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Abstract: Increases in the extent and level of air pollution in Chinese cities have become a major
concern of the public and burden on the government. While ample literature has focused on the
status, changes and causes of air pollution (particularly on PM2.5 and PM10), significantly less is
known on their effects on people. In this study we used Hangzhou, China, as our testbed to assess
the direct impact of PM2.5 on youth populations that are more vulnerable to pollution. We used
the ground monitoring data of air quality and Aerosol optical thickness (AOT) product from the
Moderate Resolution Imaging Spectroradiometer (MODIS) for the spatiotemporal changes of PM2.5

by season in 2015. We further explored these distributions with land cover, population density and
schools (kindergarten, primary school and middle school) to explore the potential impacts in seeking
potential mitigation solutions. We found that the seasonal variation of PM2.5 concentration was winter
> spring > autumn > summer. In Hangzhou, the percentage of land area exposed to PM2.5 > 50 µg
m−3 accounted for 59.86% in winter, 56.62% in spring, 40.44% in autumn and 0% in summer, whereas
these figures for PM2.5 of <35 µg m−3 were 70.01%, 5.28%, 5.17%, 4.16% in summer, winter, autumn
and spring, respectively. As for land cover, forest experienced PM2.5 of 35–50 µg m−3 (i.e., lower
than those of other cover types), likely due to the potential filtering and absorption function of the
forests. More importantly, a quantitative index based on population-weighted exposure level (pwel)
indicated that only 9.06% of the population lived in areas that met the national air quality standards.
Only 1.66% (14,055) of infants and juveniles lived in areas with PM2.5 of <35 µg m−3. Considering the
legacy effects of PM2.5 over the long-term, we highly recommend improving the monitoring systems
for both air quality and people (i.e., their health conditions), with special attention paid to infants
and juveniles.

Keywords: PM2.5; spatial and temporal variations; land use; infants and juveniles

1. Introduction

In haze days, PM2.5 (the particulate matter with aerodynamic diameter ≤2.5 µm) and its particle
concentration account for 56.7–75.4% of the total suspended particles and >80%–90% of PM10 (the
particles measuring ≤10 µm in aerodynamic diameter) [1]. The high rate of exposure of the youth
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population to PM10, as a consequence, was credited as one of the primary causes of decreased head
and body size [2], while long-term exposure to high concentrations of PM2.5 was responsible for some
serious health complications such as stroke, ischemic heart disease, chronic obstructive pulmonary
disease, lung cancer and acute lower respiratory infection [3–10]. Currently, ambient PM2.5 pollution
ranks the sixth among all risk factors for global premature mortalities and disability-adjusted life-years
(DALYs) [11,12]. Song et al. [13] used data from the national air quality monitoring stations in 367 cities
in China between 2014 and 2016 and found that the attributable mortality rate of 5–10-year-olds was
112.0 for the current year and 124.3 in 10 years. Considering the long-term legacy effects of PM2.5 on
urban dwellers [13,14], the health risks to infants and juveniles under a severely polluted environment
would increase drastically. Both the scientific community and government must take responsibility for
these potential health risks and improve the overall living environment.

PM is primarily the result of rapid industrialization and motorization [15,16]. Pollution problems
were widespread in European and North American cities in the 1950s and 1960s but have since
become more pronounced in developing countries such as India and China [17,18]. In China,
rapid economic development over the last few decades has led to worse air quality [19–21], with nearly
no cities that meet the World Health Organization’s (WHO) Air Quality Guidelines (AQG) of
PM2.5 < 10 µg m−3 [22–25]. During 2004–2012, over 93% of people in China lived in areas where PM2.5

exceeded China’s National Air Quality Standard for Grade II of 35 µg m−3 [26], due to the rapid
economic development and urbanization in China. Land surface properties (e.g., roads, construction,
human behavior and vegetation) can directly filter or absorb some pollutants and indirectly influence
air movement through its heterogeneous urban canopies [27]. A better understanding of spatial and
temporal variations of PM2.5, as well as its impacts on people, is urgently needed to develop effective
protocols and to mitigate the impacts of PM pollution.

Some widely applied approaches for estimating PM2.5 and PM10 concentrations are based on
remote-sensing data, or derived from monitoring stations. Today, we know more about the profile
of aerosol particle liquidity in space but with a limited number of ground observation stations it is
difficult to quantify the spatial and temporal distributions as well as the transmission characteristics of
PM across a landscape [28]. Aerosol optical thickness (AOT) data collected by the Moderate Resolution
Imaging Spectroradiometer (MODIS) has been proven to be a potentially useful data source on PM2.5

concentrations [29,30]. However, due to the dissimilarities in surface characteristics, meteorological
conditions and the aerosol fine mode fraction [31,32], applications of AOT as a proxy for spatial
patterns of PM have their limitations [33,34]. An alternative is to combine the dispersed monitoring
data and MODIS products so that the spatiotemporal distribution of PM2.5 concentration can be
quantified through inversion modeling.

The focal city of this study is Hangzhou—one of the central cities of the Yangtze River Delta
Urban Agglomeration. We explored its atmospheric environment and found that, as a tourist city,
Hangzhou’s air quality condition was not satisfactory [35–49]. Liu et al. [26] analyzed the atmospheric
PM2.5 concentration and variation in Hangzhou from 2011 to 2014 and concluded that the peak
occurred in 2013 (52.2 µg m−3) and was closely related to motor vehicle emissions and changes in
meteorological conditions. Jin et al. [40] found that the PM2.5 particle concentration was 21.6% due
to automobile fumes, 16.7% to coal burning and 12.2% to ash, soil and concrete buildings. Urban
land cover and land use also had a significant impact on the spatial distribution of PM2.5 in urban
landscapes [17,39]. With the spatial distribution of PM2.5 in the region, sound spatial arrangement of
landscapes, combined with weather conditions, terrain formation and land use can provide meaningful
solutions for mitigating the impacts of PM on people.

Our primary study objectives are to: (1) understand the spatiotemporal distribution of PM2.5

concentrations in Hangzhou using data from 2015; (2) examine the empirical relationships between the
spatiotemporal changes of PM2.5 and land cover; (3) analyze the populations exposed to different levels
of PM2.5 concentrations; and (4) analyze the distribution of students and schools (e.g., kindergarten,
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primary school and middle school students) living in areas of different PM2.5 concentrations. We aim
at reducing the potential health threats of long-term exposure of infants and juveniles to PM2.5.

2. Materials and Methods

2.1. Study Area

Hangzhou city, the capital city of the Zhejiang Province, is located in southeast China. This study
covers the main urban area of Hangzhou, including eight districts: Shangcheng, Xiacheng, Jianggan,
Gongshu, Xihu, Binjiang, Yuhang and Xiaoshan (Figure 1a). The study area was 3376 km2 and the
population density was 2111.96 per km2 in 2015 (http://www.hzfc.gov.cn/web). It experiences a
humid subtropical climate with four distinct seasons and is characterized by long, hot, humid summers
and chilly, cloudy winters. The average annual precipitation is 1,438 mm; rainfall is abundant during
summer and relatively low during winter [35].
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Figure 1. (a) Location of the study area and ground monitoring stations; (b) Land cover map of
Hangzhou in 2015; (c) Spatial distribution of kindergarten, primary and middle schools in Hangzhou;
and (d) Population density on 100 m × 100 m grid map.

2.2. Data Sources

The MODIS has 36 spectral channels ranging from visible to infrared, providing an effective
means of detecting global aerosol properties. In this study, the MOD04-3K AOT product at 3
km resolution for 2015 was acquired from the Level 1 and Atmospheric Archive and Distribution
System (LAADS) (https://earthdata.nasa.gov/about/daacs/daac-laads). Geometric correction was
applied to AOT images. In addition, meteorological data (e.g., wind, relative humidity from
NCEP (http://dss.ucar.edu/)) were also used for calibrating AOT. Real-time hourly monitoring
data of PM2.5 density from 10 ground stations in Hangzhou were collected from the National
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Environmental Monitoring Centre from January 2015 to December 2015 and were converted to daily
averages to match with MODIS AOT. The land cover map was developed based on high-resolution
(<1 m) aerial photos in 2015 (Figure 1b). The spatial distribution of kindergartens, primary schools,
middle schools and their numbers of enrollment were collected from the Hangzhou Education
Bureau (Figure 1c). The district-level population data was collected from the statistical yearbook
of Hangzhou (http://tjj.hangzhou.gov.cn/tjnj/nj2017/index.htm). To create spatially continuous
population distributions, we assume that the population density is highly correlated with building
density. The district-level population was reallocated spatially on a standard grid map (100 m × 100 m);
the proportion of build-up area in a grid was used as a weighting factor to calculate the population of
a grid by ensuring that the total population of each district remains the same (Figure 1d).

2.3. Spatial Modeling of PM2.5 Distribution

Figure 2 shows the process of modeling the relationship between AOT and PM2.5. The three
consequent steps are: AOT retrieval and calibration, match of ground monitoring data with AOT
and regression modelling. The key for calibrating AOT data is correcting aerosol altitude and water
vapor density. The density of aerosol particles decreases with increasing altitude because of the gravity
impact. The relationship between AOT and the aerosol extinction coefficient was expressed as:

τa(λ) ≈ ka,0(λ)× HA (1)

where τa(λ) stands for the AOT value; ka,0(λ) is the near-ground horizontal extinction coefficient,
which is affected by the atmospheric water vapor content; HA stands for aerosol scaling height.

Aerosol scaling height is a key parameter that can be approximated by mixed-layer height.
The mixed-layer height is closely related to the aerosol stability and can be calculated following
the protocols of the State Bureau of Technical Supervision and the State Environmental Protection
Administration [50] (Equation (2)).

L = S
√

u10

2Ω sin ϕ
(2)

where L stands for the mixed-layer height (m); u10 is the wind speed at the altitude of 10 m (m s−1) and
its maximum value is 6 m s−1; Ω stands for the rotational angular velocity of the earth and is assigned a
value of 7.29 × 10−5 rad s−1; ϕ stands for geodetic latitude; S is related to the aerosol stability referring
to Pasquill stability classes (see details in Reference [50]) and its corresponding values in Hanzhou can
be found in Table 1.

Table 1. Mixed layer parameter reference table.

Level of
Stability

Extremely
Unstable

Moderately
Unstable

Slightly
Unstable Neutral Moderately

Stable Stable

S 0.056 0.029 0.020 0.012 1.660 0.700

After the corrections, the aerosol extinction coefficient can be obtained. Water vapor correction is
further applied to retrieve the “dry” aerosol extinction coefficient as:

Edry = ka,0(λ)× (1 − RH
100

) (3)

where Edry stands for the “dry” aerosol extinction coefficient; RH represents the relative humidity (%).
To establish a relationship between the ground measurements and the AOT, further statistics were

applied to ensure the spatiotemporal consistency of the ground measurements with the remote sensing
images. The precision of temporal match should be within ±1 h between the monitoring data and the
satellite passing time. The mean value in 3 × 3 pixel cells of AOT is used for matching with the value
of the monitoring location. Linear regression is applied to explore the correlation between the “dry”

http://tjj.hangzhou.gov.cn/tjnj/nj2017/index.htm
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aerosol extinction coefficient and PM2.5 density (Equation (4)). Independent regression models were
established by season because the climatic differences may result in different aerosol distributions.

PM2.5 = a × Edry + b (4)
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2.4. Spatial Correlation between PM2.5 Distribution and Land Use Types

Recent studies have shown that the land cover (i.e., traffic roads) could be spatially correlated
with the density of PM2.5 [17,51–53]. Incorporating this information would help to increase the
model accuracy. In this study, we quantified the empirical relationship of PM2.5 density with
different land cover types by season. Specifically, the spatial PM2.5 concentration was divided
into three levels: <35 µg m−3 (non-polluted), 35–50 µg m−3 (intermediate) and >50 µg m−3 (heavy)
and their proportions for each land cover type were calculated. Such results can be useful for
understanding the landscape contribution and further improving PM2.5 predictions by including
land use regression models.

2.5. Potential Impact of PM2.5 Distribution in Hangzhou

In order to estimate the impacts of PM2.5, several demographic data were used for
calculating the proportion of the population affected by different levels of PM2.5. A quantitative
index—population-weighted exposure level (pwel)—was calculated to identify the areas with potential
high risk of population exposure to atmospheric particulates:

pwel =
Pi

Ptotal
× Ci × 100 (5)

where Pi stands for the population in grid i and Ptotal stands for the total population in the research
area; Ci is the simulated PM2.5 density in grid i.

Additionally, the number of kindergartens, primary schools and middle schools located in
different PM2.5 concentration zones were calculated to show the affected “key” population (i.e., infants
and juveniles) in Hangzhou.
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3. Results and Discussion

3.1. Relationship between AOT and the PM2.5 Concentration

After AOT inversion and calibration, the linear regression models were successfully established
between AOT and the PM2.5 concentration for the four seasons (Figure 3). Model correlations varied
by season, with the correlation coefficient of determination (R2) varying between 0.347 and 0.740.
The accuracy order of the model was determined as summer > spring > autumn > winter. This seasonal
difference was affected by the height of the atmospheric mixing layer (i.e., low in autumn and winter
when the diffusion of air particle pollutants was low). During autumn and winter, cold waves
were frequent and the resulting weather conditions led to increasing atmospheric pollutants and
greater spatiotemporal variability. The model fitting accuracy decreased. Nevertheless, the appeared
acceptable for all four seasons [54].
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Figure 3. The linear regression analyses between AOT and the PM2.5 concentration in the four seasons
in Hangzhou. (a) Spring; (b) Summer; (c) Autumn; (d) Winter.

3.2. The Spatiotemporal Distribution in PM2.5

The annual average of PM2.5 concentrations was 43 µg m−3 (std = 5.28), indicating that
Hangzhou’s regional air quality was better than half of China’s cities (53.0 µg m−3) in 2015 [13,27].
Following China’s peak PM value in 2013, the PM2.5 concentration showed a significant decreasing
trend. In Hangzhou, the PM2.5 concentration was 52.2 µg m−3 in 2013 [42]. However, this level is far
from China’s National Air Quality Standard for Grade II limit of 35 µg m−3 [22]. Among the 366 cities
in China, over 80% did not reach the standard of Grade II [55]. As for the spatial distribution of the
annual average, PM2.5 was mainly concentrated in Gongchu, Shangcheng, Xiacheng and parts of Xihu,
Yuhang and Xiaoshan. The mean PM2.5 concentration was 50.27 µg m−3 (std = 7.32) in spring, 24.87 µg
m−3 (std = 4.40) in summer, 43.63 µg m−3 (std = 5.66) in autumn and 53.19 µg m−3 (std = 6.92) in winter
(Figure 4a–d). The lowest values were found in the northwest mountainous areas (Figure 4). Among
the seasons, the concentration was winter > spring > autumn > summer. The seasonal characteristics
of PM2.5 concentration were consistent with the ground observations in Hangzhou. During winter, air
pollution remained as a serious issue that severely affected people. The administrative department
continued to struggle to find efficient ways to reduce the pollution level [56–59].
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Figure 4. Spatial distributions of PM2.5 concentrations during four seasons in Hangzhou. (a) Spring;
(b) Summer; (c) Autumn; (d) Winter.

Among the eight districts, the Xiacheng district showed three seasons with the highest mean
values (Figure 4, Table 2), with 54.10 µg m−3 in spring, 29.73 µg m−3 in summer and 45.27 µg m−3 in
autumn. The Gongshu district had the highest value during winter (61.08 µg m−3). The lowest value
of PM2.5 concentrations for all four seasons appeared in the Yuhang district, with 47.65 µg m−3 in
spring, 23.31 µg m−3 in summer, 39.41 µg m−3 in autumn and 54.63 µg m−3 in winter. Interestingly,
the Xiaoshan district showed the highest value in all four seasons, with 68.54 µg m−3 in spring, 35.95
µg m−3 in summer, 59.63 µg m−3 in autumn and 67.97 µg m−3 in winter (Table 2). Additionally, there
appeared multiple “hot spots” in all four seasons (Figure 4).

Table 2. PM2.5 concentrations in the eight districts of Hangzhou by season in 2015, including maximum,
minimum, mean and standard deviation values.

Shangcheng Xiacheng Jianggan Xihu Gongshu Binjiang Yuhang Xiaoshan

Spring

Max 51.69 58.70 57.11 58.97 59.49 54.13 61.18 68.54
Min 47.67 49.04 45.38 46.53 48.84 48.26 23.48 41.07

Mean 50.32 54.10 52.21 51.94 53.87 51.26 47.65 51.80
Std 0.94 3.06 2.77 2.64 2.54 0.92 10.29 4.61

Summer

Max 28.14 31.95 32.78 34.94 31.76 29.30 33.03 35.95
Min 24.28 26.79 22.37 23.89 23.40 23.34 10.84 16.69

Mean 25.87 29.73 27.11 28.43 27.38 25.49 23.31 24.96
Std 1.02 1.13 2.29 2.27 2.26 1.33 5.36 3.50

Autumn

Max 45.88 46.51 47.77 45.85 45.63 46.06 50.95 59.63
Min 41.76 43.76 41.09 40.16 42.51 43.41 24.83 40.80

Mean 44.12 45.27 44.14 43.35 43.96 44.49 39.41 47.33
Std 1.03 0.67 1.32 1.18 0.68 0.57 6.30 3.40

Winter

Max 57.09 64.74 64.43 65.57 65.42 59.97 66.47 67.97
Min 53.03 54.21 46.90 48.26 53.83 51.70 44.06 44.06

Mean 54.67 60.19 54.67 55.14 61.08 54.82 54.63 54.63
Std 1.06 2.86 4.49 2.61 3.86 1.61 8.56 5.60
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The histogram statistics of PM2.5 for the four seasons were also calculated. The distributions
of PM2.5 in spring and autumn were relatively narrow, presenting a typical single peak distribution
(Figure 5a,c). However, winter and summer showed dispersed values for PM2.5; these values were
especially complex for winter, where there were multiple peaks (Figure 5b,d). This complexity was
likely due to winter’s mixed atmospheric layer height being low and not conductive to the diffusion of
atmospheric particle pollutants. In addition, cold waves frequently changed the weather conditions,
which subsequently led to an increase in the spatiotemporal variability of atmospheric pollution and
resulted in the regularity of distribution being less significant than that of spring and autumn [15,16].
Even in northern China, the distribution of PM2.5 was complex and contained multiple peaks during
the winter [57,60].
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3.3. Correlation Analysis between Land Use and the Spatial Distribution of PM2.5 Concentration

Of the seven land cover types in the study area, the landscape was composed of 26.86%
(905.84 km2) built-up area, 12.87% (434.22 km2) water, 4.94% (166.23 km2) grassland, 26.31%
(887.42 km2) forest, 11.95% (403.07 km2), cultivated land, 5.38% (181.53 km2), roads, 11.67%
(393.91 km2) and orchard land (Figure 1b). We delineated portions of the seven land cover types
by three classes of PM2.5 concentrations (Table 3). In spring, 4.16% of the land surface in Hangzhou
experienced PM2.5 of <35 µg m−3. Meanwhile, 39.23% and 56.62% of the land surface was experiencing
air conditions of PM2.5 between 35–50 µg m−3 and PM2.5 of >50 µg m−3, respectively. In summer, the
air quality was better, as 70.01% of the land surface was exposed to PM2.5 of <35 µg m−3 and no area
accounted for PM2.5 of >50 µg m−3. In autumn, only 5.17% of the land surface experienced PM2.5 of
<35 µg m−3 and 40.44% of the land surface was exposed to PM2.5 of >50 µg m−3. The air pollution
in winter was more severe, with 59.86% of the land surface under PM2.5 of >50 µg m−3. Overall, the
PM2.5 concentrations in the winter and spring seasons were higher than those of the other seasons and
showed multiple peaks (Figure 5). Hangzhou’s meteorological conditions in these seasons were not
conducive to the emission of air pollutants [37,44,49].

In regard to the land cover types, the forests in Hangzhou were distributed mainly around the
area where the PM2.5 concentration was 35–50 µg m−3. Within PM2.5 of <35 µg m−3, forests occupied
the highest proportion of the land surface (Table 3). This may due to the filtering/abortion function as
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particulate air pollutants move through the forest landscape [17,61,62]. Janhäll [27] has advocated that
increasing the vegetation barriers should help absorb and filter the particulate air pollution. For PM2.5

of >50 µg m−3, built-up area showed the largest area proportion in spring, autumn and winter (Table 3).
This result again highlighted the trend of ‘more human activities, more air pollution sources’ [26].

Table 3. The percentage area of the different land use types to the total study area percentage (%) by
the three levels of PM2.5 concentration in the four seasons.

Land Use Type PM2.5 Class (µg m−3) Spring (%) Summer (%) Autumn (%) Winter (%)

Grassland <35 0.07 4.59 0.11 0.10
Cultivated area <35 0.13 11.52 0.25 0.16

Built-up area <35 0.17 2.51 0.26 0.25
Traffic area <35 0.05 4.92 0.07 0.07

Forest <35 3.49 23.39 3.93 4.35
Water <35 0.03 12.21 0.10 0.05

Orchard <35 0.22 10.87 0.45 0.30

Grassland 35–50 1.84 0.40 3.03 1.57
Cultivated area 35–50 5.27 0.59 6.35 5.23

Built-up area 35–50 6.74 24.12 14.35 5.73
Traffic area 35–50 1.41 0.55 3.11 1.38

Forest 35–50 13.76 2.82 15.49 14.81
Water 35–50 6.32 0.60 7.39 3.12

Orchard 35–50 3.89 0.92 4.66 3.00

Grassland >50 3.09 0 1.84 3.33
Cultivated area >50 6.71 0 5.51 6.71

Built-up area >50 19.72 0 12.02 20.65
Traffic area >50 4.02 0 2.29 4.02

Forest >50 8.95 0 6.78 7.03
Water >50 6.46 0 5.32 9.64

Orchard >50 7.67 0 6.68 8.48

3.4. Population Group Exposure under the Roof of the PM2.5

Based on the annual mean PM2.5 concentration and its spatial distribution in Hangzhou, the
population-weighted exposure level (pwel) showed the risk level of populations exposed to different
concentrations of PM2.5. We found 249.18 Pop km−2 (±746.53) of the population live in PM2.5

of <35 µg m−3, covering 266.29 km2; for PM2.5 of 35–50 µg m−3, the population density was
1521.60 Pop km−2 (±3584.08) in 1483.99 km2; for PM2.5 of >50 µg m−3, the population density was
1582.66 Pop km−2 (±3124.79) in 1188.18 km2 (Figure 1d). Clearly, most people reside in high PM2.5

concentration areas. On the other hand, gaseous and particulate pollutants were also exposed due
to human activity. Pollution from human activities has severely contributed to the health impacts on
people over a long period of time [63]. Considering infants and juveniles attending school, younger
individuals are less resistant to disease and daily exposure to high PM2.5 concentrations can cause
both current and future health problems.

In the study area, the number of kindergartens was 623, with 239,459 infants. The number of
primary schools was 265, facilitating 389,260 students. The number of middle schools was 123, with
217,959 students. By the different PM2.5 concentration levels, 294 kindergarten students were under
PM2.5 of >50 µg m−3, 325 under 35–50 µg m−3 and only four under <35 µg m−3. Seven primary
schools were under <35 µg m−3, 147 under 35–50 µg m−3 and 111 under >50 µg m−3. Two middle
schools experienced PM2.5 of <5 µg m−3, 123 middle schools in 35–50 µg m−3 and 71 middle schools
in >50 µg m−3 (Table 4). These results indicated that at each of the aforementioned educational levels,
only 1.66% (14,055) of infants and juveniles lived in an environment that met China’s National Air
Quality Standard for Grade II. This number fell far below the national mean level [13,26,64]. In
addition, 41.97% (355,333) of infants and juveniles lived in a heavily polluted environment (PM2.5 > 50
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µg m−3) and 56.49% (478,257) of infants and juveniles lived in an intermediately polluted environment
(PM2.5 of 35–50 µg m−3) (Table 4). Although we only generated statistics for the number of infants
and juveniles, the families and schools near the residential areas experienced a similar atmospheric
environment. Although children’s disease attributed to PM2.5 exposure has not been well studied,
other studies have showed that China’s leading mortality causes (e.g., stroke, IHD, LC and COPD)
could be attributed to PM2.5 exposure to some extent [35,64]. Considering the legacy effects on human
health from long-term PM2.5 exposure, it is necessary to track the health status of infants and juveniles
from birth until they have entered into adulthood. By doing so, we might reduce the harms of PM2.5

on people.

Table 4. The number of Kindergarten, Primary School and the Middle Schools by the three classes of
annual PM2.5 concentration and the population density.

PM2.5 (µg m−3) Kindergarten Primary
School Middle School

<35 4 7 2
35–50 325 147 123
>50 294 111 71

Total School 623 265 196
Total population 239,459 389,260 217,959

Mean (Pop/School) 384 1469 1118

4. Conclusions

We used a combination of the dispersed monitoring ground data, land cover data and MODIS
remote-sensing AOT to model the distribution of PM2.5 concentrations and to analyze its effects on
residents, with a particular focus on infants and juveniles attending schools in Hangzhou in 2015. First,
the seasonal variation in PM2.5 concentration was winter > spring > autumn > summer. For the eight
main urban districts, the highest PM2.5 concentrations in spring, summer and autumn were located
in the Xiacheng district and the lowest value was located in the Yuhang district. However, in winter,
the highest value was found in the Gongshu district and the lowest value in the Yuhang district. In
addition, the lowest value for all four seasons appeared in the Yuhang district, where there is abundant
vegetation and a low population density. Secondly, for the different land cover types, we found that in
winter and spring, 59.86% and 56.62% of the land area was exposed to PM2.5 concentrations of >50 µg
m−3, while the built-up area occupied 20.65% in winter and 19.72% in spring. In autumn, 54.38% of
the land area was exposed PM2.5 35–50 µg m−3 and forest occupied the largest proportion (15.49%). In
the summer, the air particulate content was the lowest, with 70.01% of the land surface area exposed to
PM2.5 of <35 µg m−3 and the forests accounted for 23.39%. Finally, based on the spatial distribution of
different classes of PM2.5 concentrations, only 9.06% of the population lived in an environment that
met the national air quality standards. For infants and juveniles, only 1.66% (14,055) lived in areas
of PM2.5 of <35 µg m−3; 56.49% of infants and juveniles (478,257) lived in an intermediately polluted
environment (PM2.5 of 35–50 µg m−3) and 41.97% (355,333) lived in a heavily polluted environment
(PM2.5 > 50 µg m−3) in Hanzhou. We estimated site-specific annual PM2.5 concentrations. Most infants
and juveniles currently live in an atmospherically polluted environment not only in Hangzhou but
also in most cities in China. We believe that air quality modelling and cost-benefit analyses of emission
reduction scenarios and corresponding health benefits play key roles in meeting the site-specific annual
PM2.5 concentration goals. Actions must be taken and attention must be paid in order to safeguard the
future of the country.
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