Supplementary Material

Effects of Phytoremediation Treatment on Bacterial Community Structure and Diversity in Different Petroleum-contaminated Soils

Yuanyuan Shen ^{1,2,3} Yu Ji ¹, Chunrong Li ^{1,*}, Pingping Luo ^{1*}, Wenke Wang¹, Yuan Zhang ¹, Daniel Noverd⁴

- ¹ Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Environmental Science and Engineering, Chang'an University, Xi'an, 710064 China;
- ² School of Biological and Environmental, Xi'an University, Xi'an, Shaanxi, 710065 China;
- ³ Engineering Research Center for Groundwater and Eco-Environment of Shaanxi Province, Xi'an Shaanxi, 710054
- ⁴ School of Engineering, University of California Merced, Merced, CA, 95343, USA
- * Correspondence: Chunrong Li E-mail: changanl@chd.edu.cn, Telephone: +862982339951; Pingping Luo Email: lpp@chd.edu.cn, Telephone: +862982339376

Received: date; Accepted: date; Published: date

Table S1. General physical and chemical properties for Weihe terrace soil (Soil 0) andsilty loam in loess tableland (Soil 1)

Soil particle			Soil chemical composition analysis							Oxidation	Conductivity	
com	composition/%				Ω	(B)/10-	Reduction	Conductivity				
Sand	Silt	clay	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	K2O	Na2O	Potential/ mv	/µs∙cm⁻¹	
21.8	69.6	9.6	67.4	10.91	3.05	5.26	1.41	2.45	2.08	170	175	
-	90.8	9.2	62.6	11.21	3.95	6.03	1.61	2.15	1.82	174	181	
	Son com Sand 21.8	Soil particle composition Sand Silt 21.8 69.6 - 90.8	Soil particle composition/% Sand Silt clay 21.8 69.6 9.6 - 90.8 9.2	Soil particle composition/% Sand Silt clay SiO2 21.8 69.6 9.6 67.4 - 90.8 9.2 62.6	Soil particle Soil ch composition/% 1000 Sand Silt clay SiO2 Al2O3 21.8 69.6 9.6 67.4 10.91 - 90.8 9.2 62.6 11.21	Soil particle Soil chemical of composition/% To Too Too Too Too Too Too Too Too Too	Soil particle Soil chemical composition/% Soil chemical composition/ Sand Silt clay SiO2 Al2O3 Fe2O3 CaO 21.8 69.6 9.6 67.4 10.91 3.05 5.26 - 90.8 9.2 62.6 11.21 3.95 6.03	Soil clemical composition/% Sand Silt clay SiO2 Al2O3 Fe2O3 CaO MgO 21.8 69.6 9.6 67.4 10.91 3.05 5.26 1.41 - 90.8 9.2 62.6 11.21 3.95 6.03 1.61	Soil composition/% Soil composition/% Sand Silt Clay SiO2 Al2O3 Fe2O3 CaO MgO K2O 21.8 69.6 9.6 67.4 10.91 3.05 5.26 1.41 2.45 - 90.8 9.2 62.6 11.21 3.95 6.03 1.61 2.15	Soil Ferice Soil Ferice Source Sourc	Soil benical composition/% Coldation Soil benical composition/% Reduction Soil benical composition/% Reduction Reduction Soil benical composition/% Reduction Reduction Reduction Reduction Reduction Reduction Reduction Soil benical composition Soil benical composition Reduction Reduction Reduction Reduction Reduction Reduction Reduction <th c<="" th=""></th>	

(a)

(b)

Fig. S1. Rarefaction analyses of samples (a) and Shannon Wiener curves of samples.(rarefaction curves of OTUs clustered at 97% sequence identity across different soil samples. Soil 0 and soil1 respectively represent the Wei he Terrace silty and loam soil silty loam in Loess Tableland. B, G and W: the reclamation plants of Agropyron cristatum (L.) Gaertn, Cynodondactylon Linn.Pers, and undisturbed plants, respectively; original TPH 0, 3, 7, and 10: 0 mg/kg (control), 3,000 mg/kg, 7,000 mg/kg, and 10,000 mg/kg, respectively.)

Fig. S2. Community structure in all samples at the orders level. (relative abundances (>0.2%) are based on the proportional frequencies of those DNA sequences that could be classified at the orders level.)

Fig. S3. Multiple-samples PCA analysis of 24 samples associated with bacterial community and physicochemical soil.

Fig. S4. Correlation network diagram at the genera level. (circles represent specifical species, and the size of circles stand for the abundance. the correlation between two species describe as line weight and color. The wide lines explained the strength of correlation. The color of lines is orange, which is positive correlation, and green stand for negative correlation. Screening data with a

correlation greater group (>0.1) draw a common expression analysis network diagram at the python level).