Gaming Device Usage Patterns Predict Internet Gaming Disorder: Comparison across Different Gaming Device Usage Patterns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Procedures
2.2. Measures
2.2.1. Demographic and Gaming Characteristics
2.2.2. Clinical Characteristics
2.3. Statistical Analysis
3. Results
3.1. Comparison between the IGD and Control Groups
3.2. Comparison across Different Gaming Device Usage Patterns
3.3. Predictive Value of the Gaming Device Usage Patterns
4. Discussion
4.1. Characteristics of IGD in Smartphone Era
4.2. Characteristics across Different Gaming Device Usage Patterns
4.3. The Role of Gaming Device Usage Patterns on IGD
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Game Users Survey Report 2016. Available online: http://www.kocca.kr/cop/bbs/view/B0000147/1831102.do?menuNo=200904 (accessed on 18 July 2017).
- Ferguson, C.J.; Coulson, M.; Barnett, J. A meta-analysis of pathological gaming prevalence and comorbidity with mental health, academic and social problems. J. Psychiatr. Res. 2011, 45, 1573–1578. [Google Scholar] [CrossRef] [PubMed]
- Kuss, D.J.; Griffiths, M.D. Internet gaming addiction: A systematic review of empirical research. Int. J. Ment. Health Addict. 2012, 10, 278–296. [Google Scholar] [CrossRef]
- Fauth-Bühler, M.; Mann, K. Neurobiological correlates of internet gaming disorder: Similarities to pathological gambling. Addict. Behav. 2017, 64, 349–356. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®); American Psychiatric Pub.: Arlington, VA, USA, 2013. [Google Scholar]
- Ho, R.C.; Zhang, M.W.; Tsang, T.Y.; Toh, A.H.; Pan, F.; Lu, Y.; Cheng, C.; Yip, P.S.; Lam, L.T.; Lai, C.-M. The association between internet addiction and psychiatric co-morbidity: A meta-analysis. BMC Psychiatr. 2014, 14, 183. [Google Scholar] [CrossRef] [PubMed]
- Survey on Internet Overdependence 2015. Available online: http://www.nia.or.kr/site/nia_kor/ex/bbs/View.do?cbIdx=65914&bcIdx=17132&parentSeq=17132 (accessed on 21 June 2016).
- Kelley, A.E.; Schochet, T.; Landry, C.F. Risk taking and novelty seeking in adolescence: Introduction to part I. Ann. N. Y. Acad. Sci. 2004, 1021, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Crews, F.; He, J.; Hodge, C. Adolescent cortical development: A critical period of vulnerability for addiction. Pharmacol. Biochem. Behav. 2007, 86, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.R.; Hwang, S.S.-H.; Choi, J.-S.; Kim, D.-J.; Demetrovics, Z.; Király, O.; Nagygyörgy, K.; Griffiths, M.; Hyun, S.Y.; Youn, H.C. Characteristics and psychiatric symptoms of internet gaming disorder among adults using self-reported DSM-5 criteria. Psychiatr. Investig. 2016, 13, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.R.; Cho, H.; Dai-Jin, K. Prevalence and correlates of comorbid depression in a nonclinical online sample with DSM-5 internet gaming disorder. J. Affect. Disord. 2018, 226, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Lemmens, J.S.; Valkenburg, P.M.; Gentile, D.A. The Internet Gaming Disorder Scale. Psychol. Assess. 2015, 27, 567. [Google Scholar] [CrossRef] [PubMed]
- Korean Creative Content Agency. White Paper on Korean Games; Korea Creative Content Agency: Seoul, Korea, 2013.
- Young, K.S.; De Abreu, C.N. Internet Addiction: A Handbook and Guide to Evaluation and Treatment; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Widyanto, L.; McMurran, M. The psychometric properties of the internet addiction test. Cyberpsychol. Behav. 2004, 7, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Gyeong, H.; Lee, H.-K.; Lee, K. Factor analysis of the Young’s internet addiction test: In Korean College Students Group. J. Korean Neuropsychiatr. Assoc. 2012, 51, 45–51. [Google Scholar] [CrossRef]
- Kwon, M.; Kim, D.-J.; Cho, H.; Yang, S. The smartphone addiction scale: Development and validation of a short version for adolescents. PLoS ONE 2013, 8, e83558. [Google Scholar] [CrossRef] [PubMed]
- Hawi, N.S.; Samaha, M. To excel or not to excel: Strong evidence on the adverse effect of smartphone addiction on academic performance. Comput. Educ. 2016, 98, 81–89. [Google Scholar] [CrossRef]
- Haug, S.; Castro, R.P.; Kwon, M.; Filler, A.; Kowatsch, T.; Schaub, M.P. Smartphone use and smartphone addiction among young people in Switzerland. J. Behav. Addict. 2015, 4, 299–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tangney, J.P.; Baumeister, R.F.; Boone, A.L. High self-control predicts good adjustment, less pathology, better grades, and interpersonal success. J. Personal. 2004, 72, 271–324. [Google Scholar] [CrossRef]
- Manea, L.; Gilbody, S.; McMillan, D. Optimal cut-off score for diagnosing depression with the Patient Health Questionnaire (PHQ-9): A meta-analysis. Can. Med. Assoc. J. 2012, 184, E191–E196. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.S.; Choi, J.H.; Park, K.H.; Joo, K.J.; Ga, H.; Ko, H.J.; Kim, S.R. Standardization of the Korean version of Patient Health Questionnaire-9 as a screening instrument for major depressive disorder. J. Korean Acad. Fam. Med. 2007, 28, 114–119. [Google Scholar]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.; Löwe, B. A brief measure for assessing generalized anxiety disorder: The GAD-7. Arch. Intern. Med. 2006, 166, 1092–1097. [Google Scholar] [CrossRef] [PubMed]
- Plummer, F.; Manea, L.; Trepel, D.; McMillan, D. Screening for anxiety disorders with the GAD-7 and GAD-2: A systematic review and diagnostic metaanalysis. Gen. Hosp. Psychiatry 2016, 39, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Saunders, J.B.; Aasland, O.G.; Babor, T.F.; De la Fuente, J.R.; Grant, M. Development of the alcohol use disorders identification test (AUDIT): WHO collaborative project on early detection of persons with harmful alcohol consumption-II. Addiction 1993, 88, 791–804. [Google Scholar] [CrossRef] [PubMed]
- Joe, K.H.; Chai, S.H.; Park, A.; Lee, H.K.; Shin, I.H.; Min, S.H. Optimum Cut-Off Score for Screening of Hazardous Drinking Using the Korean Version of Alcohol Use Disorder Identification Test(AUDIT-K). J. Korean Addict. Psychiatry 2009, 13, 34–40. [Google Scholar]
- Heatherton, T.F.; Kozlowski, L.T.; Frecker, R.C.; Fagerstrom, K.O. The Fagerström test for nicotine dependence: A revision of the Fagerstrom Tolerance Questionnaire. Addiction 1991, 86, 1119–1127. [Google Scholar] [CrossRef]
- Ahn, H.K.; Lee, H.J.; Jung, D.S.; Lee, S.Y.; Kim, S.W.; Kang, J.H. The reliability and validity of Korean version of questionnaire for nicotine dependence. J. Korean Acad. Fam. Med. 2002, 23, 999–1008. [Google Scholar]
- Festl, R.; Scharkow, M.; Quandt, T. Problematic computer game use among adolescents, younger and older adults. Addiction 2013, 108, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Charlton, J.P.; Danforth, I.D. Distinguishing addiction and high engagement in the context of online game playing. Comput. Hum. Behav. 2007, 23, 1531–1548. [Google Scholar] [CrossRef]
- Rho, M.J.; Jeong, J.-E.; Chun, J.-W.; Cho, H.; Jung, D.J.; Choi, I.Y.; Kim, D.-J. Predictors and patterns of problematic Internet game use using a decision tree model. J. Behav. Addict. 2016, 5, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Lemmens, J.S.; Hendriks, S.J. Addictive online games: Examining the relationship between game genres and internet gaming disorder. Cyberpsychol. Behav. Soc. Netw. 2016, 19, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-W.; Kim, D.-J.; Choi, J.-S.; Ahn, H.; Choi, E.-J.; Song, W.-Y.; Kim, S.; Youn, H. Comparison of risk and protective factors associated with smartphone addiction and Internet addiction. J. Behav. Addict. 2015, 4, 308–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yen, J.Y.; Ko, C.H.; Yen, C.F.; Chen, C.S.; Chen, C.C. The association between harmful alcohol use and Internet addiction among college students: Comparison of personality. Psychiatry. Clin. Neurosci. 2009, 63, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Namkoong, K.; Ku, T.; Kim, S.J. The relationship between online game addiction and aggression, self-control and narcissistic personality traits. Eur. Psychiatr. 2008, 23, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Rehbein, F.; Kliem, S.; Baier, D.; Mößle, T.; Petry, N.M. Prevalence of internet gaming disorder in German adolescents: Diagnostic contribution of the nine DSM-5 criteria in a state-wide representative sample. Addiction 2015, 110, 842–851. [Google Scholar] [CrossRef] [PubMed]
- Kuss, D.J. Internet gaming addiction: Current perspectives. Psychol. Res. Behav. Manag. 2013, 6, 125. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.-H.; Yen, J.-Y.; Chen, C.-C.; Chen, S.-H.; Yen, C.-F. Gender differences and related factors affecting online gaming addiction among Taiwanese adolescents. J. Nerv. Ment. Dis. 2005, 193, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Weiser, E.B. Gender differences in Internet use patterns and Internet application preferences: A two-sample comparison. Cyberpsychol. Behav. 2000, 3, 167–178. [Google Scholar] [CrossRef]
- Winn, J.; Heeter, C. Gaming, gender, and time: Who makes time to play? Sex Roles 2009, 61, 1–13. [Google Scholar] [CrossRef]
- Mok, J.-Y.; Choi, S.-W.; Kim, D.-J.; Choi, J.-S.; Lee, J.; Ahn, H.; Choi, E.-J.; Song, W.-Y. Latent class analysis on internet and smartphone addiction in college students. Neuropsychiatr. Dis. Treat. 2014, 10, 817. [Google Scholar] [PubMed]
- Kim, Y.; Jeong, J.-E.; Cho, H.; Jung, D.-J.; Kwak, M.; Rho, M.J.; Yu, H.; Kim, D.-J.; Choi, I.Y. Personality factors predicting smartphone addiction predisposition: Behavioral inhibition and activation systems, impulsivity, and self-control. PLoS ONE 2016, 11, e0159788. [Google Scholar] [CrossRef] [PubMed]
- Burns, L.; Teesson, M. Alcohol use disorders comorbid with anxiety, depression and drug use disorders: Findings from the Australian National Survey of Mental Health and Well Being. Drug Alcohol Depend. 2002, 68, 299–307. [Google Scholar] [CrossRef]
- Barrett, S.P.; Darredeau, C.; Pihl, R.O. Patterns of simultaneous polysubstance use in drug using university students. Hum. Psychopharmacol. 2006, 21, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Demetrovics, Z.; Urbán, R.; Nagygyörgy, K.; Farkas, J.; Zilahy, D.; Mervó, B.; Reindl, A.; Ágoston, C.; Kertész, A.; Harmath, E. Why do you play? The development of the motives for online gaming questionnaire (MOGQ). Behav. Res. Methods 2011, 43, 814–825. [Google Scholar] [CrossRef] [PubMed]
- Kuss, D.J.; Louws, J.; Wiers, R.W. Online gaming addiction? Motives predict addictive play behavior in massively multiplayer online role-playing games. Cyberpsychol. Behav. Soc. Netw. 2012, 15, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Park, N.; Lee, H. Social implications of smartphone use: Korean college students’ smartphone use and psychological well-being. Cyberpsychol. Behav. Soc. Netw. 2012, 15, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Kim, O. Predictors of online game addiction among Korean adolescents. Addict. Res. Theory 2017, 25, 58–66. [Google Scholar] [CrossRef]
- Jeong, S.-H.; Kim, H.; Yum, J.-Y.; Hwang, Y. What type of content are smartphone users addicted to? SNS vs. games. Comput. Hum. Behav. 2016, 54, 10–17. [Google Scholar] [CrossRef]
- Hou, J.; Nam, Y.; Peng, W.; Lee, K.M. Effects of screen size, viewing angle, and players’ immersion tendencies on game experience. Comput. Hum. Behav. 2012, 28, 617–623. [Google Scholar] [CrossRef]
- Park, E.; Baek, S.; Ohm, J.; Chang, H.J. Determinants of player acceptance of mobile social network games: An application of extended technology acceptance model. Telemat. Inform. 2014, 31, 3–15. [Google Scholar] [CrossRef]
- Liu, C.-H.; Lin, S.-H.; Pan, Y.-C.; Lin, Y.-H. Smartphone gaming and frequent use pattern associated with smartphone addiction. Medicine 2016, 95, e4068. [Google Scholar] [CrossRef] [PubMed]
- Dreier, M.; Wölfling, K.; Duven, E.; Giralt, S.; Beutel, M.; Müller, K. Free-to-play: About addicted Whales, at risk Dolphins and healthy Minnows. Monetarization design and internet gaming disorder. Addict. Behav. 2017, 64, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Evans, E. The economics of free: Freemium games, branding and the impatience economy. Convergence 2016, 22, 563–580. [Google Scholar] [CrossRef]
- Kwon, M.; Nam, K.; Seo, B. A Survey on Internet Overdependence, 2015; Ministry of Science, ICT, and Future Planning: Seoul, Korea, 2016.
Variables | IGD | Non-IGD | X2/U | p |
---|---|---|---|---|
N (%) | 396 (12.9%) | 2662 (87.1%) | ||
Age | 27.63 ± 5.797 | 26.85 ± 5.862 | 572,613.000 | 0.005 * |
Male (%) | 220 (55.6%) | 1328 (49.9%) | 4.431 | 0.035 * |
Education levels | ||||
Up to 12 years (high school) | 63 (15.9%) | 276 (10.4%) | 10.731 | 0.001 ** |
More than 13 years | 333 (84.1%) | 2386 (89.6%) | ||
Occupational status | ||||
Student | 123 (31.1%) | 1029 (38.7%) | 8.472 | 0.014 * |
Current full-time job | 213 (53.8%) | 1227 (48.0%) | ||
No currently full-time job | 60 (15.2%) | 356 (13.4%) | ||
Time spent on gaming | ||||
Weekday (min) | 167.79 ± 124.190 | 107.63 ± 96.227 | 722,949.000 | 0.000 ** |
Weekend (min) | 253.76 ± 152.207 | 169.02 ± 131.868 | 729,658.000 | 0.000 ** |
Money spent on gaming (KRW) | 32,270.45 ± 48,491.203 | 11,599.61 ± 27,190.750 | 752,279.500 | 0.000 ** |
Game community membership | 253 (63.9%) | 818 (30.7%) | 166.566 | 0.000 ** |
Ever attended offline meeting | 179 (45.2%) | 352 (13.2%) | 59.393 | 0.000 ** |
Gaming device usage pattern | ||||
PC only | 87 (22.0%) | 633 (23.8%) | 51.909 | 0.000 ** |
PC > SM | 90 (22.7%) | 490 (18.4%) | ||
PC = SM | 71 (17.9%) | 255 (9.6%) | ||
PC < SM | 102 (25.8%) | 633 (23.8%) | ||
SM only | 46 (11.6%) | 651 (24.5%) | ||
Preferred game genre | ||||
Simulation/strategy | 113 (28.5%) | 708 (26.6%) | 23.102 | 0.000 ** |
RPG | 108 (27.3%) | 521 (19.6%) | ||
Sports/racing | 60 (15.2%) | 413 (15.5%) | ||
Shooting/action | 33 (8.3%) | 196 (7.4%) | ||
Puzzle/arcade/board game | 82 (20.7%) | 824 (31.0%) | ||
Reason for gaming | ||||
For fun | 148 (37.4%) | 1159 (43.5%) | 44.352 | 0.000 ** |
For killing time | 65 (16.4%) | 671 (25.2%) | ||
For relieving stress | 101 (25.5%) | 535 (20.1%) | ||
For need | 22 (5.6%) | 80 (3.0%) | ||
For achievement | 60 (15.2%) | 217 (8.2%) | ||
YIAT | 53.98 ± 26.267 | 36.80 ± 18.800 | 788,470.500 | 0.000 ** |
SAS-SV | 39.97 ± 9.015 | 28.75 ± 10.114 | 838,582.000 | 0.000 ** |
BSCS | 53.98 ± 26.267 | 36.80 ± 18.800 | 775,457.500 | 0.000 ** |
Depression (%) | 252 (63.6%) | 631 (23.7%) | 267.652 | 0.000 ** |
Generalized anxiety disorder (%) | 179 (45.2%) | 383 (14.4%) | 218.205 | 0.000 ** |
Alcohol use disorder (%) | 139 (35.1%) | 446 (16.8%) | 75.003 | 0.000 ** |
Nicotine dependence (%) | 55 (59.8%) | 133 (31.7%) | 25.675 | 0.000 ** |
Variables | PC Only | PC > SM | PC = SM | PC < SM | SM Only | X2/H | p | Post-Hoc |
---|---|---|---|---|---|---|---|---|
N (%) | 720 (23.5%) | 580 (19.0%) | 326 (10.7%) | 735 (24.0%) | 697 (22.8%) | |||
Age | 25.70 ± 5.306 | 25.74 ± 5.458 | 27.16 ± 5.800 | 27.11 ± 5.890 | 28.95 ± 6.142 | 140.747 | 0.000 ** | e > a,b,c,d, a,b < c,d |
Male (%) | 448 (62.2%) | 431 (74.3%) | 159 (48.8%) | 318 (43.3%) | 192 (27.5%) | 333.801 | 0.000 ** | |
Education levels | ||||||||
Up to 12 years | 95 (13.2%) | 66 (11.4%) | 46 (14.1%) | 65 (8.8%) | 67 (9.6%) | 11.608 | 0.021 * | |
More than 13 years | 625 (86.8%) | 514 (88.6%) | 280 (85.9%) | 670 (91.2%) | 630 (90.4%) | |||
Occupational status | ||||||||
Student | 330 (45.8%) | 292 (50.3%) | 107 (32.8%) | 254 (34.6%) | 169 (24.2%) | 134.837 | 0.000 ** | |
Current full-time job | 281 (39.0%) | 217 (37.4%) | 180 (55.2%) | 383 (42.1%) | 429 (61.5%) | |||
No current full-time job | 109 (15.1%) | 71 (12.2%) | 39 (12.0%) | 98 (13.3%) | 99 (14.2%) | |||
IGD (%) | 87 (12.1%) | 90 (15.5%) | 71 (21.8%) | 102 (13.9%) | 46 (6.6%) | 51.909 | 0.000 ** | |
Time spent on gaming | ||||||||
Weekday (min) | 111.65 ± 103.703 | 139.56 ± 105.489 | 120.45 ± 112.919 | 110.11 ± 87.180 | 96.75 ± 103.262 | 122.254 | 0.000 ** | e < a,b,c,d, b > a,c,d |
Weekend (min) | 194.60 ± 148.341 | 220.82 ± 134.656 | 180.53 ± 124.000 | 172.78 ± 123.798 | 137.61 ± 135.296 | 226.227 | 0.000 ** | e < a,b,c,d, b > a,c,d |
Money spent on gaming (KRW) | 17,298.34 ± 37,995.779 | 24,993.36 ± 36,335.539 | 19,647.24 ± 34,119.854 | 11,973.13 ± 29,297.559 | 2082.50 ± 7421.816 | 577.364 | 0.000 ** | e < a,b,c,d, b > a,c,d d < a,c |
Game community membership | 220 (30.6%) | 304 (52.4%) | 153 (46.9%) | 273 (37.7%) | 117 (16.8%) | 207.871 | 0.000 ** | |
Ever attended offline meeting | 101 (45.9%) | 172 (56.6%) | 88 (57.5%) | 128 (46.2%) | 42 (35.9%) | 21.019 | 0.000 ** | |
Preferred game genre | ||||||||
Simulation/strategy | 255 (35.4%) | 230 (39.7%) | 77 (23.6%) | 152 (20.7%) | 107 (15.4%) | 591.480 | 0.000 ** | |
RPG | 183 (25.4%) | 132 (22.8%) | 79 (24.2%) | 157 (21.4%) | 78 (11.2%) | |||
Sports/racing | 119 (16.5%) | 89 (15.3%) | 69 (21.2%) | 123 (16.7%) | 73 (10.5%) | |||
Shooting/action | 88 (12.2%) | 59 (10.2%) | 21 (6.4%) | 40 (5.4%) | 12 (3.0%) | |||
Puzzle/arcade/board game | 75 (10.4%) | 70 (12.1%) | 80 (24.5%) | 263 (29.0%) | 418 (60.0%) | |||
Reason for gaming | ||||||||
For fun | 237 (45.4%) | 267 (46.0%) | 147 (45.1%) | 318 (43.3%) | 248 (35.6%) | 164.244 | 0.000 ** | |
For killing time | 120 (16.7%) | 88 (15.2%) | 66 (20.2%) | 181 (24.6%) | 281 (38.2%) | |||
For relieving stress | 178 (24.7%) | 134 (23.1%) | 69 (21.2%) | 153 (20.8%) | 102 (14.6%) | |||
For need | 34 (4.7%) | 24 (4.1%) | 13 (4.0%) | 21 (2.9%) | 10 (1.4%) | |||
For achievement | 61 (8.5%) | 67 (11.6%) | 31 (9.5%) | 62 (8.4%) | 56 (8.0%) | |||
YIAT | 38.65 ± 20.899 | 43.56 ± 18.530 | 44.08 ± 21.511 | 40.73 ± 20.591 | 31.36 ± 19.930 | 145.760 | 0.000 ** | e < a,b,c,d, a < b,c |
SAS-SV | 29.50 ± 10.646 | 30.19 ± 11.029 | 31.58 ± 11.149 | 31.60 ± 10.392 | 28.76 ± 10.657 | 31.614 | 0.000 ** | e < c,d, a < c,d |
BSCS | 36.51 ± 6.663 | 36.17 ± 6.959 | 36.73 ± 6.920 | 36.49 ± 6.742 | 35.33 ± 6.795 | 17.479 | 0.002 ** | e < a,c,d |
Depression (%) | 218 (30.3%) | 156 (26.9%) | 116 (35.6%) | 233 (31.7%) | 160 (23.0%) | 23.687 | 0.000 ** | |
Generalized anxiety disorder (%) | 141 (19.6%) | 101 (17.4%) | 74 (22.7%) | 144 (19.6%) | 102 (14.6%) | 12.350 | 0.015 * | |
Alcohol use disorder (%) | 141 (31.6%) | 84 (22.0%) | 82 (36.4%) | 160 (31.3%) | 118 (26.3%) | 19.325 | 0.001 ** | |
Nicotine dependence (%) | 35 (31.0%) | 50 (38.8%) | 23 (44.2%) | 60 (43.2%) | 20 (25.3%) | 10.006 | 0.040 * |
Variables | B (s.e.) | OR | 95% CI | p |
---|---|---|---|---|
Age | 0.032 (0.011) | 1.033 | 1.010–1.056 | 0.005 * |
Gender (male) | 0.260 (0.144) | 1.296 | 0.977–1.719 | 0.072 |
Weekday gaming hour (>90 min) | 0.262 (0.144) | 1.300 | 0.931–1.816 | 0.124 |
Weekend gaming hour (>150 min) | 0.542 (0.170) | 1.720 | 1.232–2.399 | 0.001 ** |
Money spent on gaming (>KRW2000) | 0.729 (0.144) | 2.072 | 1.562–2.749 | 0.000 ** |
Game community membership | 0.851 (0.137) | 2.341 | 1.791–3.061 | 0.000 ** |
Gaming device usage pattern | ||||
PC only | Reference | 0.000 ** | ||
PC > SM | −0.085 (0.196) | 0.919 | 0.626–1.349 | 0.666 |
PC = SM | 0.457 (0.213) | 1.579 | 1.040–2.397 | 0.032 * |
PC < SM | 0.019 (0.189) | 1.019 | 0.703–1.476 | 0.921 |
SM only | −0.144 (0.229) | 0.866 | 0.552–1.357 | 0.529 |
SAS-SV | 0.090 (0.008) | 1.094 | 1.076–1.112 | 0.000 ** |
BSCS | 0.043 (0.013) | 1.044 | 1.018–1.070 | 0.001 ** |
Depression | 0.667 (0.168) | 1.949 | 1.403–2.708 | 0.000 ** |
Generalized anxiety disorder | 0.132 (0.173) | 1.141 | 0.812–1.603 | 0.447 |
Alcohol use disorder | 0.254 (0.150) | 1.2899 | 0.961–1.728 | 0.090 |
Nicotine dependence | 0.384 (0.223) | 1.468 | 0.949–2.271 | 0.085 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paik, S.-H.; Cho, H.; Chun, J.-W.; Jeong, J.-E.; Kim, D.-J. Gaming Device Usage Patterns Predict Internet Gaming Disorder: Comparison across Different Gaming Device Usage Patterns. Int. J. Environ. Res. Public Health 2017, 14, 1512. https://doi.org/10.3390/ijerph14121512
Paik S-H, Cho H, Chun J-W, Jeong J-E, Kim D-J. Gaming Device Usage Patterns Predict Internet Gaming Disorder: Comparison across Different Gaming Device Usage Patterns. International Journal of Environmental Research and Public Health. 2017; 14(12):1512. https://doi.org/10.3390/ijerph14121512
Chicago/Turabian StylePaik, Soo-Hyun, Hyun Cho, Ji-Won Chun, Jo-Eun Jeong, and Dai-Jin Kim. 2017. "Gaming Device Usage Patterns Predict Internet Gaming Disorder: Comparison across Different Gaming Device Usage Patterns" International Journal of Environmental Research and Public Health 14, no. 12: 1512. https://doi.org/10.3390/ijerph14121512
APA StylePaik, S. -H., Cho, H., Chun, J. -W., Jeong, J. -E., & Kim, D. -J. (2017). Gaming Device Usage Patterns Predict Internet Gaming Disorder: Comparison across Different Gaming Device Usage Patterns. International Journal of Environmental Research and Public Health, 14(12), 1512. https://doi.org/10.3390/ijerph14121512