Pollution Level and Health Risk Assessment of PM2.5-Bound Metals in Baoding City Before and After the Heating Period
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Sample Analysis
2.3. Pollution Assessment Methods
2.3.1. Enrichment Factor
2.3.2. Pollution Load Index
2.3.3. Human Health Risk Assessment Method
3. Results and Discussion
3.1. Concentrations of Heavy Metals
3.2. Pollution Evaluation
3.2.1. Analysis of Enrichment Factors
3.2.2. Analysis of Pollution Load Index
3.3. Health Risk Assessment
3.3.1. Non-Carcinogenic Risk
Non-Carcinogenic Risks through the Dermal Exposure Pathway
Non-Carcinogenic Risks through the Inhalation Exposure Pathway
Non-Carcinogenic Risks through the Ingestion Exposure Pathway
3.3.2. Carcinogenic Risk
Carcinogenic Risks through the Dermal Exposure Pathway
Carcinogenic Risks through the Inhalation Exposure Pathway
Carcinogenic Risks through the Ingestion Exposure Pathway
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Donkelaar, A.V.; Martin, R.V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.J. Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application. Environ. Health Perspect. 2010, 118, 847–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, J.J.; Wang, K.; Wang, Y.; Liu, S.H.; Zhu, C.Y.; Hao, J.M.; Liu, H.J.; Hua, S.B.; Tian, H.Z. Temporal-spatial characteristics and source apportionment of PM2.5 as well as its associated chemical species in the Beijing-Tianjin-Hebei region of China. Environ. Pollut. 2017, 233, 714–724. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.F.; Bi, X.H.; Zhang, J.Q.; Wu, J.H.; Feng, Y.C. Assessment of heavy metal pollution characteristics and human health risk of exposure to ambient PM2.5 in Tianjin, China. Particuology 2015, 20, 104–109. [Google Scholar] [CrossRef]
- Wang, Y.S.; Zhang, J.K.; Wang, L.L.; Hu, B.; Tang, G.Q.; Liu, Z.R.; Sun, Y.; Ji, D.S. Research on significance, current situation and prospect of haze pollution in Beijing-Tianjin-Hebei region. Adv. Earth Sci. 2014, 29, 388–396. [Google Scholar]
- Liu, J.; Yang, P.; Lv, W.S.; Liu, A. Comprehensive assessment grade of air pollutants based on human health risk and ANN method. Procedia Eng. 2014, 84, 715–720. [Google Scholar]
- Panyacosit, L. A Review of Particulate Matter and Health: Focus on Developing Countries; Working Papers; International Institute for Applied Systems Analysis: Laxenburg, Austria, 2000; pp. 11–40. [Google Scholar]
- Ramanathan, V.; Crutzen, P.J.; Lelieveld, J.; Mitra, A.P.; Althausen, D.; Anderson, J.; Andreae, M.O.; Cantrell, W.; Cass, G.R.; Chung, C.E.; et al. Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J. Geophys. Res.-Atmos. 2001, 106, 28371–28398. [Google Scholar] [CrossRef] [Green Version]
- Moosmüller, H.; Chakrabarty, R.K.; Arnott, W.P. Aerosol light absorption and its measurement: A review. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 844–878. [Google Scholar] [CrossRef]
- Yang, F.M.; Ma, Y.L.; He, K.B. A brief introduction to PM2.5 and related research. World Environ. 2000, 4, 33–35. [Google Scholar]
- Zhang, J.G.; Zhang, L.; Li, R.J.; Hu, D.; Ma, N.X.; Shuang, S.M.; Cai, Z.W.; Dong, C. Magnetic graphene composites as both an adsorbent for sample enrichment and a MALDI-TOF MS matrix for the detection of nitropolycyclic aromatic hydrocarbons in PM2.5. Analyst 2015, 140, 1711–1716. [Google Scholar] [CrossRef] [PubMed]
- Villarini, M.; Levorato, S.; Salvatori, T.; Ceretti, E.; Bonetta, S.; Carducci, A.; Grassi, T.; Vannini, S.; Donato, F.; Bonetta, S.; et al. Buccal micronucleus cytome assay in primary school children: A descriptive analysis of the MAPEC_LIFE multicenter cohort study. Int. J. Hyg. Environ. Health 2018, 221, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Song, S.J.; Wu, Y.; Jiang, J.K.; Yang, L.; Cheng, Y.; Hao, J.M. Chemical characteristics of size-resolved PM2.5 at a roadside environment in Beijing, China. Environ. Pollut. 2012, 161, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Molnár, P.; Gustafson, P.; Johannesson, S.; Boman, J.; Barregård, L.; Sällsten, G. Domestic wood burning and PM2.5, trace elements: Personal exposures, indoor and outdoor levels. Atmos. Environ. 2005, 39, 2643–2653. [Google Scholar] [CrossRef]
- Zhang, R.; Jing, J.; Tao, J.; Hsu, S.C.; Wang, G.; Cao, J.; Lee, C.S.L.; Zhu, L.; Chen, Z.; Zhao, Y.; et al. Chemical characterization and source apportionment of PM2.5 in Beijing: Seasonal perspective. Atmos. Chem. Phys. 2013, 13, 7053–7074. [Google Scholar] [CrossRef]
- Kara, M.; Dumanoglu, Y.; Altiok, H.; Elbir, T.; Odabasi, M.; Bayram, A. Seasonal and spatial variations of atmospheric trace elemental deposition in the Aliaga industrial region, Turkey. Atmos. Res. 2014, 149, 204–216. [Google Scholar] [CrossRef]
- Fang, G.C.; Zheng, Y.C. Diurnal ambient air particles, metallic elements dry deposition concentrations study during year of 2012–2013 at a traffic site. Atmos. Environ. 2014, 88, 39–46. [Google Scholar] [CrossRef]
- Gao, Y.; Nelson, E.D.; Field, M.P.; Ding, Q.; Li, H.; Sherrell, R.M.; Gigliotti, C.L.; Van-Ry, D.A.; Glenn, T.R.; Eisenreich, S.J. Characterization of atmospheric trace elements on PM2.5 particulate matter over the New York-New Jersey harbor estuary. Atmos. Environ. 2002, 36, 1077–1086. [Google Scholar] [CrossRef]
- Chiyoda, N.; Kobayashi, E.; Okubo, Y.; Suwazono, Y.; Kido, T.; Nogawa, K. Allowable level of lifetime cadmium intake calculated from the individuals in the Jinzu River basin of Japan. Biol. Trace Elem. Res. 2003, 96, 9–20. [Google Scholar] [CrossRef]
- Thompson, J.A. Balance between Intake and Output of Lead in Normal Individuals. Br. J. Ind. Med. 1971, 28, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Falk, H.L. Office of health hazard assessment: Summary statement. Environ. Health Perspect. 1977, 20, 188–189. [Google Scholar] [CrossRef] [PubMed]
- Cobbina, S.J.; Chen, Y.; Zhou, Z.X.; Wu, X.S.; Feng, W.W.; Wang, W.; Mao, G.H.; Xu, H.; Zhang, Z.; Wu, X.Y.; et al. Low concentration toxic metal mixture interactions: Effects on essential and non-essential metals in brain, liver, and kidneys of mice on sub-chronic exposure. Chemosphere 2015, 132, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.M.; Ouyang, H.; Wang, J.D.; Liu, J.S.; Zhang, X.L.; Wang, Y. Impact of lead pollution in environment on children’s health in Shenyang city. Environ. Sci. 2003, 24, 17–22. [Google Scholar]
- Xu, D.Y. Study on Heavy Metal Pollution and Human Health Risk in Farmland in Gold Mining Area. Master’s Thesis, Changan University, Xian, China, 2011; pp. 15–45. [Google Scholar]
- Du, Y.R.; Gao, B.; Zhou, H.D.; Ju, X.X.; Hao, H.; Yin, S.H. Health Risk Assessment of Heavy Metals in Road Dusts in Urban Parks of Beijing, China. Procedia Environ. Sci. 2013, 18, 299–309. [Google Scholar] [CrossRef]
- Qi, J.Y.; Zhang, H.L.; Fang, J.D.; Ren, M.Z.; Lin, B.K.; Wang, X.; Zhang, F.F. Characterization of airborne particulate metals in the surroundings of a municipal solid waste incinerator in the Nanshan Shenzhen and health risk assessment via inhalation exposure. China Environ. Sci. 2013, 33 (Suppl. 1), 113–118. [Google Scholar]
- Wang, T.J.; Zha, X.F.; Xiong, W.N.; Guo, X.H.; Lai, K.D.; Yang, G.Z. Primary study of health risk assessment of heavy metals in karst ground water in Gaoping area in Zunyi city, Guizhou province. Res. Environ. Sci. 2008, 21, 46–50. [Google Scholar]
- Bellinger, D.C. Teratogen update: Lead and pregnancy. Birth Defects Res. A 2005, 73, 409–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.F. Pollution Characteristics and Health Risk Assessment of Heavy Metals in PM2.5 on Campus. Master’s Thesis, Tianjin University of Technology, Tianjin, China, 2014; pp. 18–32. [Google Scholar]
- Amoatey, P.; Omidvarborna, H.; Baawain, M. The modeling and health risk assessment of PM2.5 from Tema Oil Refinery. Hum. Ecol. Risk Assess. 2018, 24, 1181–1196. [Google Scholar] [CrossRef]
- Yu, L.D.; Wang, G.F.; Zhang, R.J.; Zhang, L.M.; Song, Y.; Wu, B.B.; Li, X.F.; An, K.; Chu, J.H. Characterization and source apportionment of PM2.5 in an urban environment in Beijing. Aerosol Air Qual. Res. 2013, 13, 574–583. [Google Scholar] [CrossRef]
- Tao, J.; Zhang, R.J.; Duan, J.C.; Jing, J.C.; Zhu, L.H.; Chen, Z.M.; Zhao, Y.; Cao, J.J. Seasonal variation of carcinogenic heavy metals in PM2.5 and sources analysis in Beijng. Environ. Sci. 2014, 35, 411–417. [Google Scholar]
- Widziewicz, K.; Loska, K. Metal induced inhalation exposure in urban population: A probabilistic approach. Atmos. Environ. 2016, 128, 198–207. [Google Scholar] [CrossRef]
- Widziewicz, K.; Rogula-Kozłowska, W. Urban environment as a factor modulating metals deposition in the respiratory track and associated cancer risk. Atmos. Pollut. Res. 2018, 9, 399–410. [Google Scholar] [CrossRef]
- Hu, Z.M.; Wang, J.; Tao, Z.K.; Chen, Z.L. Pollution level and health risk assessment of heavy metals in PM2.5, Shanghai. Acta Sci. Circumstantiae 2013, 33, 3399–3406. [Google Scholar]
- Hu, X.; Zhang, Y.; Ding, Z.H.; Wang, T.J.; Lian, H.Z.; Sun, Y.Y.; Wu, J.C. Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmos. Environ. 2012, 57, 146–152. [Google Scholar] [CrossRef]
- Gao, Y.; Guo, X.Y.; Ji, H.B.; Li, C.; Ding, H.J.; Briki, M.; Tang, L.; Zhang, Y. Potential threat of heavy metals and PAHs in PM2.5 in different urban functional areas of Beijing. Atmos. Res. 2016, 178–179, 6–16. [Google Scholar] [CrossRef]
- Xiong, Q.L.; Zhao, W.J.; Wang, H.F.; Zhao, J.Y.; Wang, H.H.; Sun, C.Y.; Zhang, Q.Z. Pollution characteristics and sources analysis of metal elements in PM2.5 during spring in Beijing. Ecol. Environ. Sci. 2016, 25, 1181–1187. [Google Scholar]
- Loska, K.; Wiechula, D.; Korus, I. Metal contamination of farming soils affected by industry. Environ. Int. 2004, 30, 159–165. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Bao, Z.Y.; Tang, J.H. Application of enrichment factor in environmental geochemical heavy metal pollution assessment. Geol. Sci. Technol. Inf. 2006, 25, 65–72. [Google Scholar]
- CNEMC. Background Value of Soil Elements in China; CNEMC: Beijing, China, 1990. [Google Scholar]
- Sutherland, R.A. Bed Sediment-Associated Trace Metals in an Urban Stream, Oahu, Hawaii. Environ. Geol. 2000, 39, 611–627. [Google Scholar] [CrossRef]
- Cao, L.W.; Hu, S.Y.; Erwin, A.; Shi, S.L.; Yin, G. The spatio-temporal variation of magnetic properties of tree leaves in Linfen, China and its indication to the atmospheric pollution of heavy metals. Chin. J. Geophys. 2016, 59, 1729–1742. [Google Scholar]
- Lu, X.W.; Zhang, X.L.; Li, L.Y.; Chen, H. Assessment of metals pollution and health risk in dust from nursery schools in Xi’an, China. Environ. Res. 2014, 128, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Qiao, Q.Q.; Piper, J.D.A.; Huang, B.C. Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods. Environ. Pollut. 2011, 159, 3057–3570. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Hasnain, S.I.; Banerjee, D.K. Grain size and geochemical partitioning of heavy metals in sediments of the Damodar River—A tributary of the lower Ganga, India. Environ. Geol. 1999, 39, 90–98. [Google Scholar] [CrossRef]
- Wang, X.F.; He, S.L.; Chen, S.C.; Zhang, Y.L.; Wang, A.H.; Luo, J.B.; Ye, X.L.; Mo, Z.; Wu, L.Z.; Xu, P.W.; et al. Spatiotemporal characteristics and health risk assessment of heavy metals in PM2.5 in Zhejiang Province. Int. J. Environ. Res. Public Health 2018, 15, 583. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.Y.; Zhao, W.J.; Zhang, Q.Z.; Yu, X.; Zheng, X.X.; Zhao, J.Y.; Lv, M. Spatial distribution, sources apportionment and health risk of metals in topsoil in Beijing, China. Int. J. Environ. Res. Public Health 2016, 13, 727. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.Z.; Miao, J.; Zhao, M.; Tang, M.; Yeo, A.E.T.; Yu, H.; Zhang, J.; Xia, N.S. Role of heat-shock protein 90 in hepatitis E virus capsid trafficking. J. Gen. Virol. 2010, 91, 1728–1736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira-Baptista, L.; Miguel, E.D. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 2005, 39, 4501–4512. [Google Scholar] [CrossRef] [Green Version]
- EPA. The National Ambient Air Quality Standards for Particle Pollution; EPA: Washington, DC, USA, 2012.
- MEP. Chinese Population Exposure Parameter Manual; Chinese Environmental Science Press: Beijing, China, 2013. [Google Scholar]
- Ordóñez, A.; Yélamos, J.; Pedersen, S.; Miñano, A.; Conesa-Zamora, P.; Kristensen, S.R.; Stender, M.T.; Thorlacius-Ussing, O.; Martínez-Martínez, I.; Vicente, V.; et al. Increased levels of citrullinated antithrombin in plasma of patients with rheumatoid arthritis and colorectal adenocarcinoma determined by a newly develope. Thromb. Haemost. 2010, 103, 1143–1149. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.R.; Zhang, D.F.; Wang, L.; Liu, Z.Y. Hinokitiol induces bladder cancer J82 cells apoptosis via autophagy induction. China Oncol. 2015, 25, 365–370. [Google Scholar]
- IARC. Agents Classified by the IARC Monographs; vol. 1–102[R]; IARC: Lyon, France, 2011. [Google Scholar]
- Duan, X.L. The Research Method of Exposure Parameter and Its Application in Environmental Health Risk Assessment; Science Press: Beijing, China, 2012. [Google Scholar]
- OMS. Air Quality Guidelines for Europe 2000; OMS Regional Publications, European Series; WHO: Copenhagen, Denmark, 2000. [Google Scholar]
- Yao, Q.; Han, S.Q.; Cai, Z.Y. The pollution characteristics and potential ecological risk of heavy metals in PM2.5 during heating season in Tianjin. China Environ. Sci. 2013, 33, 1596–1600. [Google Scholar]
- Li, Y.P.; Liu, H.F.; Zhou, H.; Fan, Z.; Zhang, Z.; Zou, C. Contamination characteristics and health risk assessment of toxic heavy metals in PM2.5 in Chengdu. China Environ. Sci. 2015, 35, 2225–2232. [Google Scholar]
- Chen, J.M.; Tan, M.G.; Li, Y.L.; Zheng, J.; Zhang, Y.M.; Shan, Z.C.; Zhang, G.L.; Li, Y. Characteristics of trace elements and lead isotope ratios in PM2.5 from four sites in Shanghai. J. Hazard. Mater. 2008, 156, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.S.; Yu, R.L.; Hu, G.R.; Hu, Q.C. Pollution characteristics and health risk of heavy metals in PM2.5 of Xiamen city, China. Earth Environ. 2017, 3, 336–341. [Google Scholar]
- Yang, F.; Tan, J.; Zhao, Q.; Du, Z.; He, K.; Ma, Y.; Duan, F.; Chen, G.; Zhao, Q. Characteristics of PM2.5 speciation in representative megacities and across China. Atmos. Chem. Phys. 2011, 11, 5207–5219. [Google Scholar] [CrossRef]
Level | EF | Degree of Enrichment | Source |
---|---|---|---|
First | <1 | No enrichment | Crust and soil |
Second | 1~10 | Minimal enrichment | Natural factors and human factors |
Third | 10~100 | Moderate enrichment | Human factors |
Fourth | 100~1000 | Significant enrichment | Human factors |
Fifth | >1000 | Extremely high enrichment | Human factors |
Level | PLI | Pollution Level |
---|---|---|
First | =0 | Background concentration |
Second | 1~2 | Unpolluted |
Third | 2~3 | Mildly polluted |
Fourth | 3~4 | Moderately polluted |
Fifth | 4~5 | Highly polluted |
Sixth | >5 | Very highly polluted |
Parameter | Physical Significance | Value | Unit | ||
---|---|---|---|---|---|
Children | Adult Males | Adult Females | |||
SA | Exposed skin area | 2800 | 3300 | 3300 | cm2·d−1 |
AF | Skin adherence factor | 0.2 | 0.2 | 0.2 | mg·cm−2 |
ABS | Dimensionless dermal absorption factor | - | - | - | - |
EF | Exposure relative frequency | 365 | 365 | 365 | d·a−1 |
ED | Exposure duration | 18 | 30 | 30 | a |
CF | Conversion coefficient | 10−6 | 10−6 | 10−6 | kg·mg−1 |
IRi | Inhalation rate | 8.7 | 15.2 | 11.3 | m3·d−1 |
BW | Average body rate | 44 | 62.7 | 54.4 | kg |
IngR | Ingestion rate | 250 | 150 | 150 | mg·kg−1 |
AT | Averaging time (non-carcinogens) | 2190 | 10,950 | 10,950 | d |
Averaging time (carcinogens) | 25,550 | 25,550 | 25,550 | d |
Element | RfD via Dermal Exposure | RfD via Inhalation Exposure | RfD via Ingestion Exposure |
---|---|---|---|
Cr | 6.00 × 10−5 | 2.86 × 10−5 | 3.00 × 10−3 |
Pb | 5.25 × 10−4 | 3.52 × 10−3 | 3.50 × 10−3 |
Ni | 5.40 × 10−3 | 2.06 × 10−2 | 2.00 × 10−2 |
Cd | 1.00 × 10−5 | 1.00 × 10−3 | 1.00 × 10−3 |
Cu | 1.20 × 10−2 | 4.02 × 10−2 | 4.00 × 10−2 |
Zn | 6.00 × 10−2 | 3.00 × 10−1 | 3.00 × 10−1 |
Element | SF via Dermal Exposure | SF via Inhalation Exposure | SF via Ingestion Exposure |
---|---|---|---|
Cr | 2.00 × 10 | 4.20 × 10 | 5.00 × 10−1 |
Ni | 4.25 × 10 | 8.40 × 10−1 | 8.40 × 10−1 |
Cd | — | 6.40 | — |
Cities | Cr | Pb | Ni | Cd | Cu | Zn |
---|---|---|---|---|---|---|
Baoding (overall period) | 49.59 ± 17.14 | 564.09 ± 411.39 | 12.21 ± 5.94 | 19.52 ± 11.23 | 186.18 ± 170.32 | 489.67 ± 297.21 |
Baoding (non-heating period) | 45.04 ± 15.35 | 402.11 ± 341.38 | 11.93 ± 3.31 | 18.83 ± 13.16 | 165.41 ± 150.47 | 441.23 ± 236.12 |
Baoding (heating period) | 54.98 ± 17.86 | 756.07 ± 409.90 | 12.54 ± 5.57 | 20.34 ± 8.57 | 210.80 ± 191.19 | 547.08 ± 352.52 |
Beijing | 11.30 ± 9.40 | 142.50 ± 98.90 | 4.0 ± 2.40 | 2.60 ± 2.40 | — | — |
Tianjin | 23.0 ± 8.35 | 101.0 ± 46.71 | — | 1.0 ± 0..69 | 68.0 ± 49.72 | 1144.0 ± 685.69 |
Chengdu | 17.9 ± 10.5 | 320.50 ± 186.0 | 5.1 ± 4.10 | 5.90 ± 10.70 | — | — |
Shanghai | 19.0 ± 17.0 | 75.0 ± 74.0 | 6.0 ± 4.0 | 1.70 ± 1.60 | 33.0 ± 20.0 | 344.0 ± 274.0 |
Guangzhou | 70.0 ± 20.0 | 450.0 ± 210.0 | — | 20.0 ± 10.0 | 190.0 ± 80.0 | 1360.0 ± 500.0 |
Chongqing | 190.0 ± 100.0 | 320.0 ± 120.0 | 30.0 ± 30.0 | 70.0 ± 40.0 | 60.0 ± 20.0 | 600.0 ± 280.0 |
Xiamen | 22.0 ± 9.0 | 58.1 ± 29.0 | 1.90 ± 0.90 | 1.80 ± 0.50 | 48.5 ± 21.40 | 138.70 ± 43.30 |
Elements | Non-Heating Period | Heating Period | ||||
---|---|---|---|---|---|---|
Children | Adult Males | Adult Females | Children | Adult Males | Adult Females | |
Cr | 5.73 × 10−3 | 1.58 × 10−3 | 1.82 × 10−3 | 7.00 × 10−3 | 1.93 × 10−3 | 2.22 × 10−3 |
Pb | 1.10 × 10−1 | 3.02 × 10−2 | 3.48 × 10−2 | 2.06 × 10−1 | 5.68 × 10−2 | 6.55 × 10−2 |
Ni | 8.43 × 10−4 | 2.33 × 10−4 | 2.68 × 10−4 | 8.86 × 10−4 | 2.44 × 10−4 | 2.82 × 10−4 |
Cd | 2.87 × 10−2 | 7.91 × 10−3 | 9.12 × 10−3 | 3.10 × 10−2 | 8.54 × 10−3 | 9.85 × 10−3 |
Cu | 5.26 × 10−3 | 1.45 × 10−3 | 1.67 × 10−3 | 6.71 × 10−3 | 1.85 × 10−3 | 2.13 × 10−3 |
Zn | 2.81 × 10−3 | 7.74 × 10−4 | 8.92 × 10−4 | 3.48 × 10−3 | 9.60 × 10−4 | 1.11 × 10−3 |
Sum | 1.53 × 10−1 | 4.22 × 10−2 | 4.86 × 10−2 | 2.55 × 10−1 | 7.04 × 10−2 | 8.11 × 10−2 |
Elements | Non-Heating Period | Heating Period | ||||
---|---|---|---|---|---|---|
Children | Adult Males | Ault Females | Children | Adult Males | Ault Females | |
Cr | 2.56 × 10−1 | 4.14 × 10−2 | 3.59 × 10−2 | 3.12 × 10−1 | 5.05 × 10−2 | 4.38 × 10−2 |
Pb | 1.96 | 3.17 × 10−1 | 2.75 × 10−1 | 3.68 | 5.96 × 10−1 | 5.17 × 10−1 |
Ni | 1.02 × 10−2 | 1.64 × 10−3 | 1.43 × 10−3 | 1.07 × 10−2 | 1.73 × 10−3 | 1.50 × 10−3 |
Cd | 3.21 × 10−1 | 5.19 × 10−2 | 4.51 × 10−2 | 3.47 × 10−1 | 5.61 × 10−2 | 4.87 × 10−2 |
Cu | 7.05 × 10−2 | 1.14 × 10−2 | 9.89 × 10−3 | 8.98 × 10−2 | 1.45 × 10−2 | 1.26 × 10−2 |
Zn | 2.51 × 10−2 | 4.06 × 10−3 | 3.52 × 10−3 | 3.11 × 10−2 | 5.03 × 10−3 | 4.36 × 10−3 |
Sum | 2.64 | 4.27 × 10−1 | 3.71 × 10−1 | 4.47 | 7.24 × 10−1 | 6.28 × 10−1 |
Elements | Non-Heating Period | Heating Period | ||||
---|---|---|---|---|---|---|
Children | Adult Males | Ault Females | Children | Adult Males | Ault Females | |
Cr | 9.34 × 10−1 | 2.27 × 10−1 | 2.52 × 10−1 | 1.13 | 3.95 × 10−1 | 4.62 × 10−1 |
Pb | 6.82 × 10−2 | 2.39 × 10−2 | 2.79 × 10−2 | 1.23 × 10−1 | 4.32 × 10−2 | 5.04 × 10−2 |
Ni | 3.43 × 10−4 | 1.20 × 10−4 | 1.40 × 10−4 | 3.63 × 10−4 | 1.27 × 10−4 | 1.48 × 10−4 |
Cd | 1.96 × 10−1 | 6.85 × 10−2 | 8.00 × 10−2 | 2.12 × 10−1 | 7.43 × 10−2 | 8.67 × 10−2 |
Cu | 2.45 × 10−3 | 8.59 × 10−4 | 1.00 × 10−3 | 3.10 × 10−3 | 1.08 × 10−3 | 1.27 × 10−3 |
Zn | 8.72 × 10−4 | 3.06 × 10−4 | 3.57 × 10−4 | 1.01 × 10−3 | 3.55 × 10−4 | 4.15 × 10−4 |
Sum | 1.20 | 3.21 × 10−1 | 3.61 × 10−1 | 1.47 | 5.14 × 10−1 | 6.00 × 10−1 |
Elements | Non-Heating Period | Heating Period | ||||
---|---|---|---|---|---|---|
Children | Adult Males | Ault Females | Children | Adult Males | Ault Females | |
Cr (VI) | 1.66 × 10−5 | 2.29 × 10−5 | 2.64 × 10−5 | 1.74 × 10−5 | 2.40 × 10−5 | 2.77 × 10−5 |
Ni | 7.37 × 10−7 | 1.02 × 10−6 | 1.17 × 10−6 | 9.00 × 10−7 | 1.24 × 10−6 | 1.43 × 10−6 |
Sum | 1.73 × 10−5 | 2.39 × 10−5 | 2.75 × 10−5 | 1.83 × 10−5 | 2.53 × 10−5 | 2.91 × 10−5 |
Elements | Non-Heating Period | Heating Period | ||||
---|---|---|---|---|---|---|
Children | Adult Males | Ault Females | Children | Adult Males | Ault Females | |
Cr (VI) | 1.97 × 10−4 | 1.68 × 10−4 | 9.62 × 10−5 | 2.38 × 10−4 | 2.04 × 10−4 | 1.16 × 10−4 |
Ni | 1.05 × 10−6 | 8.94 × 10−7 | 5.27 × 10−7 | 1.10 × 10−6 | 9.43 × 10−7 | 5.40 × 10−7 |
Cd | 1.25 × 10−5 | 1.07 × 10−5 | 6.13 × 10−6 | 1.36 × 10−5 | 1.16 × 10−5 | 6.64 × 10−6 |
Sum | 2.10 × 10−4 | 1.80 × 10−4 | 1.03 × 10−4 | 2.52 × 10−4 | 2.16 × 10−4 | 1.23 × 10−4 |
Elements | Non-Heating Period | Heating Period | ||||
---|---|---|---|---|---|---|
Children | Adult Males | Ault Females | Children | Adult Males | Ault Females | |
Cr (VI) | 2.66 × 10−5 | 2.31 × 10−5 | 3.29 × 10−5 | 3.25 × 10−5 | 2.82 × 10−5 | 4.02 × 10−5 |
Ni | 1.18 × 10−5 | 1.03 × 10−5 | 1.46 × 10−5 | 1.24 × 10−5 | 1.08 × 10−5 | 1.54 × 10−5 |
Sum | 3.85 × 10−5 | 3.34 × 10−5 | 4.75 × 10−5 | 4.49 × 10−5 | 3.89 × 10−5 | 5.56 × 10−5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Li, S.; Sun, C.; Qi, M.; Yu, X.; Zhao, W.; Li, X. Pollution Level and Health Risk Assessment of PM2.5-Bound Metals in Baoding City Before and After the Heating Period. Int. J. Environ. Res. Public Health 2018, 15, 2286. https://doi.org/10.3390/ijerph15102286
Liu Y, Li S, Sun C, Qi M, Yu X, Zhao W, Li X. Pollution Level and Health Risk Assessment of PM2.5-Bound Metals in Baoding City Before and After the Heating Period. International Journal of Environmental Research and Public Health. 2018; 15(10):2286. https://doi.org/10.3390/ijerph15102286
Chicago/Turabian StyleLiu, Yixuan, Shanshan Li, Chunyuan Sun, Mengxi Qi, Xue Yu, Wenji Zhao, and Xiaoxiu Li. 2018. "Pollution Level and Health Risk Assessment of PM2.5-Bound Metals in Baoding City Before and After the Heating Period" International Journal of Environmental Research and Public Health 15, no. 10: 2286. https://doi.org/10.3390/ijerph15102286
APA StyleLiu, Y., Li, S., Sun, C., Qi, M., Yu, X., Zhao, W., & Li, X. (2018). Pollution Level and Health Risk Assessment of PM2.5-Bound Metals in Baoding City Before and After the Heating Period. International Journal of Environmental Research and Public Health, 15(10), 2286. https://doi.org/10.3390/ijerph15102286