Effects of Phytoremediation Treatment on Bacterial Community Structure and Diversity in Different Petroleum-Contaminated Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2 Experimental Design and Sample Collection
2.3. DNA Extraction, 16S rRNA Amplification and Pyrosequencing
2.4 Analysis of Pyrosequencing Date
2.5. Nucleotide Sequence Accession Numbers
3. Results
3.1. This Physicochemical Characteristics of the Soil
3.2. Bacterial Community Structure and Diversity
3.3. Relationships of Soil Environmental Factors with Soil Bacterial Diversity and Community Composition
4. Discussion
4.1. Differences in Bacteria Diversity among 24 Samples
4.2. Response of Bacteria to Different Physicochemical Properties Soil
4.3. The Bacteria Relationship in the Soils
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pinedo, J.; Ibáñez, R.; Lijzen, J.P.A.; Irabien, Á. Assessment of soil pollution based on total petroleum hydrocarbons and individual oil substances. J. Environ. Manag. 2013, 130, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Stout, S.A.; Fingas, M. Forensic Fingerprinting of Biomarkers for Oil Spill Characterization and Source Identification. Environ. Forensics 2006, 7, 105–146. [Google Scholar] [CrossRef] [Green Version]
- Moreira, I.T.; Oliveira, O.M.; Triguis, J.A.; dos Santos, A.M.; Queiroz, A.F.; Martins, C.M.; Silva, C.S.; Jesus, R.S. Phytoremediation using Rizophora mangle L. in mangrove sediments contaminated by persistent total petroleum hydrocarbons (TPH’s). Microchem. J. 2011, 99, 376–382. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Su, Y.; He, W.; He, F.; Song, H. Phytoremediation of petroleum polluted soil. Pet. Sci. 2008, 5, 167–171. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, W.; Chen, G.H.; Gao, Y.C.; Wang, J.N. Preparation of petroleum-degrading bacterial agent and its application in remediation of contaminated soil in Shengli Oil Field, China. Environ. Sci. Pollut. Res. 2014, 21, 7929–7937. [Google Scholar] [CrossRef] [PubMed]
- Race, M.; Ferraro, A.; Fabbricino, M.; La Marca, A.; Panico, A.; Spasiano, D.; Tognacchini, A.; Pirozzi, F. Ethylenediamine-N,N’-Disuccinic Acid (EDDS)-Enhanced Flushing Optimization for Contaminated Agricultural Soil Remediation and Assessment of Prospective Cu and Zn Transport. Int. J. Environ. Res. Public Health 2018, 15, 543. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Shafy, H.I.; Mansour, M.S. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef]
- Smit, E.; Leeflang, P.; Wernars, K. Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis. FEMS Microbiol. Ecol. 1997, 23, 249–261. [Google Scholar] [CrossRef]
- Tan, Y.P.; Ma, Y.; Jie, L. Effect of oil pollution on soil bacteria structure characteristics. Bioteclinol. Adv. 2016, 26, 193. [Google Scholar]
- Iffis, B.; St-Arnaud, M.; Hijri, M. Petroleum Contamination and Plant Identity Influence Soil and Root Microbial Communities While AMF Spores Retrieved from the Same Plants Possess Markedly Different Communities. Front. Plant Sci. 2017, 8, 1381. [Google Scholar] [CrossRef] [PubMed]
- Gregory, P.; Arturo, A.; Puah, C.; Andrew, S.B.; Esmaeil, S. Large scale bioaugmentation of soil contaminated with petroleum hydrocarbons using a mixed microbial consortium. Ecol. Eng. 2017, 102, 64–71. [Google Scholar]
- Bell, T.H.; Hassan, S.E.D.; Aure, L.M.; Fahad, A.O.; Mohamed, H.; Etienne, Y.; Marc, S.A. Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny. ISME J. 2014, 8, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Timo, P.S.; Anna-Kaisa, K.; Marja-Leena, A.K.; Carola, F.; Kielo, H.; Kim, Y. High aromatic ring-cleavage diversity in birch rhizosphere: PAH treatment-specific changes of I.E.3 group extradiol dioxygenases and 16S rRNA bacterial communities in soil. ISME J. 2008, 2, 968–981. [Google Scholar] [Green Version]
- Lee, E.H.; Cho, K.S.; Kim, J. Comparative Study of Rhizobacterial Community Structure of Plant Species in Oil-Contaminated Soil. J. Microbiol. Biotechnol. 2010, 20, 1339–1347. [Google Scholar] [CrossRef] [PubMed]
- Jeelani, N.; Yang, W.; Xu, L.Q.; Qiao, Y.J.; An, S.Q.; Leng, X. Phytoremediation potential of Acorus calamus in soils co-contaminated with cadmium and polycyclic aromatic hydrocarbons. Sci. Rep. 2017, 7, 8028. [Google Scholar] [CrossRef] [PubMed]
- Martin, B.C.; George, S.J.; Price, C.A.; Ryan, M.H.; Tibbett, M. The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: Current knowledge and future directions. Sci. Total Environ. 2013, 472, 642–653. [Google Scholar] [CrossRef] [PubMed]
- Moubasher, H.A.; Hegazy, A.K.; Mohamed, N.H.; Moustafa, Y.M.; Kabiel, H.F.; Hamad, A.A. Phytoremediation of soils polluted with crude petroleum oil using Bassia scoparia and its associated rhizosphere microorganisms. Int. Biodeterior. Biodegr. 2015, 98, 113–120. [Google Scholar] [CrossRef]
- Mikkonen, A.; Hakala, K.P.; Lappi, K.; Kondo, E.; Vaalama, A.; Suominen, L. Changes in hydrocarbon groups, soil ecotoxicity and microbiology along horizontal and vertical contamination gradients in an old landfarming field for oil refinery waste. Environ. Pollut. 2012, 162, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Giorgio, M.; Marco, C.; Alida, C.; Paolo, C.; Daniele, D.T.; Anna, M.P.; George, A.E. Bacterial community structure and removal performances in IFAS-MBRs: A pilot plant case study. J. Environ. Manag. 2017, 198, 122–131. [Google Scholar] [Green Version]
- Yang, Y.Y.; Wang, J.; Liao, J.Q.; Xie, S.G.; Huang, Y. Distribution of naphthalene dioxygenase genes in crude oil-contaminated soils. Microb. Ecol. 2014, 68, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Rosano-Hernández, M.C.; Ramírez-Saad, H.; Fernández-Linares, L. Petroleum-influenced beach sediments of the Campeche Bank, Mexico: Diversity and bacterial community structure assessment. J. Environ. Manag. 2012, 95, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Shao, T.; Zhu, T.; Long, X.; Gao, X.; Liu, Z.; Shao, H.; Rengel, Z. Vegetation succession influences soil carbon sequestration in coastal alkali-saline soils in southeast China. Sci. Rep. 2018, 8, 9728. [Google Scholar] [CrossRef] [PubMed]
- Cunha, M.R.; Rodrigues, C.F.; G´enio, L.; Hil´ario, A.; Ravara, A.; Pfannkuche, O. Macrofaunal assemblages from mud volcanoes in the Gulf of Cadiz: Abundance, biodiversity and diversity partitioning across spatial scales. Biogeosciences 2013, 10, 2553–2568. [Google Scholar] [CrossRef] [Green Version]
- Ren, C.; Zhang, W.; Zhong, Z.; Han, X.; Yang, G.; Feng, Y.; Ren, G. Differential responses of soil microbial biomass, diversity, and compositions to altitudinal gradients depend on plant and soil characteristics. Sci. Total Environ. 2018, 610, 750–758. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Yao, Q.; Zhu, H. Approach to analyze the diversity of myxobacteria in soil by semi-nested PCR-Denaturing gradient gel electrophoresis DGGE based on taxon-specific gene. PLoS ONE 2014, 910, e108877. [Google Scholar] [CrossRef] [PubMed]
- Hrenovic, J.; Durn, G.; Music, M.S.; Dekic, S.; Troskot-Corbic, T.; Skoric, D. Extensively and multi drug-resistant Acinetobacter baumannii recovered from technosol at a dump site in Croatia. Sci. Total Environ. 2017, 607, 1049–1055. [Google Scholar] [CrossRef] [PubMed]
- Valeria, A.; Dennis, J.; James, T.W.; Wouter, J.S.; Nico, M.V.S.; Dick, R.; Wilfred, F.M. The microbiome of Folsomia candida: An assessment of bacterial diversity in a Wolbachia-containing animal. FEMS Microbiol. Ecol. 2015, 91, 128. [Google Scholar]
- Motato, K.E.; Milani, C.; Ventura, M.; Valencia, F.E.; Ruas-Madiedo, P.; Delgado, S. Bacterial diversity of the Colombian fermented milk “Suero Costeno” assessed by culturing and high-throughput sequencing and DGGE analysis of 16S rRNA gene amplicons. Food Microbiol. 2017, 68, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Ramezani, M.; Hosseini, S.M.; Ferrocino, I.; Amoozegar, M.A.; Cocolin, L. Molecular investigation of bacterial communities during the manufacturing and ripening of semi-hard Iranian Liqvan cheese. Food Microbiol. 2017, 66, 64–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, D.F.; Jacob, G.M.; Nicholas, J.C.G.; Andrew, B.; Andrew, J.L.; Martin, F.B. High-throughput eDNA monitoring of fungi to track functional recovery in ecological restoration. Biol. Conserv. 2018, 217, 113–120. [Google Scholar] [CrossRef]
- Xiong, T.; Yuan, X.Z.; Wang, H.; Leng, L.J.; Li, H.; Wu, Z.B.; Jiang, L.B.; Xu, R.; Zeng, G.M. Implication of graphene oxide in Cd-contaminated soil: A case study of bacterial communities. J. Environ. Manag. 2018, 205, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhang, W.Y.; Chen, Y.; Zhang, S.L.; Feng, Q.Y.; Hou, H.P.; Chen, F. Spatial Variability of PAHs and Microbial Community Structure in Surrounding Surficial Soil of Coal-Fired Power Plants in Xuzhou China. Int. J. Environ. Res. Public Health 2016, 13, 878. [Google Scholar] [CrossRef] [PubMed]
- Kösesakal, T.; Ünal, M.; Kulen, O.; Memon, A.; Yüksel, B. Phytoremediation of petroleum hydrocarbons by using a freshwater fern species Azolla filiculoides Lam. Int. J. Phytoremed. 2015, 5, 467–476. [Google Scholar]
- Horatio, H.M.; Maret, D.T.; Mathabatha, E.S. The Grapevine and Wine Microbiome: Insights from High-Throughput Amplicon Sequencing. Front. Microbiol. 2017, 8, 820. [Google Scholar]
- U.S. EPA Method. EPA Method. Oil and Grease Analysis in Wastewater. 2010. Available online: http://www.epa.gov/waterscience/ methods/method/oil/ (accessed on 23 April 2018).
- Araujo, J.F.; de Castro, A.P.; Costa, M.M.; Togawa, R.C.; Junior, G.J.; Quirino, B.F.; Bustamante, M.M.; Williamson, L.; Handelsman, J.; Krüger, R.H. Characterization of Soil Bacterial Assemblies in Brazilian Savanna-Like Vegetation Reveals Acidobacteria Dominance. Microb. Ecol. 2012, 64, 760–770. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 2011, 108, 4516–4522. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Huntley, J.; Fierer, N. Ultra-high-throughput microbial community analysis on the IlluminaHiSeq and MiSeqplatforms. ISME J. 2012, 6, 1621–1624. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terrat, S.; Richard, C.; Samuel, D.; Mélanie, L.; Virginie, N.; Tiffanie, R.; Dipankar, B.; Pierre, P.; Patrick, W.; Claudy, J.; et al. Molecular biomass and Meta Taxogenomic assessment of soil microbial communities as influenced by soil DNA extraction procedure. Microbiol. Biotechnol. 2012, 5, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Nooshin, A.; Hamid, Z. Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenes. Bioresour. Technol. 2017, 227, 335–344. [Google Scholar]
- Lopes, A.R.; Manaia, C.M.; Nunes, O.C. Bacterial community variations in an alfalfa-rice rotation system revealed by 16S rRNA gene 454-pyrosequencing. FEMS Microbiol. Ecol. 2014, 87, 650–663. [Google Scholar] [CrossRef] [PubMed]
- Shahi, A.; Aydin, S.; Ince, B.; Ince, O. The effects of white-rot fungi Trametes versicolor and Bjerkandera adusta on microbial community structure and functional genes during the bioaugmentation process following biostimulation practice of petroleum contaminated soil. Int. Biodeterior. Biodegr. 2016, 114, 67–74. [Google Scholar] [CrossRef]
- Lezcano, M.A.; Velázquez, D.; Quesada, A.; El-Shehawy, R. Diversity and temporal shifts of the bacterial community associated with a toxic cyanobacterial bloom: An interplay between microcystin producers and degraders. Water Res. 2017, 125, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Head, I.M.; Jones, D.M.; Larter, S.R. Biological activity in the deep subsurface and the origin of heavy oil. Nature 2003, 426, 344–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, M.; Zi, X.X.; Wang, Q.Y. Bacterial Community Diversity of Oil-Contaminated Soils Assessed by High Throughput Sequencing of 16S rRNA Genes. Int. J. Environ. Res. Public Health 2015, 1, 12002–12015. [Google Scholar] [CrossRef] [PubMed]
- Denef, V.J.; Mueller, R.S.; Chiang, E.; Liebig, J.R.; Vanderploeg, H.A. Chloroflexi CL500-11 populations that predominate deep-lake hypolimnion bacterioplankton rely on nitrogen-rich dissolved organic matter metabolism and C1 compound oxidation. Appl. Environ. Microbiol. 2016, 82, 1423–1432. [Google Scholar] [CrossRef] [PubMed]
- Fernando, S.; Arantxa, P.; Balbina, N.; Elena, S.S.; Ángeles García, D.C.; Juan, A.G.M.; Josefa, A. Bacterial diversity in dry modern freshwater stromatolites from Ruidera Pools Natural Park, Spain. Syst. Appl. Microbiol. 2010, 334, 209–221. [Google Scholar]
- Zhang, X.L.; Ma, M.; Wu, Z.Z.; Zhang, Z.Z.; Gao, R.; Shi, L.Y. Effects of Helianthus annuus varieties on rhizosphere soil enzyme activities and microbial community functional diversity of saline-alkali land in Xinjiang. Acta Ecol. Sin. 2017, 37, 1659–1666. [Google Scholar]
- Peng, R.H.; Xiong, A.S.; Xue, Y.; Fu, X.Y.; Gao, F.; Zhao, W.; Tian, Y.S.; Yao, Q.H. Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol. Rev. 2008, 32, 927–955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naga, R.M.; Laura, S.; Kadiyala, V. Microbial degradation of total petroleum hydrocarbons in crude oil: A field-scale study at the low-land rainforest of Ecuador. Environ. Technol. 2017, 38, 2543–2550. [Google Scholar]
- Lefevre, G.H.; Hozalski, R.M.; Novak, P.J. Root exudate enhanced contaminant desorption: An abiotic contribution to the rhizosphere effect. Environ. Sci. Technol. 2013, 47, 1154–11553. [Google Scholar] [CrossRef] [PubMed]
- Nübel, U.; Bateson, M.M.; Madigan, M.T.; Kühl, M.; Ward, D.M. Diversity and Distribution in Hypersaline Microbial Mats of Bacteria Related to Chloroflexus spp. Appl. Environ. Microb. 2010, 67, 4365–4371. [Google Scholar] [CrossRef]
- Ragot, S.A.; Kertesz, M.A.; Mészáros, É.; Frossard, E.; Bünemann, E.K. Soil phoD and phoX alkaline phosphatase gene diversity responds to multiple environmental factors. FEMS Microbiol. Ecol. 2016, 93, 212. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.L.; Huang, T.L.; Tang, Z.X.; Xioa, Z.Q. Screening of efficient petroleum degrading bacteria and bioremediation characteristics of petroleum contaminated soil. J. Environ. Sci. China 2007, 27, 622–628. [Google Scholar]
- Song, Z.Y.; Zhao, F.M.; Sun, G.Z.; Zhu, W.Y. Long-Term Dynamics of Microbial Communities in a High-Permeable Petroleum Reservoir Reveals the Spatiotemporal Relationship between Community and Oil Recovery. Energy Fuels 2017, 31, 10588–10597. [Google Scholar] [CrossRef]
- Fiorentino, N.; Ventorino, V.; Rocco, C.; Cenvinzo, V.; Agrelli, D.; Gioia, L.; Di Mola, I.; Adamo, P.; Pepe, O.; Fagnano, M. Giant reed growth and effects on soil biological fertility in assisted phytoremediation of an industrial polluted soil. Sci. Total Environ. 2016, 575, 1375–1383. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.B.; Wu, F.Q.; Zhang, X.S.; Cao, N. Pollution characteristics and ecological risk assessment of heavy metals in three land-use types on the southern Loess Plateau, China. Environ. Monit. Assess 2017, 189, 470. [Google Scholar] [CrossRef] [PubMed]
- Moura, R.L.; Amado-Filho, G.M.; Moraes, F.C.; Brasileiro, P.S.; Salomon, P.S.; Mahiques, M.M.; Bastos, A.C.; Almeida, M.G.; Silva, J.M.; Araujo, B.F.; et al. An extensive reef system at the Amazon River mouth. Science 2016, 2, e1501252. [Google Scholar] [CrossRef] [PubMed]
- Bourceret, A.; Leyval, C.; De Fouquet, C.; Cébron, A. Mapping the Centimeter-Scale Spatial Variability of PAHs and Microbial Populations in the Rhizosphere of Two Plants. PLoS ONE 2015, 10, e0142851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, J.; Liu, X.J.; Song, L.; Lin, X.G.; Zhang, H.Y.; Shen, C.C.; Chu, H.Y. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biol. Biochem. 2016, 92, 41–49. [Google Scholar] [CrossRef]
- Liao, J.Q.; Wang, J.; Jiang, D.; Wang, M.C.; Huang, Y. Long-term oil contamination causes similar changes in microbial communities of two distinct soils. Appl. Microbiol. Biotechnol. 2015, 99, 10299–10310. [Google Scholar] [CrossRef] [PubMed]
- Bell, T.H.; Cloutier-Hurteau, B.; Al-Otaibi, F.; Turmel, M.-C.; Yergeau, E.; Courchesne, F.; St-Arnaud, M. Early rhizosphere microbiome composition is related to the growth and Zn uptake of willows introduced to a former landfill. Environ. Microbiol. 2015, 17, 3025–3038. [Google Scholar] [CrossRef] [PubMed]
- Yergeau, E.; Sanschagrin, S.; Maynard, C.; St-Arnaud, M.; Greer, C.W. Microbial expression profiles in the rhizosphere of willows depend on soil contamination. ISME J. 2014, 8, 344–358. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Chai, L.; Luo, P.; Zhou, M.; Nover, D.; Zhao, X. Toxic effects of NH4+-N on embryonic development of Bufo gargarizans and Rana chensinensis. Chemosphere 2017, 182, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.; Alm, E.J. Inferring Correlation Networks from Genomic Survey Data. PLoS Comput. Biol. 2012, 8, e1002687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Samples | 0 (0 mg/kg TPH) | 3 (3000 mg/kg TPH) | 7 (7000 mg/kg TPH) | 10 (10,000 mg/kg TPH) | |
---|---|---|---|---|---|
Soil 0 | B | 0B0 | 0B3 | 0B7 | 0B10 |
G | 0G0 | 0G3 | 0G7 | 0G10 | |
W | 0W0 | 0W3 | 0W7 | 0W10 | |
Soil 1 | B | 1B0 | 1B3 | 1B7 | 1B10 |
G | 1G0 | 1G3 | 1B7 | 1G10 | |
W | 1W0 | 1W3 | 1W7 | 1W10 |
Number | pH | SOM (g/kg) | A. P (g/kg) | A. N (g/kg) | A. K (g/kg) | Number | pH | SOM (g/kg) | A. P (g/kg) | A. N (g/kg) | A. K (g/kg) |
---|---|---|---|---|---|---|---|---|---|---|---|
0B0 | 8.47 ± 0.03 | 0.66 ± 0.02 | 22.06 ± 0.13 | 3.36 ± 0.05 | 109.58 ± 0.18 | 1B0 | 8.52 ± 0.09 | 0.44 ± 0.02 | 14.70 ± 0.3 | 3.34 ± 0.03 | 84.54 ± 1.2 |
0G0 | 8.97 ± 0.04 | 0.80 ± 0.01 | 24.32 ± 0.09 | 13.33 ± 0.02 | 118.37 ± 0.2 | 1G0 | 8.58 ± 0.2 | 0.53 ± 0.04 | 16.42 ± 0.02 | 14.34 ± 0.09 | 49.94 ± 1.1 |
0W0 | 8.35 ± 0.03 | 0.48 ± 0.01 | 62.77 ± 1.21 | 7.20 ± 0.11 | 166.17 ± 2.6 | 1W0 | 8.58 ± 0.01 | 0.48 ± 0.02 | 16.60 ± 0.06 | 4.21 ± 0.06 | 120.06 ± 0.98 |
0B3 | 8.46 ± 0.02 | 0.72 ± 0.04 | 21.11 ± 0.8 | 2.48 ± 0.02 | 100.47 ± 1.6 | 1B3 | 8.61 ± 0.06 | 0.44 ± 0.02 | 14.92 ± 0.1 | 3.81 ± 0.03 | 79.54 ± 0.76 |
0G3 | 8.56 ± 0.02 | 0.79 ± 0.02 | 21.21 ± 0.4 | 12.66 ± 0.04 | 97.77 ± 0.9 | 1G3 | 8.62 ± 0.03 | 0.59 ± 0.01 | 12.29 ± 0.09 | 12.24 ± 0.11 | 72.78 ± 1.32 |
0W3 | 8.44 ± 0.06 | 0.69 ± 0.05 | 25.36 ± 0.07 | 5.58 ± 0.09 | 160.11 ± 4.1 | 1W3 | 8.51 ± 0.05 | 0.33 ± 0.03 | 20.48 ± 0.12 | 6.73 ± 0.04 | 93.00 ± 3.1 |
0B7 | 8.38 ± 0.05 | 0.66 ± 0.03 | 16.07 ± 0.04 | 3.52 ± 0.01 | 128.92 ± 1.0 | 1B7 | 8.64 ± 0.07 | 0.59 ± 0.05 | 17.76 ± 0.02 | 4.76 ± 0.06 | 97.24 ± 0.27 |
0G7 | 8.42 ± 0. 02 | 0.66 ± 0.01 | 24.65 ± 1.01 | 17.10 ± 0.07 | 116.56 ± 3.2 | 1G7 | 8.60 ± 0.01 | 0.61 ± 0.02 | 9.00 ± 0.13 | 12.24 ± 0.06 | 91.82 ± 0.11 |
0W7 | 8.45 ± 0.11 | 0.59 ± 0.02 | 39.47 ± 1.33 | 6.40 ± 0.03 | 162.66 ± 1.7 | 1W7 | 8.59 ± 0.05 | 0.30 ± 0.04 | 20.73 ± 0.25 | 5.88 ± 0.05 | 101.26 ± 0.25 |
0B10 | 8.46 ± 0.06 | 0.76 ± 0.04 | 25.86 ± 1.2 | 5.24 ± 0.07 | 114.16 ± 3.4 | 1B10 | 8.63 ± 0.08 | 0.65 ± 0.01 | 11.34 ± 0.06 | 5.81 ± 0.02 | 104.10 ± 0.83 |
0G10 | 8.48 ± 0.2 | 0.98 ± 0.01 | 12.40 ± 0.08 | 12.87 ± 0.02 | 103.60 ± 2.3 | 1G10 | 8.57 ± 0.2 | 0.65 ± 0.05 | 8.24 ± 0.02 | 15.79 ± 0.06 | 83.38 ± 0.16 |
0W10 | 8.42 ± 0.02 | 0.79 ± 0.03 | 38.22 ± 0.83 | 6.71 ± 0.06 | 131.82 ± 1.62 | 1W10 | 8.59 ± 0.01 | 0.42 ± 0.02 | 10.04 ± 0.15 | 6.56 ± 0.21 | 85.42 ± 0.18 |
ID | OTU97% | Coverage | Richness and Diversity Indices | ||
---|---|---|---|---|---|
Chao1 | Shannon | Simpson | |||
0B0 | 5110 | 0.86 | 8298.92 | 10.94 | 0.9976 |
0B3 | 5612 | 0.83 | 10,476.23 | 10.98 | 0.9977 |
0B7 | 5913 | 0.82 | 11,961.23 | 11.16 | 0.9978 |
0B10 | 5579 | 0.83 | 10,726.74 | 10.95 | 0.9973 |
1B0 | 5886 | 0.81 | 11,811.36 | 11.07 | 0.9979 |
1B3 | 6055 | 0.81 | 12,231.10 | 10.81 | 0.9955 |
1B7 | 5742 | 0.82 | 11,235.88 | 10.75 | 0.9961 |
1B10 | 5671 | 0.82 | 11,281.68 | 10.89 | 0.9970 |
0G0 | 5989 | 0.82 | 11,029.75 | 11.32 | 0.9986 |
0G3 | 5879 | 0.82 | 11,645.19 | 11.33 | 0.9988 |
0G7 | 5437 | 0.84 | 10,218.77 | 10.93 | 0.9973 |
0G10 | 6158 | 0.81 | 11,373.13 | 11.41 | 0.9983 |
1G0 | 5743 | 0.82 | 11,134.00 | 10.92 | 0.9971 |
1G3 | 5649 | 0.82 | 10,752.91 | 10.73 | 0.9960 |
1G7 | 5738 | 0.82 | 11,503.65 | 10.82 | 0.9965 |
1G10 | 5581 | 0.83 | 11,237.97 | 10.86 | 0.9971 |
0W0 | 5460 | 0.84 | 10,085.13 | 10.98 | 0.9979 |
0W3 | 6059 | 0.81 | 11,672.13 | 11.29 | 0.9985 |
0W7 | 5682 | 0.83 | 11,198.93 | 11.06 | 0.9974 |
0W10 | 5764 | 0.82 | 11,294.68 | 11.21 | 0.9985 |
1W0 | 5886 | 0.82 | 11,429.94 | 11.10 | 0.9976 |
1W3 | 5804 | 0.83 | 10,674.72 | 11.12 | 0.9980 |
1W7 | 5755 | 0.82 | 11,214.03 | 11.05 | 0.9981 |
1W10 | 5696 | 0.83 | 10,848.33 | 11.06 | 0.9979 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Ji, Y.; Li, C.; Luo, P.; Wang, W.; Zhang, Y.; Nover, D. Effects of Phytoremediation Treatment on Bacterial Community Structure and Diversity in Different Petroleum-Contaminated Soils. Int. J. Environ. Res. Public Health 2018, 15, 2168. https://doi.org/10.3390/ijerph15102168
Shen Y, Ji Y, Li C, Luo P, Wang W, Zhang Y, Nover D. Effects of Phytoremediation Treatment on Bacterial Community Structure and Diversity in Different Petroleum-Contaminated Soils. International Journal of Environmental Research and Public Health. 2018; 15(10):2168. https://doi.org/10.3390/ijerph15102168
Chicago/Turabian StyleShen, Yuanyuan, Yu Ji, Chunrong Li, Pingping Luo, Wenke Wang, Yuan Zhang, and Daniel Nover. 2018. "Effects of Phytoremediation Treatment on Bacterial Community Structure and Diversity in Different Petroleum-Contaminated Soils" International Journal of Environmental Research and Public Health 15, no. 10: 2168. https://doi.org/10.3390/ijerph15102168
APA StyleShen, Y., Ji, Y., Li, C., Luo, P., Wang, W., Zhang, Y., & Nover, D. (2018). Effects of Phytoremediation Treatment on Bacterial Community Structure and Diversity in Different Petroleum-Contaminated Soils. International Journal of Environmental Research and Public Health, 15(10), 2168. https://doi.org/10.3390/ijerph15102168