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Abstract: How to improve the industrial total-factor carbon emission performance (TCPI),
or total-factor carbon productivity, through industrial structural adjustment, is crucial to China’s
energy conservation and emission reduction and sustainable growth. In this paper, we use a dynamic
spatial panel model to empirically analyze the effect of industrial structural adjustment on TCPI
of 30 provinces in China from 2000 to 2015. The results show that most of the provinces with
high TCPI are located in the eastern coastal areas, while the provinces with relatively low TCPI
are to be found in the central and western regions. The spatial auto-correlation tests show that
there are significant global spatial auto-correlation and local spatial agglomeration characteristics
in TCPI. The regression results of the dynamic spatial panel models show that at the national level,
the structure of industrialization, the industrial structure of heavy industrialization, the coal-based
energy consumption structure and the endowment structure have significant negative effects on the
improvement of TCPI. The expansion of industrial enterprise scale, on the other hand, is conducive to
an improvement in TCPI while the effects of foreign direct investment (FDI) structure and ownership
structure on TCPI are not significant. At the regional level, there are certain differences in the effects
of different types of industrial structural adjustment on TCPI.

Keywords: structural adjustment; carbon emission performance; meta-frontier; dynamic spatial panel

1. Introduction

Since the reform and opening up, China’s economy has achieved rapid development, but it is
accompanied by increasing environmental pollution. In 2012, China’s carbon emissions accounted for
as much as 28.8% of the world’s total [1], and international calls for China to take mandatory carbon
emission reduction measures have today become ever louder. As the largest carbon emitter in the
world, China is actively participating in the framework of international climate cooperation and taking
various measures to reduce carbon emissions. At the 2009 World Climate Conference, the Chinese
government announced that the carbon emissions per unit of gross domestic product (GDP) would be
reduced by 40–45% by 2020 relative to 2005 levels. The 13th Five-Year plan also explicitly put forward
two binding targets that the energy consumption per unit of GDP, and the carbon emissions per unit
of GDP would be reduced by 15% and 18% respectively by 2020 relative to 2015 levels.

However, China’s economic development level and social welfare level are relatively low, and the
goal of pursing economic growth cannot be changed in a short time. Therefore, China has been
adopting a relative carbon reduction strategy to reduce carbon emissions, that is, continuously

Int. J. Environ. Res. Public Health 2018, 15, 2291; doi:10.3390/ijerph15102291 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
https://orcid.org/0000-0003-1271-6930
https://orcid.org/0000-0003-1274-5889
http://www.mdpi.com/1660-4601/15/10/2291?type=check_update&version=1
http://dx.doi.org/10.3390/ijerph15102291
http://www.mdpi.com/journal/ijerph


Int. J. Environ. Res. Public Health 2018, 15, 2291 2 of 20

improving carbon emission performance. China has been undergoing a rapid industrialization and is
in middle stage of industrialization recently. At this stage, industrial development presents typical
characteristics of high energy consumptions and high pollutant emissions. Although the secondary
industry contributed 40.1% to China’s GDP between 2000 and 2015, its energy consumption and
carbon emissions accounted for appropriately 67.9% and 84.2% of the national total, respectively [2].
How to improve industrial carbon emission performance is thus crucial to China’s economic growth,
energy conservation, and emission reduction.

At present, both governments and academia have proposed improving carbon emission
performance by adjusting economic structure and accelerating technical progress. Through structural
reform, China is trying to promote both a greener industrial landscape and more sustainable
development. We cannot help asking whether these structural adjustments can really improve
industrial carbon emission performance. What structural adjustment plays a major role in improving
industrial carbon emission performance? By looking at this question, we can better know how
industrial structure can be adjusted to enhance green and sustainable development.

2. Literature Review

The theory of Chenery’s industrialization stages predicts that changes in industrial structure can
have important effects on economic growth [3]. This is mainly because there are significant differences
in productivity levels and growth rates between various industrial sectors—therefore, when an energy
factor is transferred from sectors with low productivity or low productivity growth rates to sectors
with high productivity or high productivity growth rates, this will promote an improvement in
total industrial productivity. The balance of the total productivity growth rate above the weighted
sum of each sector’s productivity growth rate is the contribution of industrial structural change
to productivity growth [4]. With the increase in environmental problems, scholars have begun to
introduce environmental factors into their ‘Structural Bonus’ research, and analyze the effects of
structural changes on economic growth under environmental constraints.

Grossman and Krueger [5] (1995) put forward the theory of three effects of international trade on
environment, namely, scale effect, structural effect and technical effect. It is widely adopted to study
the effect of structural adjustment on environment. This theory holds that scale effect, structural effect
and technical effect brought by economic growth together determine the effect of economic growth on
environmental pollution. In the early stage of economic growth, scale effect is greater than structural
effect and technical effect, and scale effect is dominant, thus aggravating environmental pollution.
With the improvement of economic development level, structural effect and technical effect caused
by economic growth are gradually greater than scale effect, and structural and technical effects
are dominant, thus alleviating environmental pollution [6]. It shows that there is an inverted “U”
relationship between economic growth and environmental pollution, verifying the environmental
Kuznets curve (EKC) to some extent [7].

The vast majority of the literature uses carbon intensity to measure carbon emission performance
and analyzes the effects of structural changes on that performance. The research methods used in the
literature can be roughly divided into two categories: Factor decomposition methods and econometric
analysis methods. Most early studies would decompose carbon intensity into several key factors using
factor decomposition methods, including factors such as economic development, industrial structure
and technological levels, and then analyze the relative effects of these factors on changes in carbon
intensity. Because the factor decomposition method is both clear and concise, its calculation simple,
and its decompositions easily observed, controlled and interpreted, it has been widely used by scholars.
The Log-Mean Divisia Index (LMDI) [8–10], Structural Decomposition Analysis (SDA) [11–13] and
optimization model [14,15] are often used to analyze the relationship between industrial structural
adjustment and energy conservation, emission reduction and sustainable growth. There are, however,
significant differences in the conclusions.
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Most scholars believe that structural change is conducive to reducing carbon intensity. Fan et al. [16]
(2007) used the LMDI method to decompose China’s carbon intensity from 1980 to 2003; their results
showed that the main reason for the decrease in carbon intensity was the decrease in industrial energy
consumption intensity. Zhang [17] (2009) applied the SDA method to analyze how industrial changes
impacted carbon intensity in China; the results showed that changes in industrial structure, changes in
aggregated sector structure within industries and within the manufacturing sector mix in the final
demand, and changes in input mix can each decrease carbon intensity. Yi et al. [18] (2016) used the index
decomposition method to analyze the driving factors in decreasing China’s carbon intensity from 2005
to 2020; the results showed that decreases in the proportion of secondary industry were conducive to
reducing carbon intensity. Zhang et al. [9] (2016) used the LMDI method to analyze the driving factors
of China’s carbon intensity from 1995 to 2012; the results showed that reduction in the proportion of
industrial energy consumption was the main driving force for the reduction of carbon intensity.

Some scholars believe that the effect of structural change on carbon intensity is not significant.
Liu et al. [8] (2015) used the LMDI method to decompose China’s industrial carbon intensity from
1996 to 2012; the results indicated that the reduction of energy intensity was the main contributor
to the decrease of carbon intensity, while the effect of structural change on carbon intensity was not
significant. Wang et al. [19] (2017) used the SDA method to analyze the driving factors that go into
reducing global carbon intensity; the results showed that an improvement in energy efficiency was the
main driving force for the decrease of carbon intensity, while the effect of structural change on carbon
intensity was not significant.

Some scholars have even found that structural change has increased carbon intensity. Tan et al. [20]
(2011) used the LMDI method to decompose China’s carbon intensity from 1998 to 2008; their results
showed that structural change was not conducive to reducing carbon intensity. Gonzalez and
Martinez [21] (2012) used the LMDI method to decompose Mexico’s carbon intensity from 1965
to 2010; their results showed that structural change increased carbon intensity to a certain extent.

Although the factor decomposition method is both relatively simple and clear and is able to
calculate the contribution of related factors based on decomposition identity, it does have some
deficiencies. Firstly, the factor decomposition method can only explain the pollutant flow change,
and cannot explain the stock change, so this method is more applicable to explain situations where
there is small pollutant stock and large pollutant flow change; the capacity to explain China’s
situation with a lager pollutant stock and small pollutant flow change is relatively weak. Secondly,
identity transformation may push many factors beyond consideration, so it is impossible to analyze
the effects of these factors on pollutant reduction; this precludes an in-depth study into all the driving
factors and mechanisms of pollutant reduction. Thirdly, not only are the economic and statistical
meanings in factor decomposition methods relatively weak, but the decomposition process also
often has a certain subjectivity, which may lead to fuzzy or irrational research conclusions. Fourthly,
both how the decomposition method data is defined and how the data is partitioned greatly influence
the results of carbon emission intensity factor decomposition [22].

Considering the shortcomings and deficiencies of the factor decomposition method, many scholars
in later studies have turned to using econometric models to analyze the effect of structural
changes on carbon intensity. Compared to factor decomposition methods, econometric analysis
is relatively flexible and considers more influencing factors. It can also effectively use statistical
and econometric methods to perform the theoretical tests, and thus has a strong theoretical basis
in economics and statistics. Econometric analysis models include both cross section models and
panel models. Because panel models can increase sample size, reduce collinearity between variables,
control individual heterogeneity of samples, as well as improve reliability and validity of estimates,
they have been popularly used in the area of carbon emissions [23,24].

In 2014, Zheng et al. [25] (2014) adopted a dynamic spatial panel to identify the determinants of
provincial carbon intensity in China; the results showed that carbon intensity was positively associated
with secondary-sector share. That same year, Yang et al. [26] (2014) used panel-corrected standard error
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estimates to analyze the effect of different factors on industrial carbon intensity in China; their results
showed that industrial carbon intensity was positively associated with the six most energy intensive
sectors in terms of total industrial output value. Zhao et al. [27] (2014) used spatial panel data models
to analyze the drivers of carbon intensity in China; the results showed carbon intensity was positively
affected by the structure of energy consumption. Hao et al. (2015) used the generalized moment method
(GMM) estimators to test the convergence of carbon intensity in China; the results showed that the
value added to GDP by secondary industry was not conducive to the convergence of carbon intensity.
Wang et al. [28] (2016) used a regression analysis to study the key factors influencing carbon intensity in
China; their results showed that the proportion of secondary industry was beneficial to a reduction in
carbon intensity. Long et al. [29] (2016) used spatial panel data models to examine the factors influencing
industrial carbon productivity; their results showed that industrial scale structure exerted a positive
effect on industrial carbon productivity, but industrial energy consumption structure had a significantly
negative effect on industrial carbon productivity. Cheng et al. [30] (2018) used dynamic spatial panel
models to analyze the effects of industrial structure on carbon intensity in China; their results showed
that the upgrading and optimization of industrial structure were conducive to reducing carbon intensity.

The above studies have provided us with a number of results, but there are still some areas for
further study. The above literature mainly analyzes the carbon reduction effect from a single-factor
perspective, but the main problem with single-factor carbon emission performance is that it only
considers output; it ignores the effects of input factors such as capital, labor, energy etc., and their
mutual substitution on carbon emission performance [31,32]. In fact, carbon emission performance is the
result of the combination of capital, labor and energy, and shows a clear total-factor characteristic. It is
thus more appropriate to adopt the total-factor carbon emission performance index. There are, however,
significant differences in the definition of structural change in the various studies. Most studies have
performed their analyses from either the perspective of the three major structures of industry or on
energy consumption. Because previous studies have focused more on all industries, so the pertinence
of the conclusions in these studies is not strong. A few studies have focused on secondary industry [29],
but the elaboration of industrial structure is limited to light and heavy industrial structure. Factors as
industrial scale structure, endowment structure, ownership structure etc., are often ignored.

In view of the foregoing, this paper makes the following contributions: First, we measure the
total-factor carbon emission performance using non-radial directional distance function (NDDF)
and meta-frontier method. Compared to previous measurement methods, this method fully
considers the technology heterogeneity, making the results more accurate and reliable. Second,
we focus on secondary industry, and subdivide industrial structure into light and heavy structure,
scale structure, endowment structure, ownership structure, energy consumption structure and FDI
structure. Compared to previous studies, the structural variables we consider are more comprehensive,
and the results also show that different structural variables have different effects on TCPI. Third,
we use a dynamic spatial panel model that incorporates the spatial and dynamic effects of TCPI to
empirically analyze the effects of these different types of structural changes on TCPI and their regional
differences. The results show that TCPI presents obvious spatial and dynamic effects, and ignoring
these effects may lead to errors in estimation and analysis.

3. Materials and Methods

3.1. Dynamic Spatial Panel Model

In this part we establish a dynamic spatial panel model to analyze the effects of structural changes
on TCPI. Previous studies have shown that industrial structure and technological level are important
factors affecting TCPI, because the TCPI is essentially a total-factor productivity (TFP) [4,29]. In China,
a country with strong government intervention, environmental policy factors will inevitably have an
important impact on TCPI [30,33]. We thus construct the following basic econometric model of the
factors affecting TCPI as Equation (1):
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lnTCPIit = α + δlnStrit + ϕlnTechit + φlnEnvit + εit (1)

In Equation (1), Str denotes industrial structure, Tech denotes technological level, Env denotes
environmental policy and ε denotes random error term. Model (1) is an ordinary static panel model,
which does not consider the spatial relationship between regional economic development or the
dependence of regional economic development on previous accumulation. In fact, with the rapid
development of transport infrastructure and network communication technology, there is a strong
spatial relationship between provinces in economic development terms, and CO2 can flow freely across
the region, indicating that there is a spatial effect between regions in the TCPI. At the same time,
there is significant path dependence in regional economic development. The previous accumulation is
necessarily manifested by technological level, industrial structure, human capital, infrastructure etc.,
which can affect economic activities in both the current period and subsequent periods, indicating that
there is a spatial effect in the TCPI. We, thus, incorporate the spatial and dynamic effects of the TCPI to
construct the following dynamic spatial panel model as Equation (2).

ln TCPIit = τ ln TCPIi(t−1) + ρ ∑N
j=1 Wij ln TCPIjt + α + δ ln Strit

+φ ln Techit + ϕ ln Envit + ηi + νt + εit
εit = λ ∑N

j=1 Wijε jt + µit

(2)

In Equation (2), τ denotes the regression coefficient of first-order lag of TCPI and reflects the
dynamic effect. ρ and λ respectively denote the regression coefficients of spatial lag and spatial error,
and reflect the spatial effects. Wij denotes the geographic distance spatial weight matrix. ηi, υt and εit
denote different dimensions of random interference influencing TCPI, respectively.

3.2. Variable Description and Data Sources

Depending on the availability and validity of data, we selected statistical data from 30 provinces
in mainland China from 2000 to 2015, because during these periods, China has experienced three
Five-Year plan periods: The 10th Five-Year, the 11th Five-Year, and the 12th Five-Year. Tibet was not
included in the analysis due to lack of data. The data are derived from China Industry Economy
Statistical Yearbook (2001–2016), China Energy Statistical Yearbook (2001–2016), China Statistical
Yearbook (2001–2016).

3.2.1. Explained Variable: Industrial Total-Factor Carbon Emission Performance (TCPI)

We use the non-radial directional distance function (NDDF) and meta-frontier methods proposed
by Oh [34] (2010) and Oh and Lee [35] (2010) to measure the TCPI, and then decompose the TCPI into
three components: Technological efficiency change index (EC), best practice gap change index (BPC)
and technological gap change index (TGC). More detailed measurement and decomposition process
can be referred to [2,36–39].

The key to the measure of TCPI is the selection of input and output variables, and the following
is a specific description of each of the input and output variables. (1) Input variables: With respect
to the input index, we use three variables—capital, labor and energy. Capital is represented by the
amount of capital stock, which can be calculated by the perpetual inventory method [40]. We use the
average number of industrial workers and energy consumption (converted to 10,000 tons of standard
coal) to measure labor and energy, respectively. (2) Desirable output variable: Desirable output is
derived from the main business income of industrial enterprises above designated size deflated by
GDP price indices in 2000. (3) Undesirable output variable (C): We calculate carbon emissions using
the calculation method provided by IPCC and the specific calculation process can be seen from [30].
The data of capital, labor and desirable output are derived from China Industry Economy Statistical
Yearbook and China Statistical Yearbook, and the data of energy and undesirable output are derived
from China Energy Statistical Yearbook.
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3.2.2. Core Explanatory Variables: Industrial Structure (Str)

In order to further analyze the effects of industrial structure changes on TCPI, we subdivide
industrial structure as follows:

(1) The industry and service structure (IS). As we all know, the second industry is the major
industry in China’s energy consumption and carbon emissions, and the rapid development of the
second industry can also inhibit the development of the third industry. Thus, an increase in the IS
is not conducive to an improvement in TCPI. In the paper, we use the proportion of main business
income of Second industry to main business income of third industry to measure IS. These data are
derived from China Statistical Yearbook.

(2) Industrial light and heavy structure (LH). In general, according to the characteristics of heavy
industry, heavy industrialization is often accompanied by high energy consumption and high pollutant
emissions, which is not conducive to an improvement in TCPI. In the paper, we use the proportion of main
business income of heavy industrial enterprises to main business income of industrial enterprises above a
designated size to measure LH. These data are derived from China Industry Economy Statistical Yearbook.

(3) Industrial scale structure (SC). Generally speaking, large and medium-sized industrial
enterprises have strong technological innovation and management capabilities, and more easily
obtain increasing returns to scale; this is conducive to an improvement in TCPI. We use the proportion
of main business income of large and medium-sized industrial enterprises to main business income
of industrial enterprises above a designated size to measure SC. These data are derived from China
Industry Economy Statistical Yearbook.

(4) Industrial ownership structure (OW). At the micro level, there are significant differences in
production efficiency, resource allocation and utilization, management mechanisms etc. between
industrial enterprises with different ownership structures. This will inevitably have an important
impact on TCPI. We use the proportion of main business income of state-owned and state-controlled
industrial enterprises to main business income of industrial enterprises above a designated size to
measure OW. These data are derived from China Industry Economy Statistical Yearbook.

(5) Industrial endowment structure (EN). When looking at the totality of factors, because there
is a certain mutual substitution or complementary relationship between capital, labor and energy,
endowment structure can affect carbon emissions. It does this by influencing the changes in total
energy consumption, thereby affecting the TCPI. We use the ratio of industrial capital to labor to
measure EN. If the value is low, it indicates that the regional industrial type tends to be labor-intensive;
otherwise it tends to be capital-intensive. Since the increase in the ratio of capital to labor means
capital deepening, we can use this variable to further analyze the effect of capital deepening on TCPI.
These data are derived from China Industry Economy Statistical Yearbook.

(6) Industrial energy consumption structure (ECS). Because there are big differences in thermal
efficiencies between coal and oil and natural gas, and because the amount of carbon and pollution
resulting from coal consumption is higher than for the other energies, a coal-dominated energy
consumption structure is not conducive to an improvement in TCPI. We use the percentage of industrial
coal consumption (converted to standard coal) to total industrial energy consumption to measure ECS.
These data are derived from China Energy Statistical Yearbook.

(7) Industrial FDI structure (FDI). Foreign direct investment on industry has two effects. On the
one hand, FDI can bring advanced technology and management, thereby improving the technological
and quality levels of domestic enterprises through spillovers of knowledge and technology. On the
other hand, strict environmental regulation policies in foreign countries may encourage the transfer
of enterprises with high energy consumption and high pollutant emissions to China, which is
not conducive to China’s low-carbon development. We use the proportion of main business
income of foreign invested industrial enterprises to main business income of industrial enterprises
above a designated size to measure FDI. These data are derived from China Industry Economy
Statistical Yearbook.
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3.2.3. Control Variables

(1) Technological level (Tech). Scientific and technological innovation and technical progress are
the fundamental driving forces for industrial green development. They can help industrial enterprises
improve factor utilization and promote the intensive, rational and effective utilization of resources.
Because technological level is most closely related to research and development (R&D), we use the
internal R&D expenditure of industrial enterprises above a designated size to measure Tech. These data
are derived from China Statistical Yearbook.

(2) Environmental policy (Env). Environmental regulation policy can exert an important influence
on TCPI through the innovation compensation and compliance cost effects. We use the proportion of
completed investment of industrial pollution control projects to main business income of industrial
enterprises above a designated size to measure Env. These data are derived from China Statistical
Yearbook and China Energy Statistical Yearbook. Table 1 lists the descriptive statistics of input and
output variables for the whole of China and its three regions, and Table 2 lists the descriptive statistics
of the panel data.

Table 1. Descriptive statistics of input and output variables in China’s industrial sector.

Variable Region Mean Std. Dev. Min Max

Capital
(Unit: 100 million Yuan)

Whole China 15,519.26 17,826.92 394.84 107,061.70
Eastern China 25,544.24 23,773.77 394.84 107,061.70
Central China 12,402.87 10,284.41 1835.97 55,710.97
Western China 7760.75 7693.80 511.12 40,401.38

Labor
(Unit: Ten thousand)

Whole China 263.24 288.06 9.62 1568.00
Eastern China 452.44 384.17 9.62 1568.00
Central China 226.40 118.64 95.72 717.31
Western China 100.83 76.13 13.48 397.81

Energy
(Unit: Ten thousand tons

of standard coal)

Whole China 3085.38 2444.94 119.94 13,237.40
Eastern China 3797.53 3331.51 119.94 13,237.40
Central China 3416.13 1689.31 782.44 7875.37
Western China 2132.68 1299.62 201.43 5946.91

Desirable output
(Unit: 100 million Yuan)

Whole China 17,368.34 24,773.01 174.75 147,074.50
Eastern China 30,892.18 34,044.71 174.75 147,074.50
Central China 14,075.54 14,367.16 896.87 73,365.96
Western China 6239.27 7283.45 195.74 38,645.91

Undesirable output
(Unit: Ten thousand tons)

Whole China 8382.44 6970.77 242.36 38,938.67
Eastern China 10,412.24 9593.46 242.36 38,938.67
Central China 9424.87 4791.35 2197.16 21,735.77
Western China 5594.50 3398.83 493.55 14,494.58

Table 2. Descriptive statistics of panel data.

Variable Obs Mean Std. Dev. Min Max

TCPI 450 1.139 0.300 0.503 2.191
IS 450 1.204 1.739 0.137 3.584

LH 450 74.479 10.701 42.376 95.684
SC 450 68.898 9.684 35.526 88.029

OW 450 45.501 20.696 10.069 90.142
EN 450 72.391 51.715 16.779 349.599
ECS 450 80.271 15.939 20.812 97.617
FDI 450 19.550 16.900 1.122 65.640
Tech 450 156.367 238.300 0.630 1520.550
Env 450 16.089 12.906 0.695 104.815
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4. Results

4.1. The Meta-Frontier Total-Factor Carbon Emission Performance Since the 21st Century

As can be seen from Table 3, the TCPI of all the provinces in the study period are greater than
1, showing that the carbon emission efficiency of all the provinces has increased, albeit, to differing
extents. This indicates that China’s policies on energy saving and emission reduction have been
beneficial. Chongqing has the highest TCPI, and its average value is as high as 1.2257. In terms of its
decomposition, we find that the improvement in technological efficiency and technical progress and
the decrease in technology gap have jointly promoted an improvement in TCPI; technical progress
has played a major promoting role. Qinghai has the lowest TCPI, and its average value is only 1.0225.
In terms of its decomposition, although its technical progress is conducive to an improvement in TCPI,
deterioration in technological efficiency and expansion of technology gap have together inhibited an
improvement of TCPI to a certain extent.

Table 3. Carbon emission performance and its decomposition in 2000–2015.

Group Provinces TCPI EC BPC TGC

East Beijing 1.2064 1.0555 1.1552 1.0000
East Tianjin 1.1827 1.0545 1.1513 1.0000
East Hebei 1.1685 1.0491 1.1233 0.9946
East Liaoning 1.1241 1.0158 1.1215 0.9864
East Shanghai 1.1366 0.9995 1.1373 1.0000
East Jiangsu 1.1632 1.0125 1.1406 1.0147
East Zhejiang 1.1197 0.9762 1.1472 1.0000
East Fujian 1.1495 1.0309 1.1293 1.0000
East Shandong 1.1607 1.0666 1.1373 0.9938
East Guangdong 1.1344 1.0000 1.1368 0.9979
East Hainan 1.1301 1.0043 1.1255 1.0000

Central Shanxi 1.1558 1.0433 1.1215 0.9783
Central Jilin 1.1584 1.0488 1.1302 0.9799
Central Heilongjiang 1.0605 0.9511 1.1165 0.9872
Central Anhui 1.1747 1.0781 1.1209 0.9755
Central Jiangxi 1.1893 1.0594 1.1211 1.0044
Central Henan 1.1220 1.0007 1.1512 0.9758
Central Hubei 1.1435 1.1014 1.1607 0.9735
Central Hunan 1.1632 1.0397 1.1127 0.9938

West Inner Mongolia 1.1286 1.0621 1.1897 0.9578
West Guangxi 1.1588 1.0399 1.1780 1.0048
West Chongqing 1.2257 1.0364 1.1644 1.0274
West Sichuan 1.1508 0.9902 1.1427 1.0261
West Guizhou 1.1653 1.0085 1.1452 1.0306
West Yunnan 1.0674 0.9509 1.1414 1.0114
West Shaanxi 1.0809 0.9694 1.1248 1.0175
West Gansu 1.0822 1.0207 1.1209 0.9800
West Qinghai 1.0225 0.9270 1.1353 0.9817
West Ningxia 1.1969 1.0141 1.1507 1.0274
West Xinjiang 1.0454 0.9392 1.1436 0.9943

Eastern China 1.1524 1.0241 1.1368 0.9988
Central China 1.1459 1.0403 1.1294 0.9836
Western China 1.1204 0.9962 1.1488 1.0054
Whole China 1.1389 1.0181 1.1392 0.9972

In the study period, improvement in technological efficiency is conducive to an improvement of
TCPI in 21 provinces, with the improvement in Hubei the strongest. The deterioration in technological
efficiency has however inhibited an improvement in TCPI in 8 provinces, with the inhibiting effect in
Xinjiang the strongest. Technical progress is conducive to the improvement of TCPI in all the provinces,
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with the positive effect in Inner Mongolia the strongest, and Hunan the weakest. The decrease of
technology gap is conducive to the improvement of TCPI in 9 provinces, with the effect on Guizhou the
strongest. The expansion of the technology gap has inhibited improvements in TCPI in 15 provinces,
with the inhibiting effect on Hubei the strongest.

From the point view of each region, the TCPI in the eastern region is the highest, followed by the
central region, with the lowest in the western region. In terms of its decomposition, the improvements
in TCPI in the eastern and central regions are mainly driven by improvements in technological efficiency
and technical progress. Technical progress has played a major promoting role, although the expansion
of the technological gap has inhibited the improvement in TCPI to a certain extent. The improvement
of TCPI in the western region is mainly driven by technical progress, while the deterioration in
technological efficiency has somewhat inhibited the improvement in TCPI.

4.2. Spatial Auto-Correlation Tests

The spatial auto-correlation is inconsistent with the dependence and randomness of the basic
assumptions in traditional statistics, making traditional statistical methods no longer valid [41].
Therefore, it is necessary to test whether there is the spatial auto-correlation in statistical data. We first
use the Moran’s I index to test the global spatial auto-correlation of TCPI as Equation (3).

Moran′s I =
∑N

i=1 ∑N
j=1 Wij(yi − y)

(
yj − y

)
S2 ∑N

i=1 ∑N
j=1 Wij

(3)

In Equation (3), y denotes the TCPI in province i, y and S2 denote its mean and variance
respectively. We also use the standard statistic Z to test the significance of the Moran’s I and Table 4
lists the results of Moran’s I index and its significance level from 2000 to 2015.

Table 4. Global Moran’s I of provincial TCPI.

Year 2000–2001 2001–2002 2002–2003 2003–2004 2004–2005

Moran’s I
0.114 * 0.163 ** 0.165 ** 0.191 *** 0.225 ***
[1.723] [2.293] [2.303] [2.647] [3.061]

Year 2005–2006 2006–2007 2007–2008 2008–2009 2009–2010

Moran’s I
0.269 *** 0.271 *** 0.287 *** 0.344 *** 0.265 ***
[3.571] [3.591] [3.793] [4.491] [3.557]

Year 2010–2011 2011–2012 2012–2013 2013–2014 2014–2015

Moran’s I
0.256 *** 0.236 *** 0.220 *** 0.212 *** 0.211 ***
[3.401] [3.186] [3.002] [2.871] [2.864]

Figures in parentheses are Z values. *, **, *** denote statistical significance levels at 10%, 5% and 1%, respectively.

As can be seen from Table 4, the Moran’s I indices of the TCPI are all significantly positive,
indicating that there is a significant global spatial positive auto-correlation in the TCPI between
different provinces. It means that provinces with similar TCPI have significant spatial agglomeration
effect. With the passage of time, the Moran’s I indices show an inverted ‘U’ trend, indicating that the
spatial agglomeration effect first enhances and then gradually weakens. We also use the local indicators
of spatial association (LISA) to test the spatial heterogeneity. To visualize local spatial autocorrelation,
we draw the LISA agglomeration maps using ArcGIS. Figures 1–4 present LISA agglomeration maps
of TCPI for 2000–2001, 2005–2006, 2010–2011 and 2014–2015 respectively.

As can be seen from the four LISA agglomeration maps, the High-High agglomeration areas
of provincial TCPI from 2000 to 2015 were mainly concentrated in Shanghai, Zhejiang, Jiangsu and
Fujian provinces. This indicates that the TCPIs in these areas were high, the spatial correlation
between these provinces was strong, and these areas had formed a local spatial high-value group.
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Guangdong was located in the High-Low agglomeration areas in these four years, indicating that
although the TCPI of Guangdong was high, its driving effect on the surrounding provinces was not
enough. There are two main reasons for this phenomenon. On the one hand, Guangdong has a
high economic development level and has a strong siphon effect on the innovative resources and
talents in surrounding provinces. On the other hand, the spatial spillover effects of knowledge and
technology brought by the agglomeration of innovative resources have a locality, and it gradually
weakens with the increase of geographical distance. Furthermore, the serious market segmentation
between provinces also inhibits the spatial spillover of knowledge and technology. Guangxi and
Guizhou intermittently appeared in the Low-High agglomeration areas, indicating that the TCPI of
these two provinces was low, but the TCPI of the surrounding provinces was high. This means that
Guangxi and Guizhou are not driven by the high TCPI provinces that surround them, and they belong
to the hollow zone. This also means that the interconnections between Guangxi, Guizhou and the
surrounding provinces are weak, and there is a lack of ‘pass, help and band’ effect between them.
The Low-Low agglomeration areas were mainly concentrated in Ningxia, Gansu, Qinghai and Xinjiang
provinces from 2000 to 2015. This indicates the TCPIs in these areas are low, the spatial correlation
between these provinces is weak, and the radiation from provinces with high levels is also very limited.
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5. Discussion

5.1. Analysis of Regression Results at the National Level

In order to demonstrate and verify the superiority and effectiveness of the dynamic spatial panel
model, we simultaneously adopt the ordinary static panel model, the ordinary dynamic panel model
and the static spatial panel model for comparison. We use the feasible generalized least squares
(FGLS) method and the generalized method of moments (GMM) method to estimate the ordinary
static panel model and the ordinary dynamic panel model respectively. For the estimation of static
spatial panel model, we use the Maximum Likelihood (ML) method proposed by Elhorst [42] (2005).
For the estimation of dynamic spatial panel model, we use the spatial system GMM method proposed
by Kukenova and Monteiro [43] (2009) and Jacobs et al. [44] (2009). The whole process is calculated by
Stata 13.0 and the results are shown in Table 5.

As can be seen from Table 5, the coefficient of spatial spillover effect in the results of dynamic
spatial panel model is significantly positive, indicating that provincial TCPI has a significant spatial
spillover effect. But neither the ordinary static panel model nor the ordinary dynamic panel model
considers the spatial spillover effect of TCPI, thereby may leading to errors in estimation. Meanwhile,
the coefficient of dynamic effect in the results of dynamic spatial panel model is significantly positive,
indicating that provincial TCPI has a significant dynamic effect. But neither the ordinary static panel
model nor the static spatial panel model considers the dynamic effect of TCPI, thereby may leading
to errors in estimation. We can also find that the regression results of the dynamic spatial panel
model are superior to those of the former, and thus select dynamic spatial panel model as our final
interpretation model.
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Table 5. Estimation results at the national level using the four methods.

Type Ordinary Static
Panel Model (1)

Ordinary Dynamic
Panel Model (2)

Static Spatial
Panel Model (3)

Dynamic Spatial
Panel Model (4)

τ (dynamic factor) 0.216 *** 0.102 ***
[3.84] [4.37]

ρ (spatial factor) 0.621 *** 0.003 ***
[9.27] [3.34]

lnIS
−0.035 *** −0.029 *** −0.047 *** −0.043 ***

[−3.53] [−3.14] [−3.43] [−3.78]

lnLH
−0.128 −0.113 * −0.092 −0.106 ***
[−1.10] [−1.70] [−1.17] [−2.93]

lnSC
0.061 0.067 0.055 * 0.053 **
[0.82] [1.28] [1.77] [2.05]

lnOW
−0.021 −0.011 −0.032 −0.025
[−0.49] [−0.87] [−0.94] [−1.06]

lnEN
−0.056 ** −0.054 *** −0.057 *** −0.048 ***
[−2.32] [−3.43] [−3.72] [−3.60]

lnECS
−0.085 * −0.092 * −0.104 *** −0.085 ***
[−1.79] [−1.74] [−2.79] [−3.52]

lnFDI
0.023 0.040 0.062 0.036
[1.14] [1.27] [1.31] [1.05]

lnTech
0.040 *** 0.045 *** 0.024 *** 0.027 ***

[5.87] [5.24] [5.38] [5.61]

lnEnv
0.024 0.026 * 0.036 ** 0.035 **
[1.21] [1.83] [1.99] [2.21]

Cons
−0.502 *** −1.224 *** −0.342 *** −0.154 ***

[−2.98] [−3.46] [−4.65] [−4.18]

Obs 450 420 450 420

LogL 123.736 150.285 174.363

LM-Lag test (0.023) (0.028)

Robust LM-Lag test (0.054) (0.070)

LM-Error test (0.130) (0.128)

Robust LM-Error test (0.159) (0.157)

Hausman test (0.001) (0.000) (0.000)

System GMM test
AR(1) test (0.000) (0.000)

AR(2) test (0.252) (0.233)

Hansen
over-identification test (1.000) (1.000)

Figures in parentheses are t values. *, **, *** denote statistical significance levels at 10%, 5%, and 1%, respectively.

From the regression results of the dynamic spatial panel model, we note that the coefficient
of IS is negative at the 1% significance level, indicating that the structure of industrialization has
significantly inhibited the improvement of TCPI. This is mainly because that when the proportion of
the second industry in a region is higher, its third industry, especially the producer service industry
develops slowly. Then its producer service industry cannot better promote industrial transformation
and upgrading and green development through scale effect, specialization effect, knowledge and
technology spillover effect, and competition effect.
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The coefficient of LH is significantly negative, indicating that industrial structure of heavy
industrialization has significantly inhibited the improvement of TCPI. This is mainly because,
compared to light industry, heavy industry belongs to the high energy consumption and high pollutant
emission industry category. Considering the coal-dominated industrial energy consumption structure,
energy efficiency and carbon emission efficiency in heavy industry is lower than that of light industry
and this has had a significant negative effect on the improvement of TCPI.

The coefficient of SC is positive at the 5% significance level, indicating that expansion of industrial
enterprise scale is conducive to an improvement of TCPI. We deduce two main reasons for this
conclusion. On the one hand, the expansion of enterprise scale can increase the profit base of enterprises,
help enterprises transform, upgrade and update their equipment and technologies and also help
enterprises introduce new technologies, thereby improving their technological level. On the other hand,
the expansion of enterprise scale is more conducive for enterprises to achieve increasing returns to scale
and marginal cost reduction, thus improving their energy efficiency and carbon emission efficiency.

The coefficient of OW is not significant, indicating that the effect of enterprise ownership
structure on TCPI is not significant. With the deepening of the reform process of state-owned
enterprises, the vitality and market competitiveness of some state-owned enterprises has been released.
Their TCPIs have improved, relying on the advantages of economies of scale and innovative research
and development. However, the institutional mechanism of state-owned enterprises in China is still
not very sound, the economic growth mode is still relatively extensive, and redundant construction and
overcapacity are still very serious. These are not conducive to improvements in TCPI. The interaction
between these two effects determines the significance of industrial ownership structure, which is not
initially obvious.

The coefficient of EN is significantly negative, indicating that capital deepening is not conducive
to the improvement of TCPI. As we all know, the increase of the ratio of capital to labor indicates that
economic structure has transformed from labor-intensive to capital-intensive. Generally speaking,
the labor-intensive industry tends to be in the light pollution industries and the capital-intensive
industry tends to be in the heavy pollution industries. China is now in the middle stage of
industrialization, and a sustained rise in the ratio of capital to labor is mainly dependent on the
extensive expansion of the scale of industrial enterprise. Capital deepening has made capital
continuously flow to such heavy industries as steel, cement and chemicals, which not only deteriorates
environmental quality, but also reduces the TCPI.

The coefficient of ECS is significantly positive, indicating that the coal-dominated energy
consumption structure has significantly inhibited TCPI improvement. This is mainly because,
compared to oil and natural gas, the energy consumption and pollutant emissions per unit of output
of coal are high, but its thermal efficiency is low. Therefore, changing the coal-dominated energy
consumption structure is an important way for China to improve TCPI.

The effect of FDI structure on TCPI is not significant, because FDI in China’s industry is mainly
concentrated in labor-intensive and resource-intensive industries. Although FDI can bring a spillover
of knowledge and technology to a certain extent, it causes consumption of large amounts of energy
with consequent large carbon emissions, thus making the effect of FDI on the improvement of TCPI
not significant.

Comparing the coefficients and significances of these structural variables, we can find that among
the carbon emission performance of structural adjustments, the effect of industrial light and heavy
structure is the strongest, followed by industrial energy consumption structure, the third is industrial
scale structure and the last is industrial endowment structure. This means that in order to improve the
industrial carbon emission performance, we should pay more attention to industrial light and heavy
structure and industrial energy consumption structure.

As for the control variables, a more advanced technology level is conducive to an improvement in
TCPI. This is mainly because technical progress can not only increase economic output, but can also
reduce energy consumption, which is the essential source of any improvement in energy efficiency.
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Environmental regulation is also conducive to improvements in TCPI, indicating that the innovation
compensation effect of environmental regulation is dominant in industry in China. In order to decrease
the compliance costs, the regulated enterprises must transform, upgrade and update their equipment
and technologies.

5.2. Analysis of Regression Results at the Regional Level

As China’s TCPI and industrial structure show significant differences in different regions, we
have analyzed the effects of industrial structure changes on TCPI in the eastern, the central and the
western regions. We still use a dynamic spatial panel model to estimate the data in different regions,
and the results are shown in Table 6.

Table 6. Estimation results at the regional level.

Region The Eastern China The Central China The Western China

τ (dynamic factor) 0.128 *** 0.107 *** 0.095 ***
[5.13] [4.52] [3.87]

ρ (spatial factor) 0.007 *** 0.005 *** 0.002 ***
[3.78] [3.36] [3.13]

lnIS
−0.043 ** −0.057 *** −0.049 ***
[−2.13] [−3.95] [−3.18]

lnLH
−0.119 *** −0.123 *** −0.104 ***

[−3.07] [−3.29] [−2.76]

lnSC
0.048 *** 0.064 ** 0.060

[2.44] [2.15] [1.37]

lnOW
0.025 0.016 * 0.032
[0.71] [1.77] [0.81]

lnEN
0.013 * −0.047 *** −0.079 ***
[1.75] [−3.68] [−3.97]

lnECS
−0.084 *** −0.061 *** −0.074 ***

[−3.07] [−3.92] [−3.59]

lnFDI
0.025 0.045 −0.011 *
[0.88] [1.16] [−1.77]

lnTech
0.042 *** 0.030 *** 0.012 ***

[6.37] [5.68] [4.35]

lnEnv
0.049 *** 0.033 ** 0.025 **

[3.42] [2.35] [2.04]

Cons
−0.141 *** −0.169 *** −0.157 ***

[−3.43] [−4.64] [−4.50]

Obs 154 112 154

LogL 73.335 51.274 69.208

LM-Lag test (0.023) (0.027) (0.019)

Robust LM-Lag test (0.048) (0.066) (0.040)

LM-Error test (0.130) (0.149) (0.098)

Robust LM-Error test (0.152) (0.181) (0.116)

Hausman test (0.001) (0.000) (0.001)

System GMM test
AR(1) test (0.013) (0.020) (0.018)

AR(2) test (0.248) (0.281) (0.273)

Figures in parentheses are t values. *, **, *** denote statistical significance levels at 10%, 5% and 1%, respectively.
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As can be seen from Table 6, the first-order lag coefficients of TCPI in the three regions are all
positive at the 1% significance level, indicating that there are continuous dynamic effects of TCPI
in different regions. Comparing their coefficients, we find that the eastern region shows the largest,
followed by the central region and the western region, the smallest. This is mainly because the eastern
region has high economic development levels, technical levels and carbon emission performance, so the
improvement of TCPI is more dependent on previous foreshadowing and accumulation. Furthermore,
the spatial lag coefficients of TCPI in the three regions are also all positive at the 1% significance level,
indicating that there are significant spatial spillover effects of TCPI in different regions. Comparing
their coefficients we find that the eastern region exhibits the largest, followed by the central region and
the western region, the smallest. This is mainly because the eastern region has a better transportation
infrastructure, has higher informatization levels, and has closer and more frequent economic and trade
activities with neighboring provinces. This leads the eastern region to having a greater spatial spillover
effect of TCPI between different provinces.

The regression results show that both the structure of industrialization, the industrial structure
of heavy industrialization and the coal-dominated energy consumption structure have inhibited
the improvement of TCPI in the eastern region. The expansion of enterprise scale is conducive to
an improvement in TCPI, but the effects of enterprise ownership structure and FDI structure on
improvement are not significant. Unlike the estimated results at the national level, capital deepening in
the eastern region is conducive to an improvement in TCPI. This is probably because, although capital
deepening makes industrial structure shift from labor-intensive to capital-intensive, the capital-intensive
enterprises in the eastern region have higher technology levels, which not only offset the negative effect
of capital deepening on resources and environment, but also bring improvements in energy efficiency.

For the central region, the regression results show that the structure of industrialization,
the industrial structure of heavy industrialization, the coal-dominated energy consumption structure
and capital deepening have all inhibited improvements in TCPI. The expansion of enterprise scale
is conducive to improvements in TCPI, but the effect of FDI structure on TCPI improvements is not
significant. Unlike figures for the national level, enterprise ownership structure for the central region
is conducive to the improvement in TCPI, indicating that the reform of state-owned enterprises in the
central region has achieved remarkable results. This can be mainly attributed to the central region
has a high proportion of state-owned enterprises, and the reforms of state-owned enterprises and
state-owned capital are carried out systematically and in depth. With the advantages of economies of
scale and innovative research and development, the continuous reformation of state-owned enterprises
has improved TCPI in the central region.

For the western region, the regression results show that the structure of industrialization,
the industrial structure of heavy industrialization, the coal-dominated energy consumption structure
and capital deepening have inhibited the improvement of TCPI and the effect of enterprise ownership
structure on the improvement of TCPI is not significant. Unlike the results obtained at the national
level, the effect of enterprise scale structure on improvements in TCPI in the western region is not
significant. This is likely because the western region has a low proportion of large and medium-sized
enterprises, which cannot give full play to the advantages of large enterprise scales in energy saving
and emission reduction. The FDI structure has significantly inhibited the improvement of TCPI in the
western region, probably because the western region has relatively relaxed environmental regulations,
which has made it gradually become the pollution haven of FDI.

5.3. Robustness Test

In order to further test the robustness of the results, we use an economic distance spatial weight
matrix to replace the geographic distance spatial weight matrix for retesting. We also use the dynamic
spatial panel model to perform the regression. The economic distance spatial weight matrix can be
constructed as Equation (4).
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We
ij = Wij

d · diag
(
Y1/Y, Y2/Y, · · · , YN/Y

)
(4)

In Equation (4), We
ij and Wij

d denote the economic distance and geographic distance spatial weight

matrices respectively, Yi denotes the mean of actual GDP for province i in the study period, and Y
denotes the mean of actual GDP for all the sample provinces in the study period. As can be seen from
Table 7, although the coefficients of some control variables and spatial spillover effect, as well as their
significance have increased or decreased to some extent, the estimated results of the core explanatory
variables are consistent with the above conclusions, indicating that the results are reliable and robust.

Table 7. Estimation results of robustness test.

Type The Whole China The Eastern China The Central China The Western China

τ (dynamic factor) 0.104 *** 0.125 *** 0.108 *** 0.095 ***
[4.53] [5.17] [4.28] [3.62]

ρ (spatial factor) 0.005 *** 0.007 *** 0.004 *** 0.001 ***
[3.63] [4.08] [3.26] [2.86]

lnIS
−0.045 *** −0.043 ** −0.056 *** −0.047 ***

[−3.86] [−2.15] [−3.87] [−3.24]

lnLH
−0.104 *** −0.119 *** −0.120 *** −0.097 ***

[−2.92] [−3.16] [−3.38] [−2.73]

lnSC
0.051 ** 0.048 *** 0.059 * 0.052
[2.03] [2.45] [1.76] [1.24]

lnOW
−0.023 0.026 0.015 * 0.030
[−1.22] [0.64] [1.74] [0.69]

lnEN
−0.051 *** 0.014 * −0.048 *** −0.072 ***

[−3.74] [1.73] [−3.67] [−4.05]

lnECS
−0.085 *** −0.098 *** −0.083 *** −0.062 ***

[−3.52] [−3.27] [−4.06] [−3.71]

lnFDI
0.035 0.024 0.050 −0.009 *
[1.17] [0.73] [1.08] [−1.74]

lnTech
0.025 *** 0.043 *** 0.028 *** 0.011 ***

[5.52] [6.31] [5.60] [4.18]

lnEnv
0.034 ** 0.048 *** 0.027 ** 0.020 *
[2.19] [3.22] [2.21] [1.78]

Cons
−0.179 *** −0.130 *** −0.169 *** −0.141 ***

[−4.24] [−3.47] [−4.82] [−4.37]

Obs 420 154 112 154

LogL 174.236 71.073 51.685 67.963

LM-Lag test (0.026) (0.026) (0.027) (0.020)

Robust LM-Lag test (0.068) (0.053) (0.065) (0.042)

LM-Error test (0.124) (0.135) (0.147) (0.099)

Robust LM-Error test (0.150) (0.157) (0.176) (0.118)

Hausman test 0.000) (0.001) (0.000) (0.001)

System GMM test
AR(1) test 0.000) (0.016) (0.021) (0.021)

AR(2) test (0.228) (0.253) (0.285) (0.283)

Hansen
over-identification test (1.000) (1.000) (1.000) (1.000)

Figures in parentheses are t values. *, **, *** denote statistical significance levels at 10%, 5% and 1%, respectively.
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6. Conclusions

In the paper we accurately measure the TCPI of 30 provinces in China, from 2000 to 2015, under a
meta-frontier and total-factor analysis framework and then adopt a dynamic spatial panel model to
empirically analyze the effect of industrial structural adjustment on TCPI. The results show that most
of the provinces with high TCPI are located in the eastern coastal areas, while the central and western
provinces have relatively low TCPI. There are also significant global spatial auto-correlation and local
spatial agglomeration characteristics in TCPI. At the national level, the structure of industrialization,
the industrial structure of heavy industrialization, the coal-based energy consumption structure and the
endowment structure have significantly inhibited improvements in TCPI. The expansion of enterprise
scales is conducive to the improvement of TCPI, but the effects of FDI and ownership structures on
TCPI are not significant. At the regional level, there are certain differences in the effects of different
types of industrial structural adjustment on TCPI. Based on the above conclusions, the following points
are made.

(1) China should promote the development of the third industry, especially the producer service
industry through a series of industrial polices, promote the large-scale, market-oriented and organized
operation of producer service market, constantly reduce production costs and service risks and improve
the level of specialized services. Furthermore, China should guide and drive manufacturing enterprises
to gradually outsource some non-core productive services, focus on the core manufacturing links,
such as technology research and product competitiveness enhancement, and effectively improve the
technology level of manufacturing enterprises.

(2) China should accelerate the development of new manufacturing, actively implement the
upgrading of heavy industries, and focus on the transformation, upgrading and updating of traditional
industries, such as the automobile, steel, cement and chemical industries. For heavy industries,
China should also gradually implement green manufacturing projects, promote the green management
of product life cycles, and accelerate the construction of green manufacturing and green supply chain
industry systems.

(3) China should speed up the reform of state-owned enterprises both internally and in the
shareholding system, gradually improving the state-owned assets management system, modern enterprise
management systems and corporate governance structures. For state-owned enterprises, China should
also strengthen cost controls, product quality, operational efficiency and guarantee capability assessment,
with the goal of making state-owned enterprises stronger, better and bigger.

(4) In the process of reforming state-owned enterprises, China should continue to strive for the
reorganization and integration of more resources, using various acquisition methods, such as using its
own funds, low cost debt, industry funds and mergers and acquisitions funds. These funds can be
used to increase market mergers and acquisitions and gradually form industrial organizations with,
at their core, large highly concentrated enterprise groups that exhibit a detailed division of labor and
efficient cooperation.

(5) China should further deepen capital levels and encourage capital to invest in such areas
as high-tech industries, energy conservation and environmental protection industries and strategic
emerging industries. Furthermore, not only should China gradually establish promote a system with
constraints on process, technology, energy consumption, environmental protection, quality and safety,
but it should also strengthen industrial norms and access management, eliminate backward production
capacity, and actively and steadily resolve overcapacity.

(6) China should optimize the development and utilization of coal, and vigorously promote
clean and efficient use of coal. It is also important to vigorously develop renewable and new energy
through scientific and technological innovation, and promote the optimization and upgrading of energy
structure. In addition, China should construct modern energy storage, transportation network and
intelligent energy systems, as well as implement cleaner production transformation in key industries,
and speed up the implementation of alternative clean energy projects.
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(7) China should further strengthen the screening and management of any foreign technology
introduced into the country and restrict foreign enterprises investing in both high energy consumption
and high pollution industries. China should encourage foreign enterprises to invest in R&D
centers, high-tech industries, advanced manufacturing and energy conservation and environmental
protection industries. It should also encourage foreign enterprises to perform the technological
transformation and upgrading of traditional industries and encourage foreign enterprises to introduce
core technologies and expand the technology spillover effect.

(8) China should strengthen R&D in industrial low-carbon technology, encourage enterprises
to improve production technologies, upgrade processing equipment, become more energy efficient
and aim for international standards of environmental protection. It should gradually realize the
breakthrough into key areas for middle and high end products. Furthermore, China should strengthen
manufacturing in areas, such as industrial energy conservation and environmental protection
engineering technology and equipment, accelerate research and development and demonstrate and
promote advanced energy conservation and environmental protection technology and equipment.

(9) China should gradually improve existing environmental regulations, raise both industrial
pollutant emission standards and cleaner production evaluation indicators, and encourage each region
to set more stringent pollution discharge standards depending on the situation. China should also
establish an efficient environmental supervision and management system, strengthen inspections,
supervision and management, and vigorously investigate environmental violations according to
the law.

There are also some limitations in this paper, and these are mainly reflected in the following: Due
to the availability and validity of data, we did not subdivide the second industry, so we cannot dig
deep into the industrial heterogeneity of the effects of structural changes on TCPI. We will try to solve
these problems in future research.
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