Chronic Musculoskeletal Pain, Self-Reported Health and Quality of Life among Older Populations in South Africa and Uganda
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods
Data Source
2.2. Measures
2.3. Data Analysis
2.4. Ethics Statement
3. Results
3.1. Descriptive Statistics
3.2. Prevalence of Generalised Pain and Back Pain, Poor SRH, Depression and Poor QoL
3.3. Multivariable Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Balagué, F.; Mannion, A.F.; Pellisé, F.; Cedraschi, C. Non-specific low back pain. Lancet 2012, 379, 482–491. [Google Scholar] [CrossRef] [Green Version]
- Freburger, J.K.; Holmes, G.M.; Agans, R.P.; Jackman, A.M.; Darter, J.D.; Wallace, A.S.; Castel, L.D.; Kalsbeek, W.D.; Carey, T.S. The Rising Prevalence of Chronic Low Back Pain. Arch. Intern. Med. 2009, 169, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, T.; Matsudaira, K.; Sato, H.; Vietri, J. The impact of depression among chronic low back pain patients in Japan. BMC Musculoskelet. Disord. 2016, 17, 447. [Google Scholar] [CrossRef] [PubMed]
- Katz, J.N. Lumbar disc disorders and low-back pain: Socioeconomic factors and consequences. J. Bone Joint Surg. Am. 2006, 88 (Suppl. 2), 21–24. [Google Scholar] [CrossRef] [PubMed]
- Plouvier, S.; Leclerc, A.; Chastang, J.-F.; Bonenfant, S.; Goldberg, M. Socioeconomic position and low-back pain—The role of biomechanical strains and psychosocial work factors in the GAZEL cohort. Scand. J. Work Environ. Health 2009, 35, 429–436. [Google Scholar] [CrossRef]
- Bair, M.J.; Robinson, R.L.; Katon, W.; Kroenke, K. Depression and pain comorbidity: A literature review. Arch. Intern. Med. 2003, 163, 2433–2445. [Google Scholar] [CrossRef] [PubMed]
- Shemshaki, H.; Nourian, S.-M.A.; Fereidan-Esfahani, M.; Mokhtari, M.; Etemadifar, M.R. What is the source of low back pain? J. Craniovertebral Junction Spine 2013, 4, 21–24. [Google Scholar] [CrossRef]
- Suman, A.; Bostick, G.P.; Schaafsma, F.G.; Anema, J.R.; Gross, D.P. Associations between measures of socio-economic status, beliefs about back pain, and exposure to a mass media campaign to improve back beliefs. BMC Public Health 2017, 17, 504. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Bach, E.; Orhede, E. Work environment and low back pain: The influence of occupational activities. Occup. Environ. Med. 1997, 54, 741–745. [Google Scholar] [CrossRef]
- National Research Council (US) Committee on Population. Aging in Sub-Saharan Africa: Recommendation for Furthering Research; National Academies Press (US): Washington, DC, USA, 2006. Available online: http://www.ncbi.nlm.nih.gov/books/NBK20306/ (accessed on 11 November 2018).
- Shrestha, L.B. Population aging in developing countries. Health Aff. (Millwood) 2000, 19, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, R.J.; Bates, P. Measuring Health-Related Productivity Loss. Popul. Health Manag. 2011, 14, 93–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lerner, D.; Rogers, W.H.; Chang, H.; Rodday, A.M.; Greenhill, A.; Villagra, V.G.; Antetomaso, J.R.; Patel, A.A.; Vo, L. The health care and productivity costs of back and neck pain in a multi-employer sample of utility industry employees. J. Occup. Environ. Med. 2015, 57, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C.J. The Cost and Burden of Chronic Pain. Rev. Pain 2009, 3, 2–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, P.; Hope, K.; Dunn, K.M. The pain, depression, disability pathway in those with low back pain: A moderation analysis of health locus of control. J. Pain Res. 2017, 10, 2331–2339. [Google Scholar] [CrossRef]
- Dueñas, M.; Ojeda, B.; Salazar, A.; Mico, J.A.; Failde, I. A review of chronic pain impact on patients, their social environment and the health care system. J. Pain Res. 2016, 9, 457–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheng, J.; Liu, S.; Wang, Y.; Cui, R.; Zhang, X. The Link between Depression and Chronic Pain: Neural Mechanisms in the Brain. Neural Plast. 2017, 2017, 9724371. [Google Scholar] [CrossRef]
- Okasha, A. Mental health in Africa: The role of the WPA. World Psychiatry 2002, 1, 32–35. [Google Scholar]
- Alem, A.; Jacobsson, L.; Hanlon, C. Community-based mental health care in Africa: Mental health workers’ views. World Psychiatry 2008, 7, 54–57. [Google Scholar] [CrossRef]
- Vaillant, N.; Wolff, F.-C. On the reliability of self-reported health: Evidence from Albanian data. J. Epidemiol. Glob. Health 2012, 2, 83–98. [Google Scholar] [CrossRef]
- Dowd, J.B.; Todd, M. Does Self-reported Health Bias the Measurement of Health Inequalities in U.S. Adults? Evidence Using Anchoring Vignettes From the Health and Retirement Study. J. Gerontol. B Psychol. Sci. Soc. Sci. 2011, 66B, 478–489. [Google Scholar] [CrossRef]
- Sinclair, K.M.; Hamlin, M.J. Self-reported health benefits in patients recruited into New Zealand’s ‘Green Prescription’ primary health care program. Southeast Asian J. Trop. Med. Public Health 2007, 38, 1158–1167. [Google Scholar] [PubMed]
- Symonds, T.; Berzon, R.; Marquis, P.; Rummans, T.A.; Clinical Significance Consensus Meeting Group. The clinical significance of quality-of-life results: Practical considerations for specific audiences. Mayo Clin. Proc. 2002, 77, 572–583. [Google Scholar] [CrossRef] [PubMed]
- Amit, M.; Abergel, A.; Fliss, D.M.; Gil, Z. The clinical importance of quality-of-life scores in patients with skull base tumors: A meta-analysis and review of the literature. Curr. Oncol. Rep. 2012, 14, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Higginson, I.J.; Carr, A.J. Using quality of life measures in the clinical setting. BMJ 2001, 322, 1297–1300. [Google Scholar] [CrossRef] [PubMed]
- Hao, G.; Bishwajit, G.; Tang, S.; Nie, C.; Ji, L.; Huang, R. Social participation and perceived depression among elderly population in South Africa. Clin. Interv. Aging 2017, 12, 971–976. [Google Scholar] [CrossRef] [PubMed]
- SAGE Well-Being of Older People Study (WOPS)—HIV. Available online: http://apps.who.int/healthinfo/systems/surveydata/index.php/catalog/wops/about (accessed on 12 November 2018).
- South Africa—SAGE Well-Being of Older People Study-2013, Wave 2—Sampling. Available online: http://apps.who.int/healthinfo/systems/surveydata/index.php/catalog/206/sampling (accessed on 13 November 2018).
- Bernert, S.; Matschinger, H.; Alonso, J.; Haro, J.M.; Brugha, T.S.; Angermeyer, M.C.; ESEMeD/MHEDEA 2000 Investigators. Is it always the same? Variability of depressive symptoms across six European countries. Psychiatry Res. 2009, 168, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Arokiasamy, P.; Uttamacharya; Kowal, P.; Capistrant, B.D.; Gildner, T.E.; Thiele, E.; Biritwum, R.B.; Yawson, A.E.; Mensah, G.; Maximova, T.; et al. Chronic Noncommunicable Diseases in 6 Low- and Middle-Income Countries: Findings from Wave 1 of the World Health Organization’s Study on Global Ageing and Adult Health (SAGE). Am. J. Epidemiol. 2017, 185, 414–428. [Google Scholar] [CrossRef]
- Diamond, S.; Borenstein, D. Chronic low back pain in a working-age adult. Best Pract. Res. Clin. Rheumatol. 2006, 20, 707–720. [Google Scholar] [CrossRef]
- Allegri, M.; Montella, S.; Salici, F.; Valente, A.; Marchesini, M.; Compagnone, C.; Baciarello, M.; Manferdini, M.E.; Fanelli, G. Mechanisms of low back pain: A guide for diagnosis and therapy. F1000Res 2016, 5. [Google Scholar] [CrossRef]
- Atlas, S.J.; Deyo, R.A. Evaluating and Managing Acute Low Back Pain in the Primary Care Setting. J. Gen. Intern. Med. 2001, 16, 120–131. [Google Scholar] [CrossRef]
- Ghose, B.; Abdoul Razak, M.Y. Memory and Learning Complaints in Relation to Depression among Elderly People with Multimorbidity. Geriatrics 2017, 2, 15. [Google Scholar] [CrossRef]
- Albert, P.R. Why is depression more prevalent in women? J. Psychiatry Neurosci. 2015, 40, 219–221. [Google Scholar] [CrossRef] [PubMed]
- Bogner, H.R.; Gallo, J.J. Are higher rates of depression in women accounted for by differential symptom reporting? Soc. Psychiatry Psychiatr. Epidemiol. 2004, 39, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-H.; Cho, M.J.; Hong, J.P.; Bae, J.N.; Cho, S.J.; Hahm, B.J.; Lee, D.W.; Park, J.I.; Lee, J.Y.; Jeon, H.J.; et al. Gender Differences in Depressive Symptom Profile: Results from Nationwide General Population Surveys in Korea. J. Korean Med. Sci. 2015, 30, 1659–1666. [Google Scholar] [CrossRef] [PubMed]
- Adjiwanou, V.; LeGrand, T. Gender inequality and the use of maternal healthcare services in rural sub-Saharan Africa. Health Place 2014, 29, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Yaya, S.; Bishwajit, G.; Shah, V. Wealth, education and urban–rural inequality and maternal healthcare service usage in Malawi. BMJ Glob. Health 2016, 1, e000085. [Google Scholar] [CrossRef] [PubMed]
- Bishwajit, G.; Tang, S.; Yaya, S.; Feng, Z. Burden of asthma, dyspnea, and chronic cough in South Asia. Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 1093–1099. [Google Scholar] [CrossRef]
- He, Z.; Bishwajit, G.; Zou, D.; Yaya, S.; Cheng, Z.; Zhou, Y. Burden of Common Childhood Diseases in Relation to Improved Water, Sanitation, and Hygiene (WASH) among Nigerian Children. Int. J. Environ. Res. Public Health 2018, 15, 1241. [Google Scholar] [CrossRef]
- Yates, T.; Lantagne, D.; Mintz, E.; Quick, R. The impact of water, sanitation, and hygiene interventions on the health and well-being of people living with HIV: A systematic review. J. Acquir. Immune Defic. Syndr. 2015, 68 (Suppl. 3), S318–S330. [Google Scholar] [CrossRef]
- Kolb, H.; Martin, S. Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes. BMC Med. 2017, 15, 131. [Google Scholar] [CrossRef] [Green Version]
- Gate, L.; Warren-Gash, C.; Clarke, A.; Bartley, A.; Fowler, E.; Semple, G.; Strelitz, J.; Dutey, P.; Tookman, A.; Rodger, A. Promoting lifestyle behaviour change and well-being in hospital patients: A pilot study of an evidence-based psychological intervention. J. Public Health (Oxf.) 2016, 38, e292–e300. [Google Scholar] [CrossRef] [PubMed]
- Krieger, J.; Higgins, D.L. Housing and Health: Time Again for Public Health Action. Am. J. Public Health 2002, 92, 758–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aspinall, R.; Lang, P.O. Interventions to restore appropriate immune function in the elderly. Immun. Ageing A 2018, 15. [Google Scholar] [CrossRef] [PubMed]
Description | N = 1495 | Percentage | |
---|---|---|---|
Age groups | |||
50–59 | Current age of the participants | 860 | 57.5 |
60–69 | 301 | 20.1 | |
70–79 | 232 | 15.5 | |
80+ | 102 | 6.8 | |
Sex | |||
Male | Sexual orientation | 722 | 48.3 |
Female | 773 | 51.7 | |
Marital status | |||
Not Married | Current living arrangement | 1183 | 79.1 |
Married/Cohabitating | 312 | 20.9 | |
Religion | |||
Catholic | Religious affiliation | 1086 | 72.6 |
Islam/Other | 409 | 27.4 | |
Living condition | |||
Satisfactory | Self-reported situation of living environment | 870 | 58.7 |
Neural | 426 | 28.5 | |
Not Satisfactory | 199 | 12.8 | |
Tobacco | |||
Yes | History of tobacco use | 387 | 25.7 |
No | 1108 | 74.3 | |
Alcohol | |||
Yes | History of alcohol use | 865 | 57.8 |
No | 629 | 42.2 | |
Sleep difficulty | |||
None | Self-reported difficulty in falling asleep | 669 | 44.7 |
Mild/Moderate | 481 | 32.2 | |
Severe/Extreme | 345 | 23.1 | |
Multimorbidity | |||
0 | Total number of diagnosed NCDs | 1070 | 71.6 |
1 | 311 | 20.8 | |
>1 | 114 | 7.6 | |
Country | |||
South Africa | Country of survey | 514 | 34.4 |
Uganda | 981 | 65.6 |
None 49.7% (41.4, 58.1) | Mild/Moderate 34.5% (28.9, 40.5) | Severe/Extreme 15.7% (12.2, 19.9) | p | |
---|---|---|---|---|
Sex | ||||
Male | 63.8% (53.7, 72.7) | 24.4% (18.3, 31.8) | 11.7% (8.2, 16.4) | <0.001 |
Female | 37.2% (30.9, 43.7) | 43.5% (38.6, 48.6) | 19.3% (15.8, 23.3) | |
Country | ||||
South Africa | 27.4% (22.0, 33.4) | 49.9% (45.0, 54.9) | 22.7% (19.0, 26.9) | <0.001 |
Uganda | 61.3% (54.6, 67.6) | 28.4% (23.6, 33.7) | 10.4% (7.9, 13.5) |
Has Back Pain 53.3% (45.8, 60.4) | No Back Pain 46.7% (39.5, 54.0) | p | |
---|---|---|---|
Sex | |||
Male | 43.5% (35.7, 51.6) | 62.2% (55.4, 67.8) | <0.001 |
Female | 56.5% (48.4, 64.3) | 37.8% (32.0, 44.1) | |
Country | |||
South Africa | 27.4% (18.9, 37.6) | 72.6% (62.2, 80.9) | <0.001 |
Uganda | 64.7% (60.1, 69.1) | 35.2% (30.7, 39.6) |
Poor SRH 61.2% (51.7, 70.0) | Depression 37.2% (34.8, 39.6) | Poor QoL 80.5% (70.8, 87.5) | |
---|---|---|---|
Sex | |||
Male | 55.3% (44.4, 65.8) | 40.0% (36.1, 44.1) | 79.6% (67.5, 88.0) |
Female | 66.5% (58.3, 73.9) | 34.6% (30.5, 39.0) | 81.3% (72.7, 87.6) |
p-value | <0.001 | <0.001 | <0.001 |
Country | |||
South Africa | 46.5% (32.7, 60.9) | 69.8% (59.2, 78.7) | 82.1% (67.8, 90.9) |
Uganda | 67.8% (61.6, 73.5) | 22.5% (17.9, 28.0) | 79.8% (71.1, 86.4) |
p-value | <0.001 | <0.001 | <0.001 |
South Africa | Uganda | |||||
---|---|---|---|---|---|---|
SRH | Depression | Quality of Life | SRH | Depression | Quality of Life | |
Age (50–59) | ||||||
60–69 | 0.838 | 0.943 | 0.834 | 1.174 | 1.226 | 0.921 |
(0.584, 1.203) | (0.616, 1.445) | (0.559, 1.246) | (0.655, 2.106) | (0.482, 3.117) | (0.512, 1.658) | |
70–79 | 0.431 *** | 0.618 | 0.326 *** | 0.582 | 0.523 | 0.369 * |
(0.278, 0.669) | (0.376, 1.017) | (0.188, 0.568) | (0.278, 1.218) | (0.127, 2.158) | (0.159, 0.858) | |
80+ | 0.380 ** | 0.473 * | 0.469 | 0.396 | 0.475 | 1.112 |
(0.198, 0.727) | (0.250, 0.896) | (0.218, 1.008) | (0.0800, 1.956) | (0.0378, 5.976) | (0.230, 5.380) | |
Sex (Male) | ||||||
Female | 1.106 | 1.024 | 1.195 | 1.497 | 0.451 | 0.964 |
(0.738, 1.656) | (0.650, 1.612) | (0.752, 1.897) | (0.776, 2.886) | (0.156, 1.309) | (0.492, 1.890) | |
Currently married (No) | ||||||
Yes | 1.154 | 0.700 | 1.091 | 1.043 | 0.797 | 0.725 |
(0.786, 1.693) | (0.442, 1.109) | (0.704, 1.689) | (0.570, 1.906) | (0.291, 2.179) | (0.381, 1.378) | |
Religion (Christian) | ||||||
Islam/other | 1.161 | 0.564 * | 0.964 | 0.965 | 0.144 | 0.880 |
(0.724, 1.861) | (0.322, 0.989) | (0.557, 1.669) | (0.427, 2.181) | (0.0152, 1.355) | (0.385, 2.013) | |
Smokes (No) | ||||||
Yes | 0.995 | 1.061 | 0.803 | 1.246 | 0.607 | 1.225 |
(0.690,1.435) | (0.708,1.591) | (0.531,1.216) | (0.599,2.593) | (0.161,2.293) | (0.584,2.570) | |
Alcohol (No) | ||||||
Yes | 0.936 | 1.081 | 1.122 | 0.807 | 2.493 | 0.918 |
(0.619, 1.416) | (0.689, 1.697) | (0.697, 1.807) | (0.445, 1.465) | (0.929, 6.692) | (0.496, 1.701) | |
Living condition (Not satisfactory) | ||||||
Neutral | 0.776 | 0.345 *** | 0.205 *** | 0.730 | 0.663 | 0.169 *** |
(0.538, 1.120) | (0.217, 0.550) | (0.125, 0.337) | (0.408, 1.308) | (0.233, 1.890) | (0.0884, 0.323) | |
Satisfactory | 1.378 | 0.895 | 0.493 * | 1.025 | 3.013 | 0.333 ** |
(0.856, 2.218) | (0.529, 1.514) | (0.277, 0.877) | (0.463, 2.268) | (0.910, 9.980) | (0.148, 0.749) | |
Sleep difficulty (Severe/Extreme) | ||||||
Mild/Moderate | 0.573 ** | 2.104 *** | 0.356 *** | 0.819 | 3.366 * | 0.346 ** |
(0.404, 0.813) | (1.388,3.189) | (0.233, 0.544) | (0.440, 1.524) | (1.295, 8.747) | (0.174, 0.686) | |
None | 0.483 ** | 2.380 *** | 0.487 * | 0.520 | 3.149 | 0.649 |
(0.300, 0.777) | (1.501, 3.775) | (0.280, 0.849) | (0.230, 1.177) | (0.954, 10.39) | (0.273, 1.545) | |
Multimorbidity (0) | ||||||
1 | 0.745 | 1.027 | 0.879 | 0.640 | 1.035 | 0.735 |
(0.526, 1.056) | (0.695, 1.517) | (0.589, 1.310) | (0.373, 1.096) | (0.427, 2.507) | (0.416, 1.297) | |
>1 | 0.735 | 1.426 | 0.936 | 2.263 | 1.567 | 5.955 * |
(0.429, 1.259) | (0.833, 2.441) | (0.504, 1.736) | (0.497, 10.31) | (0.245, 10.03) | (1.316, 26.94) | |
General pain (No) | ||||||
Mild/Moderate | 2.309 *** | 1.496 | 0.756 | 0.944 | 3.118 * | 0.900 |
(1.219,7.438) | (0.938,2.388) | (0.378, 1.818) | (0.496, 2.606) | (1.175,8.270) | (0.498, 1.624) | |
Severe/Extreme | 2.271 *** | 3.482 *** | 0.655 | 0.709 | 13.86 *** | 0.856 |
(1.447, 4.143) | (2.060, 5.885) | (0.371, 2.158) | (0.267, 1.571) | (3.700, 21.88) | (0.383, 2.638) | |
Back pain (No) | ||||||
Yes | 1.813 *** | 1.640 * | 1.505 * | 1.538 | 0.581 | 1.210 |
(1.308,2.512) | (1.425, 3.964) | (1.028, 2.202) | (0.899, 2.629) | (0.244, 1.382) | (0.685, 2.139) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Pu, R.; Ghose, B.; Tang, S. Chronic Musculoskeletal Pain, Self-Reported Health and Quality of Life among Older Populations in South Africa and Uganda. Int. J. Environ. Res. Public Health 2018, 15, 2806. https://doi.org/10.3390/ijerph15122806
Wang C, Pu R, Ghose B, Tang S. Chronic Musculoskeletal Pain, Self-Reported Health and Quality of Life among Older Populations in South Africa and Uganda. International Journal of Environmental Research and Public Health. 2018; 15(12):2806. https://doi.org/10.3390/ijerph15122806
Chicago/Turabian StyleWang, Chao, Run Pu, Bishwajit Ghose, and Shangfeng Tang. 2018. "Chronic Musculoskeletal Pain, Self-Reported Health and Quality of Life among Older Populations in South Africa and Uganda" International Journal of Environmental Research and Public Health 15, no. 12: 2806. https://doi.org/10.3390/ijerph15122806
APA StyleWang, C., Pu, R., Ghose, B., & Tang, S. (2018). Chronic Musculoskeletal Pain, Self-Reported Health and Quality of Life among Older Populations in South Africa and Uganda. International Journal of Environmental Research and Public Health, 15(12), 2806. https://doi.org/10.3390/ijerph15122806