Impacts of the 2015 Heat Waves on Mortality in the Czech Republic—A Comparison with Previous Heat Waves
Abstract
:1. Introduction
2. Data and Methods
2.1. Mortality Data
2.2. Meteorological Data
2.3. Definition of a Heat Wave
2.4. Excess Heat Evaluation
2.5. Statistical Analyses
2.5.1. Excess Mortality Calculation
2.5.2. Associations between Heat Waves and Excess Mortality
2.5.3. Mortality Displacement
3. Results
3.1. General Characteristics of Heat Waves
3.2. Effects of the Major Heat Waves on Excess Mortality
3.3. Associations between Heat Wave Characteristics and Excess Mortality
3.4. Mortality Displacement
4. Discussion
4.1. Effect of the Total Heat Load
4.2. Changes in Population Structure and Socioeconomic Factors
4.3. Heat-and-Health Warning Systems
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gosling, S.N.; Lowe, J.A.; McGregor, G.R.; Pelling, M.; Malamud, B.D. Associations between elevated atmospheric temperature and human mortality: A critical review of the literature. Clim. Chang. 2009, 92, 299–341. [Google Scholar] [CrossRef]
- Hajat, S.; Kosatky, T. Heat-related mortality: A review and exploration of heterogeneity. J. Epidemiol. Community Health 2010, 64, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Burkart, K.; Khan, M.M.H.; Schneider, A.; Breitner, S.; Langner, M.; Krämer, A.; Endlicher, W. The effects of season and meteorology on human mortality in tropical climates: A systematic review. Trans. R. Soc. Trop. Med. Hyg. 2014, 108, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Bhaskaran, K.; Gasparrini, A.; Hajat, S.; Smeeth, L.; Armstrong, B. Time series regression studies in environmental epidemiology. Int. J. Epidemiol. 2013, 42, 1187–1195. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Chu, C.; Wang, X.; Barnett, A.G. Unusually cold and dry winters increase mortality in Australia. Environ. Res. 2015, 136, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Semenza, J.C.; Mccullough, J.E.; Flanders, W.D.; Mcgeehin, M.A.; Lumpkin, J.R. Excess hospital admissions during the July 1995 Heat Wave in Chicago. Am. J. Prev. Med. 1999, 16, 269–277. [Google Scholar] [CrossRef]
- Larsen, J. Setting the Record Straight: More than 52,000 Europeans Died from Heat in Summer 2003. Earth Policy Institute, 2006. Available online: http://www.earth-policy.org/plan_b_updates/2006/update56 (accessed on 20 March 2017).
- Barriopedro, D.; Fischer, E.M.; Luterbacher, J.; Trigo, R.M.; García-Herrera, R. The hot summer of 2010: Redrawing the temperature record map of Europe. Science 2011, 332, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Impacts, Adaptation, and Vulnerability; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Ballester, J.; Rodó, X.; Giorgi, F. Future changes in Central Europe heat waves expected to mostly follow summer mean warming. Clim. Dyn. 2009, 35, 1191–1205. [Google Scholar] [CrossRef]
- Fischer, E.M.; Schär, C. Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci. 2010, 3, 398–403. [Google Scholar] [CrossRef]
- Lhotka, O.; Kyselý, J.; Farda, A. Climate change scenarios of heat waves in Central Europe and their uncertainties. Theor. Appl. Climatol. 2017. [Google Scholar] [CrossRef]
- Huang, C.; Barnett, A.G.; Wang, X.; Vaneckova, P.; Fitzgerald, G.; Tong, S. Projecting Future heat-related mortality under climate change scenarios: A systematic review. Environ. Health Perspect. 2011, 119, 1681–1690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Ban, J.; Horton, R.M.; Bader, D.A.; Huang, G.; Sun, Q.; Kinney, P.L. Heat-related mortality projections for cardiovascular and respiratory disease under the changing climate in Beijing, China. Sci. Rep. 2015, 5, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-W.; Ravinesh, D.K.; Chung, C.D.J. Projection of heat wave mortality related to climate change in Korea. Nat. Hazards 2016, 80, 623–637. [Google Scholar] [CrossRef]
- Huang, C.R.; Barnett, A.G.; Wang, X.M.; Tong, S. Effects of extreme temperatures on years of life lost for cardiovascular deaths: A time series study in Brisbane, Australia. Circ. Cardiovasc. Qual. Outcomes 2012, 5, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Horton, R.M.; Kinney, P.L. Projections of seasonal patterns in temperature-related deaths for Manhattan, New York. Nat. Clim. Chang. 2013, 3, 717–721. [Google Scholar] [CrossRef] [PubMed]
- Hondula, D.M.; Balling, R.C.; Vanos, J.K.; Georgescu, M. Rising temperatures, human health, and the role of adaptation. Curr. Clim. Chang. Rep. 2015, 1, 144–154. [Google Scholar] [CrossRef]
- Arbuthnott, K.; Hajat, S.; Heaviside, C.; Vardoulakis, S. Changes in population susceptibility to heat and cold over time: Assessing adaptation to climate change. Environ. Health 2016, 15, S33. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.E.; Knappenberger, P.C.; Novicoff, W.M.; Michaels, P.J. Decadal changes in summer mortality in U.S. cities. Int. J. Biometeorol. 2003, 47, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Bobb, J.F.; Peng, R.D.; Bell, M.L.; Dominici, F. Heat-related mortality and adaptation to heat in the United States. Environ. Health Perspect. 2014, 122, 811–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petkova, E.P.; Gasparrini, A.; Kinney, P.L. Heat and mortality in New York City since the beginning of the 20th century. Epidemiology 2014, 25, 554–560. [Google Scholar] [CrossRef] [PubMed]
- Gasparrini, A.; Guo, Y.; Hashizume, M.; Kinney, P.L.; Petkova, E.P.; Lavigne, E. Temporal variation in heat-mortality associations: A multicountry study. Environ. Health Perspect. 2015, 123, 1200–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheridan, S.C.; Dixon, P.G. Spatiotemporal trends in human vulnerability and adaptation to heat across the United States. Anthropocene 2016. [Google Scholar] [CrossRef]
- Matzarakis, A.; Muthers, S.; Koch, E. Human biometeorological evaluation of heat-related mortality in Vienna. Theor. Appl. Climatol. 2011, 105, 1–10. [Google Scholar] [CrossRef]
- Kyselý, J.; Plavcová, E. Declining impacts of hot spells on mortality in the Czech Republic, 1986–2009: Adaptation to climate change? Clim. Chang. 2012, 113, 437–453. [Google Scholar] [CrossRef]
- Schifano, P.; Leone, M.; De Sario, M.; de’Donato, F.; Bargagli, A.M.; D’Ippoliti, D. Changes in the effects of heat on mortality among the elderly from 1998–2010: Results from a multicenter time series study in Italy. Environ. Health 2012, 11, 58. [Google Scholar] [CrossRef] [PubMed]
- Åström, D.O.; Forsberg, B.; Edvinsson, S.; Rocklöv, J. Acute fatal effects of short-lasting extreme temperatures in Stockholm, Sweden: Evidence across a century of change. Epidemiology 2013, 24, 820–829. [Google Scholar] [CrossRef] [PubMed]
- Coates, L.; Haynes, K.; O’Brien, J.; McAneney, J.; de Oliveira, F.D. Exploring 167 years of vulnerability: An examination of extreme heat events in Australia 1844–2010. Environ. Sci. Policy 2014, 42, 33–44. [Google Scholar] [CrossRef]
- Ng, S.; Boeckmann, M.; Ueda, K.; Zeeb, H.; Nitta, H.; Watanabe, C.; Honda, Y. Heat-related mortality: Effect modification and adaptation in Japan from 1972 to 2010. Glob. Environ. Chang. 2016, 39, 234–243. [Google Scholar] [CrossRef]
- Výberči, D.; Švec, M.; Faško, P.; Savinová, H.; Trizna, M.; Mičietová, E. The effects of the 1996–2012 summer heat events on human mortality in Slovakia. Morav. Geogr. Rep. 2015, 23, 57–70. [Google Scholar] [CrossRef]
- Ha, J.; Kim, H. Changes in the association between summer temperature and mortality in Seoul, South Korea. Int. J. Biometeorol. 2013, 57, 535–544. [Google Scholar] [CrossRef] [PubMed]
- De’Donato, F.K.; Leone, M.; Scortichini, M.; De Sario, M.; Katsouyanni, K.; Lanki, T.; Basagaña, X.; Ballester, F.; Åström, C.; Paldy, A.; et al. Changes in the effect of heat on mortality in the last 20 years in nine European cities. Results from the PHASE project. Int. J. Environ. Res. Public Health 2015, 12, 15567–15583. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.B.; Bell, M.L. Heat waves in the United States: Mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities. Environ. Health Perspect. 2011, 119, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Gasparrini, A.; Armstrong, B. The impact of heat waves on mortality. Epidemiology 2011, 22, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Barnett, A.G.; Hajat, S.; Gasparrini, A.; Rocklöv, J. Cold and heat waves in the United States. Environ. Res. 2012, 112, 218–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostro, B.; Rauch, S.; Green, R.; Malig, B.; Basu, R. The effects of temperature and use of air conditioning on hospitalizations. Am. J. Epidemiol. 2010, 172, 1053–1061. [Google Scholar] [CrossRef] [PubMed]
- Boeckmann, M.; Rohn, I. Is planned adaptation to heat reducing heat-related mortality and illness? A systematic review. BMC Public Health 2014, 14, 1112. [Google Scholar] [CrossRef] [PubMed]
- Hondula, D.M.; Georgescu, M.; Balling, R.C. Challenges associated with projecting urbanization-induced heat-related mortality. Sci. Total Environ. 2014, 490, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Petkova, E.P.; Vink, J.K.; Horton, R.M.; Gasparrini, A.; Bader, D.A.; Francis, J.D.; Kinney, P.L. Towards more comprehensive projections of urban heat-related mortality: Estimates for New York City under multiple population, adaptation, and climate scenarios, (January). Environ. Health Perspect. 2016. [Google Scholar] [CrossRef] [PubMed]
- Toloo, G.S.; Fitzgerald, G.; Aitken, P.; Verrall, K.; Tong, S. Are heat warning systems effective? Environ. Health 2013, 12, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lhotka, O.; Kyselý, J. Characterizing joint effects of spatial extent, temperature magnitude and duration of heat waves and cold spells over Central Europe. Int. J. Climatol. 2015, 35, 1232–1244. [Google Scholar] [CrossRef]
- Kyselý, J. Mortality and displaced mortality during heat waves in the Czech Republic. Int. J. Biometeorol. 2004, 49, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Kyselý, J.; Kříž, B. Decreased impacts of the 2003 heat waves on mortality in the Czech Republic: An improved response? Int. J. Biometeorol. 2008, 52, 733–745. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, K.M.A.; Endlicher, W.R. Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany. Environ. Pollut. 2011, 159, 2044–2050. [Google Scholar] [CrossRef] [PubMed]
- Kuchcik, M.; Degórski, M. Heat- and cold-related mortality in the north-east of Poland as an example of the socio-economic effects of extreme hydrometeorological events in the Polish Lowland. Geogr. Pol. 2009, 82, 69–78. [Google Scholar] [CrossRef]
- Huynen, M.M.; Martens, P.; Schram, D.; Weijenberg, M.P.; Kunst, A.E. The impact of heat waves and cold spells on mortality rates in the Dutch population. Environ. Health Perspect. 2001, 109, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Kyselý, J. Recent severe heat waves in central Europe: How to view them in a long-term prospect? Int. J. Climatol. 2010, 30, 89–109. [Google Scholar] [CrossRef]
- Hůnová, I.; Brabec, M.; Malý, M.; Knobová, V.; Braniš, M. Major heat waves of 2003 and 2006 and health outcomes in Prague. Air Qual. Atmos. Health 2016. [Google Scholar] [CrossRef]
- Lhotka, O.; Kyselý, J. Hot Central-European summer of 2013 in a long-term context. Int. J. Climatol. 2015, 35, 4399–4407. [Google Scholar] [CrossRef]
- Brown, D.; Cabbage, M.; McCarthy, L. NASA, NOAA Analyses Reveal Record-Shattering Global Warm Temperatures in 2015. 2016. Available online: www.nasa.gov/press-release/nasa-noaa-analyses-reveal-record-shattering-global-warm-temperatures-in-2015 (accessed on 20 March 2017).
- Russo, S.; Sillmann, J.; Fischer, E.M. Top ten European heatwaves since 1950 and their occurrence in the future. Environ. Res. Lett. 2015, 10, 124003. [Google Scholar] [CrossRef]
- Hoy, A.; Hänsel, S.; Skalák, P.; Ustrnul, Z.; Bochníček, O. The extreme European summer of 2015 in a long-term perspective. Int. J. Climatol. 2016. [Google Scholar] [CrossRef]
- Vicedo-Cabrera, A.; Ragettli, M.; Schindler, C.; Röösli, M. Excess mortality during the warm summer of 2015 in Switzerland. Swiss Med. Wkly. 2016, 146, w14379. [Google Scholar] [CrossRef] [PubMed]
- Green, H.K.; Andrews, N.; Armstrong, B.; Bickler, G.; Pebody, R. Mortality during the 2013 heatwave in England—How did it compare to previous heatwaves? A retrospective observational study. Environ. Res. 2016, 147, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Koppe, C.; Jendritzky, G. Inclusion of short-term adaptation to thermal stresses in a heat load warning procedure. Meteorol. Z. 2005, 14, 271–278. [Google Scholar] [CrossRef]
- Rocklöv, J.; Ebi, K.; Forsberg, B. Mortality related to temperature and persistent extreme temperatures: A study of cause-specific and age-stratified mortality. Occup. Environ. Med. 2011, 68, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Rocklöv, J.; Forsberg, B.; Meister, K. Winter mortality modifies the heat-mortality association the following summer. Eur. Respir. J. 2009, 33, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Hajat, S.; Kovats, R.S.; Lachowycz, K. Heat-related and cold-related deaths in England and Wales: Who is at risk? Occup. Environ. Med. 2007, 64, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Hondula, D.M.; Davis, R.E.; Leisten, M.J.; Saha, M.V.; Veazey, L.M.; Wegner, C.R. Fine-scale spatial variability of heat-related mortality in Philadelphia County, USA, from 1983–2008: A case-series analysis. Environ. Health 2012, 11, 16. [Google Scholar] [CrossRef] [PubMed]
- Maier, G.; Grundstein, A.; Jang, W.; Li, C.; Naeher, L.P.; Shepherd, M. Assessing the performance of a vulnerability index during oppressive heat across Georgia, United States. Weather Clim. Soc. 2014, 6, 253–263. [Google Scholar] [CrossRef]
- Kovach, M.M.; Konrad, C.E., II; Fuhrmann, C.M. Area-level risk factors for heat-related illness in rural and urban locations across North Carolina, USA. Appl. Geogr. 2015, 60, 175–183. [Google Scholar] [CrossRef]
- O’Neill, M.S.; Carter, R.; Kish, J.K.; Gronlund, C.J.; White-Newsome, J.L.; Manarolla, X.; Zanobetti, A.; Schwartz, J.D. Preventing heat-related morbidity and mortality: New approaches in a changing climate. Maturitas 2009, 64, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Urban, A.; Davídkovová, H.; Kyselý, J. Heat- and cold-stress effects on cardiovascular mortality and morbidity among urban and rural populations in the Czech Republic. Int. J. Biometeorol. 2014, 58, 1057–1068. [Google Scholar] [CrossRef] [PubMed]
- Kyselý, J.; Plavcová, E.; Davídkovová, H.; Kynčl, J. Comparison of hot and cold spell effects on cardiovascular mortality in individual population groups in the Czech Republic. Clim. Res. 2011, 49, 113–129. [Google Scholar] [CrossRef]
- Hanzlíková, H.; Plavcová, E.; Kynčl, J.; Kříž, B.; Kyselý, J. Contrasting patterns of hot spell effects on morbidity and mortality for cardiovascular diseases in the Czech Republic, 1994–2009. Int. J. Biometeorol. 2015, 59, 1673–1684. [Google Scholar] [CrossRef] [PubMed]
- Urban, A.; Burkart, K.; Kyselý, J.; Schuster, C.; Plavcová, E.; Hanzlíková, H.; Štepanek, P.; Lakes, T. Spatial patterns of heat-related cardiovascular mortality in the Czech Republic. Int. J. Environ. Res. Public Health 2016, 13, 284. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, O.; Boschi-Pinto, C.; Lopez, A.D.; Murray, C.J.L.; Lozano, R.; Inoue, M. Age Standardization of Rates: A New WHO Standard; World Health Organization: Geneva, Switzerland, 2001; Available online: http://www.who.int/healthinfo/paper31.pdf (accessed on 20 March 2017).
- Jendritzky, G.; de Dear, R.; Havenith, G. UTCI—Why another thermal index? Int. J. Biometeorol. 2012, 56, 421–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morabito, M.; Crisci, A.; Messeri, A.; Capecchi, V.; Modesti, P.A.; Gensini, G.F.; Orlandini, S. Environmental temperature and thermal indices: What is the most effective predictor of heat-related mortality in different geographical contexts? Sci. World J. 2014, 961750. [Google Scholar] [CrossRef] [PubMed]
- Ruuhela, R.; Jylhä, K.; Lanki, T.; Tiittanen, P.; Matzarakis, A. Biometeorological assessment of mortality related to extreme temperatures in Helsinki region, Finland, 1972–2014. Int. J. Environ. Res. Public Health 2017, 14, 944. [Google Scholar] [CrossRef] [PubMed]
- Burkart, K.; Schneider, A.; Breitner, S.; Khan, M.H.; Krämer, A.; Endlicher, W. The effect of atmospheric thermal conditions and urban thermal pollution on all-cause and cardiovascular mortality in Bangladesh. Environ. Pollut. 2011, 159, 2035–2043. [Google Scholar] [CrossRef] [PubMed]
- Vaneckova, P.; Neville, G.; Tippett, V.; Aitken, P.; FitzGerald, G.; Tong, S. Do biometeorological indices improve modeling outcomes of heat-related mortality? J. Appl. Meteorol. Climatol. 2011, 50, 1165–1176. [Google Scholar] [CrossRef]
- Urban, A.; Kyselý, J. Comparison of UTCI with other thermal indices in the assessment of heat and cold effects on cardiovascular mortality in the Czech Republic. Int. J. Environ. Res. Public Health 2014, 11, 952–967. [Google Scholar] [CrossRef] [PubMed]
- McGregor, G.R.; Bessemoulin, P.; Ebi, K.L.; Menne, B. Heatwaves and Health: Guidance on Warning-System Development; World Meteorological Organization: Geneva, Switzerland; World Health Organization: Geneva, Switzerland, 2015; ISBN 978-92-63-11142-5. [Google Scholar]
- Výberči, D.; Labudová, L.; Eštóková, M.; Faško, P.; Trizna, M. Human mortality impacts of the 2015 summer heat spells in Slovakia. Theor. Appl. Climatol. 2017. [Google Scholar] [CrossRef]
- Nairn, J.R.; Fawcett, R.J.B. The Excess Heat Factor: A metric for heatwave intensity and its use in classifying heatwave severity. Int. J. Environ. Res. Public Health 2015, 12, 227–253. [Google Scholar] [CrossRef] [PubMed]
- Wood, S. Generalized Additive Models: An Introduction with R; Chapman & Hall/CRC: London, UK, 2006; p. 392. ISBN 1-58488-474-6. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Leisch, F.; Hornik, K.; Ripley, B.D. Mda: Mixture and Flexible Discriminant Analysis. R Package Version 0.4-9. Stanford University: Stanford, CA, USA, 2016. Available online: https://cran.r-project.org/web/packages/mda/index.html (accessed on 20 March 2017).
- Peng, R.D.; Dominici, F. Statistical Methods for Environmental Epidemiology with R; Springer: New York, NY, USA, 2008; p. 144. ISBN 978-0-387-78166-2. [Google Scholar]
- Schoenberg, B.S. Calculating confidence intervals for rates and ratios. Neuroepidemiology 1983, 2, 257–265. [Google Scholar] [CrossRef]
- Saha, M.V.; Davis, R.E.; Hondula, D.M. Mortality displacement as a function of heat event strength in 7 US cities. Am. J. Epidemiol. 2014, 179, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, B.; Gasparrini, A.; Hajat, S. Estimating mortality displacement during and after heat waves. Am. J. Epidemiol. 2014, 179, 1405–1406. [Google Scholar] [CrossRef] [PubMed]
- Burkart, K.; Canário, P.; Breitner, S.; Schneider, A.; Scherber, K.; Andrade, H.; Alcoforado, M.J.; Endlicher, W. Interactive short-term effects of equivalent temperature and air pollution on human mortality in Berlin and Lisbon. Environ. Pollut. 2013, 183, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Ha, J.; Kim, H.; Hajat, S. Effect of previous-winter mortality on the association between summer temperature and mortality in South Korea. Environ. Health Perspect. 2011, 119, 542–546. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.E.; Dougherty, E.; McArthur, C.; Huang, Q.S.; Baker, M.G. Cold, Dry Air is Associated with Influenza and Pneumonia Mortality in Auckland, New Zealand. Influenza Other Respir. Viruses 2015, 10, 310–313. [Google Scholar] [CrossRef] [PubMed]
- Buckley, J.P.; Samet, J.M.; Richardson, D.B. Commentary: Does air pollution confound studies of temperature? Epidemiology 2014, 25, 242–245. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, S.C.; Kalkstein, A.J.; Kalkstein, L.S. Trends in heat-related mortality in the United States, 1975–2004. Nat. Hazards 2009, 50, 145–160. [Google Scholar] [CrossRef]
- U.S. Energy Information Administration: Residential Energy Consumption Survey (RECS 2009). Available online: https://www.eia.gov/consumption/residential/reports/2009/air-conditioning.php (accessed on 28 October 2017).
- CZSO—Czech Statistical Office. 2017. Available online: https://www.czso.cz/staticke/animgraf/cz/ (accessed on 20 March 2017).
- Ebi, K.L.; Exuzides, K.A.; Lau, E.; Kelsh, M.; Barnston, A. Weather changes associated with hospitalizations for cardiovascular diseases and stroke in California, 1983–1998. Int. J. Biometeorol. 2004, 49, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Fouillet, A.; Rey, G.; Wagner, V.; Laaidi, K.; Empereur-Bissonnet, P.; Le Tertre, A.; Frayssinet, P.; Bessemoulin, P.; Laurent, F.; De Crouy-Chanel, P.; et al. Has the impact of heat waves on mortality changed in France since the European heat wave of summer 2003? A study of the 2006 heat wave. Int. J. Epidemiol. 2008, 37, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Morabito, M.; Profili, F.; Crisci, A.; Francesconi, P.; Gensini, G.F.; Orlandini, S. Heat-related mortality in the Florentine area (Italy) before and after the exceptional 2003 heat wave in Europe: An improved public health response? Int. J. Biometeorol. 2012, 56, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Lowe, D.; Ebi, K.L.; Forsberg, B. Heatwave early warning systems and adaptation advice to reduce human health consequences of heatwaves. Int. J. Environ. Res. Public Health 2011, 8, 4623–4648. [Google Scholar] [CrossRef] [PubMed]
- Ward, K.; Lauf, S.; Kleinschmit, B.; Endlicher, W. Heat waves and urban heat islands in Europe: A review of relevant drivers. Sci. Total Environ. 2016, 569–570, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Scalley, B.D.; Spicer, T.; Jian, L.; Xiao, J.; Nairn, J.; Robertson, A.; Weeramanthri, T. Responding to heatwave intensity: Excess Heat Factor is a superior predictor of health service utilisation and a trigger for heatwave plans. Aust. N. Z. J. Public Health 2015, 39, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Montero, J.C.; Mirón, I.J.; Criado, J.J.; Linares, C.; Díaz, J. Comparison between two methods of defining heat waves: A retrospective study in Castile-La Mancha (Spain). Sci. Total Environ. 2010, 408, 1544–1550. [Google Scholar] [CrossRef] [PubMed]
Heat Wave | Start | End | Days | avgTmean (°C) | maxTmean (°C) | ∑EHIsig (°C) | ∑EHIaccl (°C) | ∑EHF (°C) |
---|---|---|---|---|---|---|---|---|
1994_1 | 26 June | 29 June | 4 | 24.9 | 26.0 | 9.1 | 34.9 | 99.4 |
_2 | 2 July | 4 July | 3 | 22.8 | 24.2 | 0.7 | 14.2 | 10.0 |
_3 | 12 July | 17 July | 6 | 22.0 | 23.2 | 2.8 | 15.4 | 12.2 |
_4 | 22 July | 8 August | 18 | 24.1 | 26.9 | 51.5 | 49.3 | 176.6 |
2003_1 | 10 June | 12 June | 3 | 23.2 | 24.3 | 3.6 | 16.9 | 21.1 |
_2 | 19 July | 22 July | 4 | 22.8 | 25.0 | 3.1 | 15.2 | 20.0 |
_3 | 1 August | 10 August | 10 | 23.3 | 25.4 | 17.1 | 30.7 | 72.7 |
_4 | 12 August | 14 August | 3 | 23.5 | 25.8 | 5.1 | 4.4 | 8.2 |
2006_1 | 19 June | 22 June | 4 | 22.7 | 23.8 | 3.3 | 32.2 | 34.4 |
_2 | 24 June | 26 June | 3 | 22.9 | 23.7 | 1.0 | 19.2 | 12.7 |
_3 | 10 July | 13 July | 4 | 23.1 | 24.7 | 6.2 | 9.6 | 15.9 |
_4 | 18 July | 28 July | 11 | 24.1 | 25.5 | 26.5 | 30.4 | 99.7 |
2010_1 | 9 June | 12 June | 4 | 23.1 | 24.2 | 5.8 | 38.3 | 59.9 |
_2 | 29 June | 4 July | 6 | 22.3 | 23.5 | 3.7 | 29.4 | 25.4 |
_3 | 9 July | 17 July | 9 | 24.5 | 26.3 | 24.1 | 48.3 | 163.7 |
2013_1 | 17 June | 21 June | 5 | 24.6 | 26.5 | 13.5 | 52.8 | 158.7 |
_2 | 26 July | 29 July | 4 | 25.4 | 28.5 | 13.2 | 24.5 | 90.0 |
_3 | 1 August | 8 August | 8 | 24.1 | 26.7 | 17.7 | 22.5 | 65.2 |
2015_1 | 1 July | 7 July | 7 | 24.4 | 26.9 | 16.0 | 46.3 | 143.1 |
_2 | 16 July | 25 July | 10 | 24.2 | 27.6 | 26.0 | 48.2 | 145.1 |
_3 | 3 August | 15 August | 13 | 26.0 | 28.3 | 57.6 | 55.3 | 292.4 |
_4 | 27 August | 1 September | 6 | 22.5 | 25.4 | 8.1 | 4.9 | 26.2 |
Heat Wave | Whole Population | 0–64 Years | 65+ Years | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Excess Mortality (n) | ØRMD (%) | ∑RMD (%) | Displaced Mortality (%) | Excess Mortality (n) | ØRMD (%) | ∑RMD (%) | Excess Mortality (n) | ØRMD (%) | ∑RMD (%) | |
1994_1 | 552 (455; 654) * | 26.8 | 107.2 | --- | 63 (17; 115) * | 10.9 | 43.7 | 487 (403; 577) * | 32.7 | 130.8 |
_2 | 89 (12; 170) * | 5.8 | 17.3 | 18.4 | 53 (12; 98) * | 12.3 | 36.9 | 36 (−28; 105) | 3.3 | 9.8 |
_3 | 144 (36; 257) * | 4.8 | 28.9 | 28.3 | 21 (−35; 80) | 2.4 | 14.3 | 123 (32; 220) * | 5.7 | 34.1 |
_4 | 1197 (1002; 1397) * | 13.4 | 240.3 | 26.6 | 352 (250; 459) * | 14.1 | 254.4 | 844 (678; 1014) * | 13.0 | 234.1 |
2003_1 | 40 (−31; 115) | 3.0 | 8.9 | 21.8 | 19 (−17; 59) | 5.4 | 16.1 | 21 (−40; 85) | 2.0 | 6.1 |
_2 | 265 (181; 355) * | 15.5 | 61.8 | 8.4 | 94 (51; 142) * | 20.7 | 82.9 | 171 (99; 248) * | 13.5 | 54.0 |
_3 | 254 (124; 388) * | 6.0 | 59.7 | --- | 47 (−18; 116) | 4.3 | 42.9 | 203 (92; 319) * | 6.5 | 64.5 |
_4 | 21 (−49; 94) | 1.6 | 4.7 | 43.5 | 12 (−23; 51) | 3.3 | 10.0 | 10 (−49; 74) | 1.0 | 3.1 |
2006_1 | 249 (168; 336) * | 15.6 | 62.4 | 2.4 | 60 (19; 105) * | 14.1 | 56.3 | 190 (120; 265) * | 16.1 | 64.5 |
_2 | −11 (−76; 60) | −1.0 | −3.0 | 200.9 | −27 (−57; 9) | −8.8 | −26.3 | 15 (−42; 75) | 1.5 | 4.6 |
_3 | 191 (111; 276) * | 12.0 | 48.1 | 17.9 | 57 (17; 101) * | 13.8 | 55.2 | 135 (66; 208) * | 11.4 | 45.7 |
_4 | 369 (237; 506) * | 8.5 | 93.4 | 36.7 | 66 (2; 136) * | 5.9 | 65.3 | 308 (194; 427) * | 9.5 | 105.0 |
2010_1 | 211 (133; 293) * | 14.4 | 57.4 | 1.8 | 35 (−3; 78) | 9.2 | 36.9 | 178 (110; 250) * | 16.3 | 65.1 |
_2 | 101 (10; 197) * | 4.6 | 27.7 | 1.91 | 52 (6; 103) * | 9.3 | 55.5 | 51 (−28; 133) | 3.1 | 18.5 |
_3 | 471 (354; 593) * | 14.4 | 129.9 | 5.2 | 105 (47; 168) * | 12.4 | 111.9 | 366 (265; 472) * | 15.1 | 136.2 |
2013_1 | 418 (330; 511) * | 24.3 | 121.7 | 37.3 | 96 (54; 143) * | 23.0 | 115.1 | 325 (248; 407) * | 25.0 | 125.0 |
_2 | 259 (184; 340) * | 19.5 | 77.8 | --- | 81 (43; 123) * | 23.7 | 94.7 | 176 (112; 246) * | 17.7 | 70.8 |
_3 | 116 (15; 222) * | 4.3 | 34.6 | 33.5 | −25 (−73; 29) | −3.6 | −29.0 | 139 (51; 231) * | 7.0 | 55.6 |
2015_1 | 304 (208; 405) * | 13.6 | 95.0 | 9.5 | 91 (43; 144) * | 16.1 | 112.9 | 217 (134; 304) * | 12.9 | 90.3 |
_2 | 160 (49; 276) * | 5.0 | 50.3 | 24.2 | 12 (−42; 70) | 1.6 | 15.6 | 148 (52; 249) * | 6.2 | 61.7 |
_3 | 847 (711; 988) * | 20.4 | 265.4 | 22.4 | 105 (42; 174) * | 10.2 | 132.2 | 750 (630; 874) * | 24.1 | 313.3 |
_4 | 211 (117; 311) * | 9.4 | 65.8 | 54.9 | 55 (9; 105) * | 9.7 | 67.8 | 158 (76; 245) * | 9.3 | 65.2 |
Variable | Whole Population | 0–64 Years | 65+ Years | |||
---|---|---|---|---|---|---|
Slope | R2 | Slope | R2 | Slope | R2 | |
∑EHF (°C) | 0.81 | 0.76 | 0.54 | 0.38 | 0.91 | 0.80 |
∑EHIsig (°C) | 3.97 | 0.72 | 2.76 | 0.39 | 4.39 | 0.74 |
∑EHIaccl (°C) | 2.99 | 0.57 | 2.33 | 0.39 | 3.23 | 0.56 |
avgTmean (°C) | 31.9 | 0.31 | 16.3 | 0.09 | 37.5 | 0.36 |
maxTmean (°C) | 21.2 | 0.31 | 11.8 | 0.11 | 24.6 | 0.39 |
duration (days) | 13.9 | 0.59 | 11.4 | 0.45 | 14.7 | 0.56 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urban, A.; Hanzlíková, H.; Kyselý, J.; Plavcová, E. Impacts of the 2015 Heat Waves on Mortality in the Czech Republic—A Comparison with Previous Heat Waves. Int. J. Environ. Res. Public Health 2017, 14, 1562. https://doi.org/10.3390/ijerph14121562
Urban A, Hanzlíková H, Kyselý J, Plavcová E. Impacts of the 2015 Heat Waves on Mortality in the Czech Republic—A Comparison with Previous Heat Waves. International Journal of Environmental Research and Public Health. 2017; 14(12):1562. https://doi.org/10.3390/ijerph14121562
Chicago/Turabian StyleUrban, Aleš, Hana Hanzlíková, Jan Kyselý, and Eva Plavcová. 2017. "Impacts of the 2015 Heat Waves on Mortality in the Czech Republic—A Comparison with Previous Heat Waves" International Journal of Environmental Research and Public Health 14, no. 12: 1562. https://doi.org/10.3390/ijerph14121562
APA StyleUrban, A., Hanzlíková, H., Kyselý, J., & Plavcová, E. (2017). Impacts of the 2015 Heat Waves on Mortality in the Czech Republic—A Comparison with Previous Heat Waves. International Journal of Environmental Research and Public Health, 14(12), 1562. https://doi.org/10.3390/ijerph14121562