suitable for
the study of urban economic activities. However, in fact, there are not so many hospitals along the
road network. Therefore, a 600 m bandwidth was chosen to calculate NetKDE of hospital facilities after
numbers of experiments. The cell size for the output KDE raster dataset was set as 20 m. Figure 3a
is the NetKDE result of all the hospitals in the main urban districts based on their bed numbers.
For contrast, the result of unweighted hospitals’ NetKDE was also computed, as shown in Figure 3b.

Figure 3b,c show that the weighted NetKDE method identifies significant differences between
the outsides and insides of the city wall. There are seven outstanding road segments with network
density values of more than 0.53, and six of them are within the city wall, while the seventh road
segment is just 240 m from the edge of the city wall. The higher NetKDE values are mainly located
in the, Yat-sen East Road, Yat-sen Road, Jiangjiawei Road, Guangzhou Road, and Hanzhong Road,
as shown by the red lines in Figure 3c. Three first-class hospitals are concentrated in the intersections
of Guangzhou Road and Lhasa Road, where there are the highest NetKDE values, ranging from
0.72 to 1.0. Interestingly, the seven top hospitals (more than 1000 bed numbers) are all located within
the circle of the city center—Xinjiekou—with a radius of about 5 km. Thus, our results show higher
network density values within the city wall. However, most of the NetKDE values are lower than 0.3
outside the city wall.
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However, the unweighted NetKDE method does not identify detailed intensity differences of the
hospital locations along the road network. Figure 3a shows the highest NetKDE values are around the
south area of Xiaozhuang sub-center, which is far away from the city center. The values range from
0.73 to 1.0. Although there are large numbers of hospitals in these areas, most are lower-class hospitals
or small clinics with few bed numbers. Thus, our weighted analysis shows lower NetKDE values in
these areas. However, in Guangzhou Road, around which are gathered a number of large and small
hospitals, the NetKDE values range from 0.25 to 0.46. This is because the unweighted NetKDE method
depends on the density of point events along networks. The values may be underestimated if there
are few hospital points but with a large number of bed resources somewhere. By contrast, the values
may be overestimated if there are many hospital points with few bed resources somewhere. By using
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the weighted NetKDE method, significant differences between the outside and inside areas of the
Ming city wall are successfully identified, which is consistent with the fact that the majority of health
resources is concentrated in city areas.

4.2. Spatial Cluster Pattern Analysis

The spatial cluster analysis of hospitals was compared for the downtown area and the main urban
districts of Nanjing. The computation of network K-function values was implemented by SANET
software (Tokyo University, Tokyo, Japan). The network auto K-function analysis results are shown in
Figure 4, and are obtained from the R language window.
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analysis of downtown area.

In Figure 4, the parameters “Exp(Lower 5.0%)” and “Exp(Upper 5.0%)” indicate the upper and
lower envelope curves for the one-sided significance level is 5% [37]. The parameter “Exp(Mean)”
indicates the expectation curve of random spatial distribution of point events. The parameter “Obs”
indicates the observed K-function curve of point events. The horizontal axis indicates the distance
range, and the vertical axis indicates the cumulative number of point events. As shown in Figure 4a,
the observed blue curve is above the upper envelope of the curves under the CSR hypothesis and,
hence, we can reject the CSR hypothesis with a 0.95 confidence level [37]. That is, hospitals tend
to cluster in that distance range, indicating that the distribution of hospitals is not even in main
urban districts.

When the downtown area is used as the study scope instead of the main urban districts, the results
of the network auto K-function method of hospitals are quite different. In Figure 4b, the observed curve
is between the upper and lower envelope curves and, thus, we can reject the CSR hypothesis with 95%
confidence in this range. That is, hospitals tend to be in a random distribution in the downtown area.
This indicates that there is an apparent imbalance of hospital development between the main urban
districts and the downtown area in Nanjing.

For the spatial cluster pattern analysis of the combined first- and second-class hospitals, Figure 5a
shows that the observed curve of the network K-function is obviously higher above the upper envelope
curve under the CSR hypothesis. However, the observed curve is slightly above the upper envelope
curve for other types of hospitals, as shown in Figure 5b. In other words, the network aggregation of
the first- and second-class hospitals is much stronger than the network aggregation of other hospitals
in the main urban districts. This may be because the majority of first- and second-class hospitals
were built long ago and are mainly located in the downtown area. The planners did not consider
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future expansion of the city and population growth. Although probably reasonable in the past, spatial
distributions do not seem to be reasonable at present. Other categories of hospitals, such as private
hospitals, clinics, and outpatient hospitals, were built after China’s reform and opening up, when the
government and planners began to realize that, for fairness and accessibility, these hospitals should be
planned in detail.
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4.3. Street Centrality Indexes and Correlation Analysis

To analyze the relationship between hospitals and street centralities, the planer KDE values
of street centrality and hospitals NetKDE should be computed and converted to the same raster
framework. The eight categories of weighted hospitals NetKDE should be computed using the same
calculation method as that used in Section 4.1. Then, the planar KDE values of these hospitals’ NetKDE
results were generated (not shown). The geography of three street centrality indexes (CB, CS, CC) in
main urban districts was calculated using the Urban Network Analysis tool [38], as shown in Figure 7.
Figure 8a–c show the planar KDE of Figure 7a–c, respectively. The bandwidth and cell size were set to
600 m and 20 m when computing planar KDE, which is the same as computing NetKDE.
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Spearman’s r between different categories of hospitals and three street centrality indexes were
computed in the same raster framework. Table 2 is the Spearman’s r correlation results between
eight categories of hospitals and three street centralities, calculated using SPSS 19.0 software (IBM,
Chicago, IL, USA). Note that all correlation coefficients shown in the following analysis were significant
at the 0.01 level. Table 2 shows that all eight paired correlation values have positive relationships,
which are all higher than 0.45. However, the distribution of the street centralities correlates marginally
with first-class hospitals’ activities, and also with second-class hospitals’ activities, although to
a slightly higher extent. From the results of the abovementioned hot spots and spatial clusters,
this may be because the most bed resources are excessively concentrated in the downtown area,
and first- and second-class hospitals are mainly concentrated in these areas. By contrast, third-class
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hospitals, outpatient facilities, and clinics have higher correlations with the street centralities among
the five hospitals in the first group. Clinics have the highest correlation values with street centralities.
Furthermore, private hospitals have higher correlation values with street centralities compared to
public hospitals. Small size and smart flexibility may make private hospitals meet market needs more
easily. In addition, these types of hospitals were established later, when more spatial ideas about equity
and competitiveness were integrated in the location selection of new hospitals. All of the hospitals
have by far the strongest correlation with the three street centralities whose r values are above 0.8.
The results indicate that hospitals with high weights in Nanjing tend to concentrate in the areas with
better centralities.

Table 2. Correlation values between street centralities and different categories of hospitals.

Categories CS CC CB

First class 0.493 0.523 0.529
Second class 0.509 0.526 0.527
Third class 0.729 0.748 0.748

Fourth class 0.657 0.679 0.698
Fifth class 0.786 0.813 0.824

Public 0.777 0.799 0.812
Private 0.811 0.832 0.840

All hospitals 0.846 0.866 0.870

Betweenness correlates with a relatively higher r value compared to straightness and closeness,
which is consistent with previous research [19]. Betweenness refers to the potential of one road
traversed by passengers to be between other road nodes. Although the hospitals are not located
in an origin or destination, the hospital may take advantage of its pass-through nexus location to
attract patients. Hence, a high value of betweenness centrality often implies a high concentration of
hospital facilities.

5. Conclusions

This study analyzed the spatial distribution characteristics of healthcare facilities in Nanjing by
using point pattern analysis and the correlation analysis method. There are two major contributions of
this study. First, it analyzed the influence of weighting point events on the analysis results in order to
attach importance to the network-constrained point pattern analysis. Second, it combined the network
point pattern method and correlation analysis to study the distribution pattern of healthcare facilities
comprehensively and to analyze the basic principle of their locational choice. All of these results can
be extended to examine the reasonability of the existing service facilities distribution and to optimize
the location selection of new service facilities.

However, several problems remain for further study. First, the location of healthcare facilities is
influenced by the income of urban inhabitants, hospital fees, population distribution, and other factors.
More comprehensive parameters should be considered to investigate the reasonability of location
selection of healthcare facilities in future studies. Second, a spatial accessibility model (e.g., gravity
model and two-step floating catchment area) should be combined with the methods proposed in this
study for further analysis of the interaction between demand and supply location [39]. Third, roads
can be categorized to analyze their attraction to different categories of healthcare facilities. As we know,
roads with a higher level have greater traffic volume, which could attract more allocation of hospitals.
The two non-spatial characteristics of roads and facilities will be considered together in point pattern
analysis for more comprehensive and detailed results.
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