The Family Affluence Scale as an Indicator for Socioeconomic Status: Validation on Regional Income Differences in the Czech Republic
Abstract
:1. Introduction
2. Methods
2.1. Sample
2.2. Family Affluence Scale—FAS
- Does your family own a car or another motorized vehicle? (No = 0; Yes, one = 1; Yes, two = 2).
- Do you have your own bedroom? (No = 0; Yes = 1).
- How many computers (including laptops and tablets, not including game consoles and smartphones) does your family own? (None = 0, One = 1; Two = 2; More than two = 3).
- How many bathrooms (room with a bath/shower or both) are there in your home? (None = 0; One = 1; Two = 2; More than two = 3).
- Does your family have a dishwasher? (No = 0; Yes = 1).
- How many times did you and your family travel out of the Czech Republic for holiday/vacation last year? (Never = 0; Once = 1; Twice = 2; More than twice = 3).
2.3. Macroeconomic Indicator/Validation Criterion
2.4. Statistical Analyses
- FAS consists of 6 items. The responses to the items are given as specific values (see Section 2.2 for details) and calculated as an aggregated FAS index ranging from 0 to 13:FAS index = (Item 1) + (Item 2) + (Item 3) + (Item 4) + (Item 5) + (Item 6)For the purposes of the analysis, the authors decided to use the index value as a continuous variable.
- The respondents were split by 14 regions. The mean of the FAS index was calculated for each region up to four decimal digits. This is due to the fact that the regional differences are rather subtle. It was tested whether the FAS index was normally distributed, using Kolmogorov–Smirnov tests (0.095; p < 0.001). This enabled the use of the arithmetic average as an indicator.
- Then it was verified whether the differences between FAS scores in various regions were statistically significant using the analysis of variance (ANOVA).
- Finally, the correlations between the mean regional FAS index and local disposable income per capita were assessed using the Pearson Correlation. The dependences were further analysed by linear regression.
3. Results
3.1. Regression between FAS and Disposable Income
3.2. Analyses of FAS Component Items
3.3. Correlation between Items
4. Discussion
Strengths and Limitations
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Adler, N.E. Health disparities: Taking on the challenge. Perspect. Psychol. Sci. 2013, 8, 679–681. [Google Scholar] [CrossRef] [PubMed]
- Prag, P.; Mills, M.C.; Wittek, R. Subjective socioeconomic status and health in cross-national comparison. Soc. Sci. Med. 2016, 149, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.; Miller, G.E. Socioeconomic status and health: Mediating and moderating factors. Annu. Rev. Clin. Psychol. 2013, 9, 723–749. [Google Scholar] [CrossRef] [PubMed]
- Townsend, P. Deprivation. J. Soc. Policy 1987, 16, 125–146. [Google Scholar] [CrossRef]
- Barrera, M.; Prelow, H.M.; Dumka, L.E.; Gonzales, N.A.; Knight, G.P.; Michaels, M.L.; Roosa, M.W.; Tein, J.Y. Pathways from family economic conditions to adolescents’ distress: Supportive parenting, stressors outside the family, and deviant peers. J. Community Psychol. 2002, 3, 135–152. [Google Scholar] [CrossRef]
- Rathmann, K.; Ottova, V.; Hurrelmann, K.; De Looze, M.; Levin, K.; Molcho, M.; Elgar, F.; Gabhainn, S.N.; Van Dijk, J.P.; Richter, M. Macro-level determinants of young people’s subjective health and health inequalities: A multilevel analysis in 27 welfare states. Maturitas 2015, 80, 414–420. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. What Are Social Determinants of Health? Available online: http://www.who.int/social_determinants/sdh_definition/en/ (accessed on 15 January 2017).
- Viner, R.; Ozer, E.M.; Denny, S.; Marmot, M.; Resnick, M.; Fatusi, A.; Currie, C. Adolescence and the social determinants of health. Lancet 2012, 379, 1641–1652. [Google Scholar] [CrossRef]
- Elgar, F.J.; Moor, T.P.I.; De Clercq, B.; Stevens, G.W.J.M.; Currie, C. Socioeconomic inequalities in adolescent health: A time-series analysis of 34 countries participating in the HBSC study, 2002 to 2010. Lancet 2015, 385, 2088–2095. [Google Scholar] [CrossRef]
- Currie, C.E.; Elton, R.A.; Todd, J.; Platt, S. Indicators of socioeconomic status for adolescents: The WHO Health Behaviour in School-aged Children Survey. Health Educ. Res. 1997, 12, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Currie, C.E.; Molcho, M.; Boyce, W.; Holstein, B.; Torsheim, T.; Richter, M. Researching health inequalities in adolescence: The development of the HBSC Family Affluence Scale. Soc. Sci. Med. 2008, 66, 1429–1436. [Google Scholar] [CrossRef] [PubMed]
- Schnohr, C.W.; Kreiner, S.; Due, E.P.; Currie, C.; Boyce, W.; Diderichsen, F. Differential item functioning of a family affluence scale: Validation study on data from HBSC 2001/02. Soc. Indic. Res. 2008, 89, 79–95. [Google Scholar] [CrossRef]
- Wold, B.; Smith, C.; Aarø, L.E. Health Behaviour in School-Aged Children, a WHO Cross-National Survey (HBSC): Research Protocol for the 1993–1994 Study; Research Center for Health Promotion, University of Bergen: Bergen, Norway, 1994. [Google Scholar]
- Kehoe, S.; O’Hare, L. The reliability and validity of the Family Affluence Scale. Eff. Educ. 2010, 2, 155–164. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, M.; Villberg, J.; Torsheim, T.; Tynjälä, J.; Lv, Y.; Kannas, L. Reliability and validity of Family Affluence Scale (FAS II) among adolescents in Beijing, China. Child Indic. Res. 2012, 5, 235–251. [Google Scholar] [CrossRef]
- Boyce, W.; Torsheim, T.; Currie, C.; Zambon, A. The family affluence scale as a measure of national wealth: Validation of an adolescent self-report measure. Soc. Indic. Res. 2006, 78, 473–487. [Google Scholar] [CrossRef]
- Hartley, J.E.K.; Levin, K.; Currie, C. A new version of the HBSC Family Affluence Scale—FAS III: Scottish Qualitative Findings from the International FAS Development Study. Child Indic. Res. 2016, 9, 233–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torsheim, T.; Cavallo, F.; Levin, K.A.; Schnohr, C.; Mazur, J.; Niclasen, B.; Currie, C. Psychometric Validation of the Revised Family Affluence Scale: A Latent Variable Approach. Child Indic. Res. 2016, 9, 771–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnohr, C.W.; Makransky, G.; Kreiner, S.; Torsheim, T.; Hofmann, F.; De Clerq, B.; Elgar, F.J.; Currie, C. Item response drift in the Family Affluence Scale: A study on three consecutive surveys of the Health Behaviour in School-aged Children (HBSC) survey. Meas. J. Int. Meas. Confed. 2013, 46, 3119–3126. [Google Scholar] [CrossRef]
- Makransky, G.; Schnohr, C.W.; Torsheim, T.; Currie, C. Equating the HBSC Family Affluence Scale across survey years: A method to account for item parameter drift using the Rasch model. Qual. Life Res. 2014, 23, 2899–2907. [Google Scholar] [CrossRef] [PubMed]
- Czech Statistic Office. Territorial Comparisons 2014. Available online: https://www.czso.cz/documents/11276/17842337/1527102.pdf/8d0c8ac9-960a-43fc-8364-f7c112514acf?version=1.1 (accessed on 14 January 2016).
- Organisation for Economic Co-Operation and Development (OECD), Household Disposable Income. Available online: https://data.oecd.org/hha/household-disposable-income.htm (accessed on 15 January 2017).
- GINI Index (World Bank Estimate). Available online: https://data.worldbank.org/indicator/SI.POV.GINI?locations=CZ (accessed on 16 November 2017).
- Bajgar, M.; Janský, P. Skutečná kupní síla v krajích České republiky: Zohlednění regionální cenové hladiny a struktury pracovní síly. Politicka Ekonomie 2015, 7, 861. [Google Scholar] [CrossRef]
Sex | Age (Years) | |||||
---|---|---|---|---|---|---|
Region | Total Respondents (n) | Boys (n, %) | Girls (n, %) | 11 (n, %) | 13 (n, %) | 15 (n, %) |
Prague | 835 | 404, 48.4% | 431, 51.6% | 238, 28.5% | 288, 34.5% | 309, 37.0% |
Central Bohemia | 770 | 381, 49.5% | 389, 50.5% | 255, 33.1% | 251, 32.6% | 264, 34.3% |
South Bohemia | 813 | 390, 48.0% | 423, 52.0% | 255, 31.4% | 275, 33.8% | 283, 34.8% |
Plzeň | 657 | 310, 47.2% | 347, 52.8% | 218, 33.2% | 218, 33.2% | 221, 33.6% |
Karlovy Vary | 596 | 291, 48.8% | 305, 51.2% | 221, 37.1% | 190, 31.9% | 185, 31.0% |
Ústí nad Labem | 693 | 340, 49.1% | 353, 50.9% | 207, 29.9% | 246, 35.5% | 240, 34.6% |
Liberec | 741 | 369, 49.8% | 372, 50.2% | 250, 33.7% | 240, 32.4% | 251, 33.9% |
Hradec Králové | 697 | 351, 50.4% | 346, 49.6% | 209, 30.0% | 219, 31.4% | 269, 38.6% |
Pardubice | 752 | 373, 49.6% | 379, 50.4% | 253, 33.6% | 247, 32.8% | 252, 33.5% |
Vysočina | 727 | 362, 49.8% | 365, 50.2% | 241, 33.2% | 229, 31.5% | 257, 35.3% |
South Moravia | 774 | 383, 49.5% | 391, 50.5% | 234, 30.2% | 278, 35.9% | 262, 33.9% |
Olomouc | 819 | 402, 49.1% | 417, 50.9% | 256, 31.3% | 263, 32.1% | 300, 36.6% |
Zlin | 722 | 343, 47.5% | 379, 52.5% | 223, 30.9% | 257, 35.6% | 242, 33.5% |
Moravia-Silesia | 765 | 394, 51.5% | 371, 48.5% | 232, 30.3% | 272, 35.6% | 261, 34.1% |
Total | 10,361 | 5093, 49.2% | 5268, 50.8% | 3292, 31.8% | 3473, 33.5% | 3596, 34.7% |
Region | Disposable Income | FAS Index | Std. Deviation | Family Car | Own Bedroom | No. of Computers | No. of Bathrooms | Dishwasher in Home | Family Holidays |
---|---|---|---|---|---|---|---|---|---|
(CZK/Year) | Mean (0–13) | Mean (0–2) | Mean (0–1) | Mean (0–3) | Mean (0–3) | Mean (0–1) | Mean (0–3) | ||
Prague | 264,100 | 8.1090 | 2.3646 | 1.3873 | 0.5679 | 2.5261 | 1.3583 | 0.7496 | 1.7844 |
Central Bohemia | 216,633 | 7.9662 | 2.3401 | 1.5832 | 0.6667 | 2.4073 | 1.4861 | 0.7063 | 1.6183 |
Plzeň | 205,083 | 7.5646 | 2.4755 | 1.4984 | 0.5679 | 2.2411 | 1.3222 | 0.6605 | 1.6284 |
South Moravia | 203,208 | 7.5845 | 2.3741 | 1.4306 | 0.616 | 2.4108 | 1.3778 | 0.6517 | 1.6713 |
Hradec Králové | 198,052 | 7.3255 | 2.3201 | 1.4579 | 0.5941 | 2.2442 | 1.3954 | 0.6502 | 1.4634 |
Vysočina | 195,304 | 7.1183 | 2.4678 | 1.5197 | 0.5759 | 2.2495 | 1.459 | 0.6434 | 1.5424 |
Pardubice | 193,820 | 7.0297 | 2.3404 | 1.4406 | 0.5503 | 2.2585 | 1.3488 | 0.6431 | 1.4397 |
South Bohemia | 193,653 | 7.3271 | 2.2867 | 1.4797 | 0.5871 | 2.2576 | 1.414 | 0.6645 | 1.5814 |
Zlin | 189,825 | 7.2367 | 2.3199 | 1.4714 | 0.5994 | 2.3472 | 1.4548 | 0.6445 | 1.5503 |
Liberec | 189,176 | 7.5447 | 2.2164 | 1.3525 | 0.5683 | 2.1903 | 1.2939 | 0.5992 | 1.5 |
Moravia-Silesia | 184,014 | 7.7997 | 2.3226 | 1.3021 | 0.5205 | 2.31 | 1.3333 | 0.5837 | 1.5208 |
Olomouc | 183,173 | 7.1465 | 2.3534 | 1.3548 | 0.5574 | 2.2951 | 1.361 | 0.563 | 1.5322 |
Karlovy Vary | 181,819 | 7.8075 | 2.3894 | 1.3993 | 0.6269 | 2.2229 | 1.2607 | 0.5709 | 1.5635 |
Ústí nad Labem | 174,662 | 7.3046 | 2.3696 | 1.2746 | 0.602 | 2.2266 | 1.2955 | 0.5706 | 1.577 |
Regression Model Coefficients | B | Beta | t | p |
---|---|---|---|---|
Constant | 5.156 | 9.258 | <0.001 | |
Disposable income | 1.179 × 10−5 | 0.773 | 4.216 | 0.001 |
Regression model summary | R | R square | Std. Error | |
0.773 | 0.597 | 0.2202 | ||
Regression ANOVA | Sum of squares | F | p | |
Regression | 0.862 | 17.776 | 0.001 | |
Residual | 0.582 | |||
Total | 1.444 |
Region | Family Car | Own Bedroom | No. of Computers | No. of Bathrooms | Dishwasher in Home | Family Holidays | FAS Index | FAS Index |
---|---|---|---|---|---|---|---|---|
R2 | R2 | R2 | R2 | R2 | R2 | R2 | R | |
All regions | 0.076 | 0.001 | 0.651 | 0.038 | 0.794 | 0.460 | 0.773 | 0.597 |
Without Prague | 0.671 | 0.159 | 0.253 | 0.293 | 0.797 | 0.050 | 0.739 | 0.548 |
Correlations—with Prague | ||||||
Disposable Income of Households | Family Car | Own Bedroom | No. of Computers | No. of Bathrooms | Dishwasher at Home | Family Holiday |
Pearson Correlation | 0.275 | 0.015 | 0.807 ** | 0.195 | 0.891 ** | 0.678 ** |
Sig. (2-tailed) | 0.342 | 0.958 | 0.000 | 0.504 | 0.000 | 0.008 |
N | 14 | 14 | 14 | 14 | 14 | 14 |
Correlations—without Prague | ||||||
Disposable Income of Households | Family Car | Own Bedroom | No. of Computers | No. of Bathrooms | Dishwasher at Home | Family Holiday |
Pearson Correlation | 0.819 ** | 0.399 | 0.503 | 0.541 | 0.893 ** | 0.223 |
Sig. (2-tailed) | 0.001 | 0.177 | 0.080 | 0.056 | 0.000 | 0.465 |
N | 13 | 13 | 13 | 13 | 13 | 13 |
Family Car | Own Bedroom | No. of Computers | No. of Bathrooms | Dishwasher in Home | Family Holidays | |
---|---|---|---|---|---|---|
Family car | 1.000 | 0.159 ** | 0.318 ** | 0.307 ** | 0.281 ** | 0.235 ** |
Own bedroom | 0.159 ** | 1.000 | 0.101 ** | 0.243 ** | 0.150 ** | 0.129 ** |
No. of computers | 0.318 ** | 0.101 ** | 1.000 | 0.204 ** | 0.257 ** | 0.183 ** |
No. of bathrooms | 0.307 ** | 0.243 ** | 0.204 ** | 1.000 | 0.249 ** | 0.183 ** |
Dishwasher in home | 0.281 ** | 0.150 ** | 0.257 ** | 0.249 ** | 1.000 | 0.223 ** |
Family holidays | 0.235 ** | 0.129 ** | 0.183 ** | 0.183 ** | 0.223 ** | 1.000 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hobza, V.; Hamrik, Z.; Bucksch, J.; De Clercq, B. The Family Affluence Scale as an Indicator for Socioeconomic Status: Validation on Regional Income Differences in the Czech Republic. Int. J. Environ. Res. Public Health 2017, 14, 1540. https://doi.org/10.3390/ijerph14121540
Hobza V, Hamrik Z, Bucksch J, De Clercq B. The Family Affluence Scale as an Indicator for Socioeconomic Status: Validation on Regional Income Differences in the Czech Republic. International Journal of Environmental Research and Public Health. 2017; 14(12):1540. https://doi.org/10.3390/ijerph14121540
Chicago/Turabian StyleHobza, Vladimir, Zdenek Hamrik, Jens Bucksch, and Bart De Clercq. 2017. "The Family Affluence Scale as an Indicator for Socioeconomic Status: Validation on Regional Income Differences in the Czech Republic" International Journal of Environmental Research and Public Health 14, no. 12: 1540. https://doi.org/10.3390/ijerph14121540
APA StyleHobza, V., Hamrik, Z., Bucksch, J., & De Clercq, B. (2017). The Family Affluence Scale as an Indicator for Socioeconomic Status: Validation on Regional Income Differences in the Czech Republic. International Journal of Environmental Research and Public Health, 14(12), 1540. https://doi.org/10.3390/ijerph14121540