Implications of Changing Temperatures on the Growth, Fecundity and Survival of Intermediate Host Snails of Schistosomiasis: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion Criteria and Exclusion Criteria
3. Results
3.1. Temperature and Timing of Sexual Maturity and Fecundity
3.2. Temperature and Growth
3.3. Temperature and Survival
3.4. Temperature and Parasite Development
3.5. Temperature Dependent Model Formulation
3.5.1. Statistical Models
3.5.2. Mathematical Models
4. Discussion
4.1. Growth and Fecundity Components: Do Temperature Levels Matter?
4.2. Snail Survival and Temperature Rise: Its Role in Schistosomiasis Incidence
4.3. Schistosoma Development in Infected Snails: Does Temperature Matter?
4.4. Disease Models Parameterization: Does Experimental Data Source Matter?
4.4.1. Statistical Models
4.4.2. Mathematical Models
4.5. Potential Future Research Areas
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Van der Werf, M.J.; de Vlas, S.J.; Brooker, S.; Looman, C.W.; Nagelkerke, N.J.; Habbema, J.D.F.; Engels, D. Quantification of clinical morbidity associated with schistosome infection in Sub-Saharan Africa. Acta Trop. 2003, 86, 125–139. [Google Scholar] [CrossRef]
- Appleton, C.; Madsen, H. Human schistosomiasis in wetlands in Southern Africa. Wetlands Ecol. Manag. 2012, 20, 253–269. [Google Scholar] [CrossRef]
- Mintsa-Nguéma, R.; Moné, H.; Ibikounlé, M.; Mengué-Ngou-Milama, K.; Kombila, M.; Mouahid, G. Cercarial emergence pattern of Schistosoma haematobium from Libreville, Gabon. Parasite 2013, 21. [Google Scholar] [CrossRef]
- McManus, D.P.; Loukas, A. Current status of vaccines for schistosomiasis. Clin. Microbiol. Rev. 2008, 21, 225–242. [Google Scholar] [CrossRef] [PubMed]
- Appleton, C. Review of literature on abiotic factors influencing the distribution and life cycles of bilharziasis intermediate host snails. Malacol. Rev. 1978, 11, 1–25. [Google Scholar]
- Brown, D. Freshwater Snails of Africa and Their Medical Importance; Taylor and Francis: London, UK, 1994. [Google Scholar]
- Walz, Y.; Wegmann, M.; Dech, S.; Raso, G.; Utzinger, J. Risk profiling of schistosomiasis using remote sensing: Approaches, challenges and outlook. Parasites Vectors 2015, 8. [Google Scholar] [CrossRef] [PubMed]
- Tchuenté, L.-A.T.; Momo, S.C.; Stothard, J.R.; Rollinson, D. Efficacy of praziquantel and reinfection patterns in single and mixed infection foci for intestinal and urogenital schistosomiasis in Cameroon. Acta Trop. 2013, 128, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.L.; Day, T.; Feng-Tao, L.; Ismail, M.; Farghaly, A. The development of resistance to anthelmintics: A perspective with an emphasis on the antischistosomal drug praziquantel. Exp. Parasitol. 1997, 87, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Fallon, P.; Tao, L.; Ismail, M.; Bennett, J. Schistosome resistance to praziquantel: Fact or artifact? Parasitol. Today 1996, 12, 316–320. [Google Scholar] [CrossRef]
- Stirewalt, M. Effect of snail maintenance temperatures on development of Schistosoma mansoni. Exp. Parasitol. 1954, 3, 504–516. [Google Scholar] [CrossRef]
- Paull, S.H.; Johnson, P.T. Experimental warming drives a seasonal shift in the timing of host-parasite dynamics with consequences for disease risk. Ecol. Lett. 2014, 17, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Karl, T.R.; Trenberth, K.E. Modern global climate change. Science 2003, 302, 1719–1723. [Google Scholar] [CrossRef] [PubMed]
- Paull, S.H.; Raffel, T.R.; LaFonte, B.E.; Johnson, P.T.J. How temperature shifts affect parasite production: Testing the roles of thermal stress and acclimation. Funct. Ecol. 2015, 29, 1–10. [Google Scholar] [CrossRef]
- Meehl, G.A.; Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef] [PubMed]
- Kutz, S.; Hoberg, E.; Polley, L.; Jenkins, E. Global warming is changing the dynamics of arctic host-parasite systems. Biol. Sci. 2005, 272, 2571–2576. [Google Scholar] [CrossRef] [PubMed]
- Rohr, J.R.; Raffel, T.R.; Blaustein, A.R.; Johnson, P.T.; Paull, S.H.; Young, S. Using physiology to understand climate-driven changes in disease and their implications for conservation. Conserv. Physiol. 2013, 1. [Google Scholar] [CrossRef] [PubMed]
- Paaijmans, K.; Blanford, S.; Bell, A.; Blanford, J.I.; Read, A.; Thomas, M. Influence of climate on malaria transmission depends on daily temperature variation. Proc. Natl. Acad. Sci. USA 2010, 107, 15135–15139. [Google Scholar] [CrossRef] [PubMed]
- Pascual, M.; Ahumada, J.; Chaves, L.; Rodo, X.; Bouma, M. Malaria resurgence in the east African highlands: Temperature trends revisited. Proc. Natl. Acad. Sci. USA 2006, 103, 5829–5834. [Google Scholar] [CrossRef] [PubMed]
- Chirebvu, E.; Chimbari, M.J.; Ngwenya, B.N.; Sartorius, B. Clinical malaria transmission trends and its association with climatic variables in Tubu Village, Botswana: A retrospective analysis. PLoS ONE 2016, 11, e0139843. [Google Scholar] [CrossRef] [PubMed]
- Marti, H. Field observations on the population dynamics Bulinus globosus, the intermediate host of Schistosoma haematobium in the Ifakara area, Tanzania. J. Parasitol. 1986, 72, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Michelson, E.M. The effects of temperature on growth and reproduction of Bi. glabrata in the laboratory. Am. J. Hyg. 1961, 73, 66–74. [Google Scholar] [PubMed]
- Kazibwe, F.; Makanga, B.; Rubaire-Akiiki, C.; Ouma, J.; Kariuki, C.; Kabatereine, N.; Vennervald, B.J.; Rollinson, D.; Stothard, J. Transmission studies of intestinal schistosomiasis in Lake Albert, Uganda and experimental compatibility of local Biomphalaria spp. Parasitol. Int. 2010, 59, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Lardans, V.; Dissous, C. Snail control strategies for reduction of schistosomiasis transmission. Parasitol. Today 1998, 14, 413–417. [Google Scholar] [CrossRef]
- Koukounari, A.; Gabrielli, A.F.; Touré, S.; Bosqué-Oliva, E.; Zhang, Y.; Sellin, B.; Donnelly, C.A.; Fenwick, A.; Webster, J.P. Schistosoma haematobium infection and morbidity before and after large-scale administration of praziquantel in Burkina Faso. J. Infect. Dis. 2007, 196, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Hodges, M.H.; Dada, N.; Warmsley, A.; Paye, J.; Bangura, M.M.; Nyorkor, E.; Sonnie, M.; Zhang, Y. Mass drug administration significantly reduces infection of Schistosoma mansoni and hookworm in school children in the national control program in Sierra Leone. BMC Infect. Dis. 2012, 12. [Google Scholar] [CrossRef] [PubMed]
- Utzinger, J.; Bergquist, R.; Shu-Hua, X.; Singer, B.H.; Tanner, M. Sustainable schistosomiasis control—The way forward. Lancet 2003, 362, 1932–1934. [Google Scholar] [CrossRef]
- Fenwick, A.; Webster, J.P.; Bosque-Oliva, E.; Blair, L.; Fleming, F.; Zhang, Y.; Garba, A.; Stothard, J.; Gabrielli, A.F.; Clements, A. The schistosomiasis control initiative (SCI): Rationale, development and implementation from 2002–2008. Parasitology 2009, 136, 1719–1730. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.M.; May, R.M. Helminth infections of humans: Mathematical models, population dynamics, and control. Adv. Parasitol. 1985, 24, 1–101. [Google Scholar] [PubMed]
- Wang, X. Mathematical Models of Schistosomiasis Transmission, Morbidity and Control with Applications to Endemic Communities in Coastal Kenya. Ph.D. Thesis, Case Western Reserve University, Cleveland, OH, USA, 2012. [Google Scholar]
- Mukaratirwa, S.; Malone, J.; McCarroll, J.; Kristensen, T. Satellite surveillance, geographical information systems and the seasonal suitability of environment for the development of the snail-parasite system of urinary and intestinal schistosomiasis in Zimbabwe. In Proceedings of the Workshop on Medical and Veterinary Malacology in Africa, Harare, Zimbabwe, 8–12 November 1999; pp. 265–271.
- Stensgaard, A.; Jorgensen, A.; Kabatereine, N.B.; Malone, J.B.; Kristensen, T.K. Modelling the distribution of schistosoma mansoni and host snails in Uganda using satellite sensor data and geographical information systems. Parassitologia 2005, 47, 115–125. [Google Scholar] [PubMed]
- Fenwick, A.; Webster, J.P. Schistosomiasis—Challenges for control, treatment and drug resistance. Curr. Opin. Infect. Dis. 2006, 19, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Chimbari, M.J.; Ndamba, J.; Madsen, H. Food selection behaviour of potential biological agents to control intermediate host snails of schistosomiasis: Sargochromis codringtoni and Tilapia rendalli. Acta Trop. 1996, 61, 191–199. [Google Scholar] [CrossRef]
- McCreesh, N.; Booth, M. The effect of simulating different intermediate host snail species on the link between water temperature and schistosomiasis risk. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appleton, C.; Eriksson, I.M. The influence of fluctuating above-optimal temperature regimes on the fecundity of Biomphalaria pfeifferi (Mollusca: Planorbidae). Trans. Royal Soc. Trop. Med. Hyg. 1984, 78, 49–54. [Google Scholar] [CrossRef]
- Dagal, M.A.; Upatham, E.S.; Kruatrachue, M.; Viyanant, V. Effects of some physico-chemical factors on the hatching of egg masses and on the survival of juvenile and adult snails Bulinus (Physopsis) abyssinucus. J. Sci. Soc. Thail. 1986, 12, 23–30. [Google Scholar] [CrossRef]
- El-Emam, M.; Madsen, H. The effect of temperature, darkness, starvation and various food types on growth, survival and reproduction of Helisoma duryi, Biomphalaria alexandrina and Bulinus truncatus (Gastropoda: Planorbidae). Hydrobiologia 1982, 88, 265–275. [Google Scholar] [CrossRef]
- Joubert, P.H.; Pretorius, S.J.; DeKock, K.N.; Vaneeden, J.A. Survival of Bulinus-Africanus (Krauss), Bulinus-globosus (Morelet) and Biomphalaria-pfeifferi (Krauss) at constant high-temperatures. S. Afr. J. Zool. 1986, 21, 85–88. [Google Scholar] [CrossRef]
- Kubiriza, G.K.; Madsen, H.; Likongwe, J.S.; Stauffer, J.R.; Kang’Ombe, J.; Kapute, F. Effect of temperature on growth, survival and reproduction of Bulinus nyassanus (Smith, 1877) (Mollusca: Gastropoda) from Lake Malawi. Afr. Zool. 2010, 45, 315–320. [Google Scholar] [CrossRef]
- McCreesh, N.; Arinaitwe, M.; Arineitwe, W.; Tukahebwa, E.; Booth, M. Effect of water temperature and population density on the population dynamics of Schistosoma mansoni intermediate host snails. Parasites Vectors 2014, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pflüger, W.; Roushdy, M.; El-Emam, M. Prepatency of Schistosoma haematobium in snails at different constant temperatures. J. Egypt. Soc. Parasitol. 1983, 13, 513–519. [Google Scholar] [PubMed]
- Pflüger, W. Experimental epidemiology of schistosomiasis. Z. Parasitenkd. 1980, 63, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Mofolusho, O.F.; Benson, O. Survival potential, fecundity and fertility of Biomphalaria pfeifferi (Krauss, 1848) during acclimatization in the laboratory. Zool. Ecol. 2013, 23, 157–161. [Google Scholar]
- Joubert, P.; Pretorius, S.; De Kock, K.; Van Eeden, J. The effect of constant low temperatures on the survival of Bulinus africanus (Krauss), Bulinus globosus (Morelet) and Biomphalaria pfeifferi (Krauss). S. Afr. J. Zool. 1984, 19, 314–316. [Google Scholar] [CrossRef]
- Barbosa, N.; Pimentel-Souza, F.; Sampaio, I. The effect of seasonal temperature and experimental illumination on reproductive rate in the snail Biomphalaria glabrata. Braz. J. Med. Biol. Res. 1986, 20, 685–696. [Google Scholar]
- O’keeffe, J. Population biology of the freshwater snail Bulinus globosus on the Kenya coast. I. Population fluctuations in relation to climate. J. Appl. Ecol. 1985, 22, 73–84. [Google Scholar] [CrossRef]
- Woolhouse, M.; Chandiwana, S. Population biology of the freshwater snail Bulinus globosus in the Zimbabwe highveld. J. Appl. Ecol. 1990, 27, 41–59. [Google Scholar] [CrossRef]
- Mangal, T.D.; Paterson, S.; Fenton, A. Predicting the impact of long-term temperature changes on the epidemiology and control of schistosomiasis: A mechanistic model. PLoS ONE 2008, 3, e1438. [Google Scholar] [CrossRef] [PubMed]
- McCreesh, N.; Booth, M. The effect of increasing water temperatures on Schistosoma mansoni transmission and Biomphalaria pfeifferi population dynamics: An agent-based modelling study. PLoS ONE 2014, 9, e105917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngarakana-Gwasira, E.; Bhunu, C.; Masocha, M.; Mashonjowa, E. Transmission dynamics of schistosomiasis in Zimbabwe: A mathematical and GIS approach. Commun. Nonlinear Sci. Num. Sim. 2016, 35, 137–147. [Google Scholar] [CrossRef]
- Pedersen, U.B.; Stendel, M.; Midzi, N.; Mduluza, T.; Soko, W.; Stensgaard, A.-S.; Vennervald, B.J.; Mukaratirwa, S.; Kristensen, T.K. Modelling climate change impact on the spatial distribution of fresh water snails hosting trematodes in Zimbabwe. Parasites Vectors 2014, 7, 536. [Google Scholar] [CrossRef] [PubMed]
- Stensgaard, A.S.; Utzinger, J.; Vounatsou, P.; Hurlimann, E.; Schur, N.; Saarnak, C.F.L.; Simoonga, C.; Mubita, P.; Kabatereine, N.B.; Tchuente, L.A.T.; et al. Large-scale determinants of intestinal schistosomiasis and intermediate host snail distribution across Africa: Does climate matter? Acta Trop. 2013, 128, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, R.E.; Minchella, D.J. Parasite influences on host life history: Echinostoma revolutum parasitism of Lymnaea elodes snails. Oecologia 1998, 115, 188–195. [Google Scholar] [CrossRef]
- Sterarns, S. The Evolution of Life Histories; Oxford University Press: Oxford, UK, 1992. [Google Scholar]
- Hurd, H. Host fecundity reduction: A strategy for damage limitation? Trends Parasitol. 2001, 17, 363–368. [Google Scholar] [CrossRef]
- Lafferty, K.D. The ecology of climate change and infectious diseases. Ecology 2009, 90, 888–900. [Google Scholar] [CrossRef] [PubMed]
- Brackenbury, T.; Appleton, C. Effect of controlled temperatures on gametogenesis in the gastropods Physa acuta (Physidae) and Bulinus tropicus (Planorbidae). J. Mollus. Stud. 1991, 57, 461–469. [Google Scholar] [CrossRef]
- Manyangadze, T.; Chimbari, M.J.; Gebreslasie, M.; Pietro, C.; Mukaratirwa, S. Modelling the spatial and seasonal distribution of suitable habitats of schistosomiasis intermediate host snails using maxent in Ndumo Area, Kwazulu-Natal province, South Africa. Parasites Vectors 2016, 9, 572. [Google Scholar] [CrossRef] [PubMed]
- Appleton, C. The influence of above-optimal constant temperatures on South African Biomphalaria pfeifferi (Krauss) (Mollusca: Planorbidae). Trans. R. Soc. Trop. Med. Hyg. 1977, 71, 140–143. [Google Scholar] [CrossRef]
- Kabatereine, N.B.; Brooker, S.; Tukahebwa, E.M.; Kazibwe, F.; Onapa, A.W. Epidemiology and geography of Schistosoma mansoni in Uganda: Implications for planning control. Trop. Med. Int. Health 2004, 9, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Seppälä, O.; Jokela, J. Immune defence under extreme ambient temperature. Biol. Lett. 2011, 7, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Paull, S.H.; Johnson, P.T.J. High temperature enhances host pathology in a snail-trematode system: Possible consequences of climate change for the emergence of disease. Freshwater Biol. 2011, 56, 767–778. [Google Scholar] [CrossRef]
- Studer, A.; Thieltges, D.; Poulin, R. Parasites and global warming: Net effects of temperature on an intertidal host-parasite system. Mar. Ecol. Progr. Ser. 2010, 415, 11–22. [Google Scholar] [CrossRef]
- Harrison, A.; Shiff, C. Factors influencing the distribution of some species of aquatic snails. S. Afr. J. Sci. 1966, 62, 3–258. [Google Scholar]
- Shiff, C. Studies on Bulinus (Physopsis) globosus in Rhodesia. I. The influence of temperature on the intrinsic rate of natural increase. Ann. Trop. Med. Parasitol. 1964, 58, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Sturrock, R.; Sturrock, B. The influence of temperature on the biology of Biomphalaria glabrata (say), intermediate host of Schistosoma mansoni on St. Lucia, West Indies. Ann. Trop. Med. Parasitol. 1972, 66, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Graham, A. Effects of snail size and age on the prevalence and intensity of avian schistosome infection: Relating laboratory to field studies. J. Parasitol. 2003, 89, 458–463. [Google Scholar] [CrossRef]
- Labaude, S.; Rigaud, T.; Cézilly, F. Host manipulation in the face of environmental changes: Ecological consequences. Int. J. Parasitol. 2015, 4, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Studer, A.; Poulin, R.; Tompkins, D. Local effects of a global problem: Modelling the risk of parasite-induced mortality in an intertidal trematode-amphipod system. Oecologia 2013, 172, 1213–1222. [Google Scholar] [CrossRef] [PubMed]
- Esch, G.W.; Gibbons, J.W.; Bourque, J.E. An analysis of the relationship between stress and parasitism. Am. Midl. Nat. 1975, 93, 339–353. [Google Scholar] [CrossRef]
- Yang, G.-J.; Utzinger, J.; Sun, L.-P.; Hong, Q.-B.; Vounatsou, P.; Tanner, M.; Zhou, X.-N. Effect of temperature on the development of Schistosoma japonicum within Oncomelania hupensis, and hibernation of O. hupensis. Parasitol. Res. 2007, 100, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.N.; Yang, G.-J.; Yang, K.; Wang, X.-H.; Hong, Q.-B.; Sun, L.-P.; Malone, J.B.; Kristensen, T.K.; Bergquist, N.R.; Utzinger, J. Potential impact of climate change on schistosomiasis transmission in China. Am. J. Trop. Med. Hyg. 2008, 78, 188–194. [Google Scholar] [PubMed]
- Morley, N.; Lewis, J. Thermodynamics of cercarial development and emergence in trematodes. Parasitology 2013, 140, 1211–1224. [Google Scholar] [CrossRef] [PubMed]
- Poulin, R. Global warming and temperature-mediated increases in cercarial emergence in trematode parasites. Parasitology 2006, 132, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Martens, W.; Jetten, T.H.; Focks, D.A. Sensitivity of malaria, schistosomiasis and dengue to global warming. Clim. Chang. 1997, 35, 145–156. [Google Scholar] [CrossRef]
- Macdonald, G. The dynamics of helminth infections, with special reference to schistosomes. Transact. R. Soc. Trop. Med. Hyg. 1965, 59, 489–506. [Google Scholar] [CrossRef]
- Anderson, R.M.; May, R.M. Population dynamics of human helminth infections: Control by chemotherapy. Nature 1982, 297, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Clements, A.C.; Lwambo, N.J.; Blair, L.; Nyandindi, U.; Kaatano, G.; Kinung’hi, S.; Webster, J.P.; Fenwick, A.; Brooker, S. Bayesian spatial analysis and disease mapping: Tools to enhance planning and implementation of a schistosomiasis control programme in Tanzania. Trop. Med. Int. Health 2006, 11, 490–503. [Google Scholar] [CrossRef] [PubMed]
- Woolhouse, M. On the application of mathematical models of schistosome transmission dynamics. I. Natural transmission. Acta Trop. 1991, 49, 241–270. [Google Scholar] [CrossRef]
- Xu, J.-F.; Lv, S.; Wang, Q.-Y.; Qian, M.-B.; Liu, Q.; Bergquist, R.; Zhou, X.-N. Schistosomiasis japonica: Modelling as a tool to explore transmission patterns. Acta Trop. 2015, 141, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Keeling, M.J.; Rohani, P. Modeling Infectious Diseases in Humans and Animals; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Liang, S.; Maszle, D.; Spear, R.C. A quantitative framework for a multi-group model of schistosomiasis japonicum transmission dynamics and control in Sichuan, China. Acta Trop. 2002, 82, 263–277. [Google Scholar] [CrossRef]
- Zakaria, H. Further study on the ecology of the intermediate host of schistosoma haematobium, bulinus truncatus baylis. Bull. Endem. Dis. 1955, 1, 123–155. [Google Scholar]
- Mouritsen, K.N.; Jensen, K.T. Parasite transmission between soft-bottom invertebrates: Temperature mediated infection rates and mortality in Corophium volutator. Mar. Ecol. Progr. Ser. 1997, 151, 123–134. [Google Scholar] [CrossRef]
Author (Reference) | Objective | Snail Species Studied | Methods | Outcome |
---|---|---|---|---|
Appleton and Eriksson [36] | To determine the influence of fluctuating above-optimal temperature regimes on the fecundity of Bi. pfeifferi | Biomphalaria pfeifferi | Laboratory experiment |
|
Dagal et al. [37] | To determine the effect of some physico-chemical factors (temperature, pH and salinity) on the hatchability of egg masses and survival of juvenile and adult snails | Bulinus (Physopsis) abyssinucus | Laboratory experiment |
|
El-Emam and Madsen [38] | To compare the effect of temperature on the growth, survival and fecundity of Bu. truncatus and Bi. alexandrina | Biomphalaria alexandrina and Bulinus truncatus | Laboratory experiment |
|
Joubert et al. [39] | To determine the survival of Bu. africanus (Krauss), Bu. globosus and Bi. pfeifferi at constant high temperatures of 34 °C to 40 °C | Bulinus africanus (Krauss), Bulinus globosus (Morelet) and Biomphalaria pfeifferi (Krauss) | Laboratory experiment |
|
Kubiriza et al. [40] | To compare the performance (survival, growth, hatchability and reproduction) of Bu. nyassanus to other Bulinus spp. when exposed to different constant temperatures | Bulinus nyassanus (Smith, 1877) | Laboratory experiment |
|
McCreesh et al. [41] | To determine the effects of water temperature on the mortality, fecundity, and growth rates of Bi. sudanica | Biomphalaria sudanica | Laboratory experiment |
|
Pflüger et al. [42] | To evaluate the effect of temperature on the development rate of Schistosoma haematobium development in Bulinus snails | Bulinus truncatus | Laboratory experiment |
|
Pflüger [43] | To determine the effect of temperature on the length of the prepatent period in infected Bi. glabrata snails | Biomphalaria glabrata | Laboratory experiment |
|
Mofolusho and Benson [44] | To access the influence of acclimatization (to laboratory conditions) on the fecundity and fertility of field collected Bi. pfeifferi | Biomphalaria pfeifferi (Krauss, 1848) | Laboratory experiment |
|
Joubert et al. [45] | To determine the survival of Bu. africanus (Krauss), Bu. globosus (Morelet) and Bi. pfeifferi (Krauss) at constant low temperatures (0 °C to 8 °C) | Bulinus africanus (Krauss), Bulinus globosus (Morelet) and Biomphalaria pfeifferi (Krauss) | Laboratory experiment |
|
Barbosa et al. [46] | To determine the effect of seasonal temperature variation on egg production during the year | Biomphalaria glabrata | Laboratory experiment |
|
O’keeffe [47] | To evaluate the effect of seasonal climatic changes on the natural populations of Bu. globosus | Bulinus globosus | Field experiment |
|
Woolhouse and Chandiwana [48] | To determine the factors that influence the abundance of Bu. globosus in space and time for a critical assessment of the possible effectiveness of different snail control strategies | Bulinus globosus | Field experiment |
|
Mangal et al. [49] | To determine the impact of temperature on the worm burden and prevalence of schistosomiasis for optimal disease control strategies | Non specific Biomphalaria spp. | Modelling |
|
McCreesh and Booth [50] | To simulate all temperature-sensitive stages of S. mansoni and the life cycle of its intermediate host snail Bi. pfeifferi | Biomphalaria pfeifferi | Modelling |
|
Ngarakana-Gwasira et al. [51] | To develop an epidemiological model for improved predictions of the impact of climatic factors on the dynamics and variation of schistosomiasis intensity in Zimbabwe | Non-specific snail species | Modelling |
|
Term | Meaning |
---|---|
Growth | The increase in the shell height of the IH snails [41] |
Fecundity | A measure of the fertility of the organisms expressed as number of egg masses laid [36,40,41] |
Reproductive rate | The mean number of offspring that the snail can produce during its lifetime [38,40] |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalinda, C.; Chimbari, M.; Mukaratirwa, S. Implications of Changing Temperatures on the Growth, Fecundity and Survival of Intermediate Host Snails of Schistosomiasis: A Systematic Review. Int. J. Environ. Res. Public Health 2017, 14, 80. https://doi.org/10.3390/ijerph14010080
Kalinda C, Chimbari M, Mukaratirwa S. Implications of Changing Temperatures on the Growth, Fecundity and Survival of Intermediate Host Snails of Schistosomiasis: A Systematic Review. International Journal of Environmental Research and Public Health. 2017; 14(1):80. https://doi.org/10.3390/ijerph14010080
Chicago/Turabian StyleKalinda, Chester, Moses Chimbari, and Samson Mukaratirwa. 2017. "Implications of Changing Temperatures on the Growth, Fecundity and Survival of Intermediate Host Snails of Schistosomiasis: A Systematic Review" International Journal of Environmental Research and Public Health 14, no. 1: 80. https://doi.org/10.3390/ijerph14010080
APA StyleKalinda, C., Chimbari, M., & Mukaratirwa, S. (2017). Implications of Changing Temperatures on the Growth, Fecundity and Survival of Intermediate Host Snails of Schistosomiasis: A Systematic Review. International Journal of Environmental Research and Public Health, 14(1), 80. https://doi.org/10.3390/ijerph14010080