Assessment of Tomato (Solanum lycopersicum L.) Producers’ Exposure Level to Pesticides, in Kouka and Toussiana (Burkina Faso)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Observation Sites
2.2. Observations and Measurements
- -
- The pesticides used by the producer (commercial name of the PPP, active substances, recommended dose and actual dose used);
- -
- The personal protective equipment (PPE) worn by the producer;
- -
- The quality of the material (measuring container used for dosing and spraying);
- -
- The negligent behaviour (eating, smoking, urinating, ...) during the application;
- -
- The sanitation measures taken after pesticide application immediately washing hands and feet.
- -
- The treated area during each application, using a Global Positioning System (GPS);
- -
- The doses and volumes of spray mix used, with graduated receptacles;
- -
- Preparation, application and rinsing times of the equipment, using a chronometer;
- -
- Temperature (°C) and wind speed (m/s), using a CFM/CMM Thermo-Anemometer, model DT-619 (Ruby Electronics, Saratoga, CA, USA);
- -
- Air humidity, with a digital thermo-hygrometer using a Profi-Thermo-Hygrometer, TFA (Dostmann GmbH + Co. KG, Zum Ottersberg, Germany).
2.3. Computation of the Health Risk Indexes
- -
- HRIactive substance = Health risk index for the active substance;
- -
- TRI = Toxicological risk index of the active substance = [Σ of acute toxicity points + (Σ of chronic toxicity points × FPer)]2. To obtain a greater distribution of values and to highlight more the pesticides presenting at higher risk, the sum of the variables was squared;
- -
- FPer = Factor taking into account the environmental persistence, (based on TD50 in soil) or the bioaccumulation potential in humans (BCF value). It varies from 1 to 2.5;
- -
- FPf = Weighting factor related to formulation type. It varies from 1 to 2 depending on the potential contamination via the formulation (respectively low risk and high risk);
- -
- FCP = Compensation factor to account for the active substance concentration in the end-use product and the applied dose (concentration × recommended dose/ha);
- -
- 10 = Quotient to obtain an HRI of an acceptable order of magnitude, as the value obtained may be very high for some active substances with high TRI.
2.4. Treatments Frequency and Intensity Indicator
- -
- TFITreatment = TFI calculated during each PPP application;
- -
- DU = Dose used by the producer during each loading of the sprayer;
- -
- RD = Recommended dose of the PPP;
- -
- St = Area of the plot treated during each application;
- -
- ST = Total field area.
2.5. The Model Used to Assess Producers Dermal Exposure
2.6. Risk Characterization
2.7. Statistical Analysis
3. Results
3.1. PPP Used by the Surveyed Producers and Toxicity of Active Substances
3.2. Level of Education and PPE Worn by Tomato Producers
3.3. Status of Sprayers and PPP Dosage
3.4. Intensity of Treatment and Observed Carelessness
3.5. Exposure Risks and Health Effects Witnessed by Producers.
4. Discussion
5. Conclusions
- -
- Raising awareness among producers to the risks and the training on the recognition of pests and auxiliaries to be respected;
- -
- Increasing popularity of biopesticides and alternative methods, as well as the promotion of integrated pest management;
- -
- Providing training based on the rules of best practice for the use of pesticides, emphasizing safety instructions and the importance of the use of protective equipment.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ministère de l’Agriculture, des Ressources Halieutiques, de l’Assainissement et de la Sécurité Alimentaire (MARHASA) du Burkina Faso. Superficies et Production Maraîchère par Région (Campagne 2013–2014); Ministère de l’Agriculture, des Ressources Halieutiques, de l’Assainissement et de la Sécurité Alimentaire (MARHASA): Ouagadougou, Burkina Faso, 2014; 5p.
- Konaté, G.; Barro, N.; Fargette, D.; Swanson, M.M.; Harrison, B.D. Occurrence of whitefly-transmitted geminiviruses in crops in Burkina Faso, and their serological detection and differentiation. Ann. Appl. Biol. 1995, 126, 121–130. [Google Scholar] [CrossRef]
- Ouattara, A.; Tiendrébéogo, F.; Lefeuvre, P.; Claverie, S.; Hoareau, M.; Traoré, E.V.; Barro, N.; Traoré, O.; Lett, J.-M. Tomato leaf curl Burkina Faso virus: A novel tomato-infecting monopartite begomovirus from Burkina Faso. Arch. Virol. 2017, 162, 1427–1429. [Google Scholar] [CrossRef] [PubMed]
- Son, D.; Bonzi, S.; Somda, I.; Bawin, T.; Boukraa, S.; Verheggen, F.; Francis, F.; Legreve, A.; Schiffers, B. First record of Tuta Absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae) in Burkina Faso. Afr. Entomol. 2017, 25, 259–263. [Google Scholar] [CrossRef]
- Alavanja, M.C.R.; Hoppin, J.A.; Kamel, F. Health effects of chronic pesticide exposure: Cancer and neurotoxicity. Annu. Rev. Public Health 2004, 25, 155–197. [Google Scholar] [CrossRef] [PubMed]
- Tomenson, J.A.; Matthews, G.A. Causes and types of health effects during the use of crop protection chemicals: Data from a survey of over 6300 smallholder applicators in 24 different countries. Int. Arch. Occup. Environ. Health 2009, 82, 935–949. [Google Scholar] [CrossRef] [PubMed]
- Ouédraogo, R.; Toé, A.M.; Ilboudo, S.; Guissou, P.I. Risk of workers exposure to pesticides during mixing/loading and supervision of the application in sugarcane cultivation in Burkina Faso. Int. J. Environ. Sci. Toxicol. Res. 2014, 2, 143–151. [Google Scholar]
- Schiffers, B.; Mar, A. Sécurité des Opérateurs et Bonnes Pratiques Phytosanitaires; COLEACP/PIP Press: Brussels, Belgium, 2011; 246p. [Google Scholar]
- Son, D.; Somda, I.; Legreve, A.; Schiffers, B. Pratiques phytosanitaires des producteurs de tomates du Burkina Faso et risques pour la santé et l’environnement. Cah. Agric. 2017. [Google Scholar] [CrossRef]
- Macfarlane, E.; Carey, R.; Keegel, T.; El-Zaemay, S.; Fritschi, L. Dermal exposure associated with occupational end use of pesticides and the role of protective measures. Saf. Health Work 2013, 4, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Ouédraogo, M.; Tankoana, A.; Ouédraogo, T.Z.; Guissou, I.P. Étude des facteurs de risques d’intoxication chez les utilisateurs de pesticides dans la région cotonnière de Fada N’Gourma au Burkina Faso. Environ. Risques Santé 2009, 8, 343–347. [Google Scholar]
- Ahouangninou, C.; Fayomi, B.E.; Martin, T. Evaluation des risques sanitaires et environnementaux des pratiques phytosanitaires des producteurs maraîchers dans la commune rurale de Tori-Bossito (Sud-Bénin). Cah. Agric. 2011, 20, 216–222. [Google Scholar]
- Tarla, D.N.; Meutchieye, F.; Assako, V.A.; Fontem, D.A.; Kome, J.J.A. Exposure of market gardeners during pesticide application in the western highlands of Cameroon. Sch. J. Agric. Sci. 2013, 3, 172–177. [Google Scholar]
- Kamel, F.; Hoppin, J.A. Association of pesticide exposure with neurologic dysfunction and disease. Environ. Health Perspect. 2004, 112, 950–958. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, F.L.; Bacci, L.; Fernandes, M.S. Impact and selectivity of insecticides to predators and parasitoids. EntomoBrasilis 2010, 3, 1–10. [Google Scholar] [CrossRef]
- Agbohessi, T.P.; Toko, I.I.; Kestemont, P. État des lieux de la contamination des écosystèmes aquatiques par les pesticides organochlorés dans le Bassin cotonnier béninois. Cah. Agric. 2012, 21, 46–56. [Google Scholar]
- Comité Permanet Inter-États de Lutte Contre la Sécheresse dans le Sahel (CILSS). Réglementation Commune aux états Membres du CILSS sur L’homologation des Pesticides; CILSS: Ouagadougou, Burkina Faso, 1999; 30p. [Google Scholar]
- European Food Safety Authority (EFSA). Guidance on the assessment of exposure of operators, workers, residents and bystanders in risk assessment for plant protection products. EFSA J. 2014, 12, 55. [Google Scholar]
- Samuel, O.; Dion, S.; St-Laurent, L.; April, M.H. Indicateur de Risque des Pesticides du Québec-IROeQ-Santé et Environnement; Ministère de l’Agriculture, des Pêcheries et de l’Alimentation/Ministère du Développement Durable, de l’Environnement et des Parcs/Institut National de santé Publique du Québec: Quebec, QC, Canada, 2012; 48p. [Google Scholar]
- EU—Pesticides Database. Available online: http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=activesubstance.detail&language=EN&selectedID=1755 (accessed on 12 November 2017).
- Ahouangninou, C.; Martin, T.; Edorh, P.; Bio-Bangana, S.; Samuel, O.; St-Laurent, L.; Dion, S.; Fayomi, B. Characterization of health and environmental risks of pesticide use in market-gardening in the rural city of Tori-Bossito in Benin, West Africa. J. Environ. Prot. 2012, 3, 241–248. [Google Scholar] [CrossRef]
- Bouagga, A.; Chaabane, H.; Bahrouni, H.; Hassine, K. The use of IRPeQModel as indicator to estimate the risk of some pesticides on human health and environment. Tunis. J. Plant Prot. 2016, 11, 133–141. [Google Scholar]
- Pingault, N.; Pleyber, E.; Champeaux, C.; Guichard, L.; Omon, B. Produits phytosanitaires et protection intégrée des cultures: L’indicateur de fréquence de traitement (IFT). Notes et Études Socio-Économiques 2009, 32, 61–94. [Google Scholar]
- Ministère de l’Agriculture, de l’Agroalimentaire et de la Forêt (MAAF). Guide Méthodologique. Indicateur de Fréquence de Traitements Phytopharmaceutiques (IFT); MAAF: Paris, France, 2015; 58p.
- Direction Régionale de l’Alimentation, de l’Agriculture et de la Forêt (DRAAF). La Methodologie de Calcul de L’indicateur de Frequence de Traitements (IFT); DRAAF: Auvergne-Rhône-Alpes, France, 2014; 4p.
- Kim, S.-H.; Lee, C.-H.; Kim, K.-H.; Jeong, S.-H. Comparative estimation of exposure level and health risk assessment of highly produced pesticides to agriculture operators by using default dermal absorption rate or actual measurement values. Biomed. Sci. Lett. 2016, 22, 199–206. [Google Scholar] [CrossRef]
- Illyassou, K.M.; Adamou, R.; Schiffers, B. Risk assessment for small farmers exposed to plant protection products in the Niger river valley. Commun. Appl. Biol. Sci. 2017, 81, 1–13. [Google Scholar]
- World Health Organization (WHO). Generic Risk Assessment Model for Indoor and Outdoor Space Spraying of Insecticides; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- A Language and Environment for Statistical Computing. R Foundation for Statistical. Computing. 2017. Available online: https://www.r-project.org/ (accessed on 15 June 2017).
- Siqueira, H.A.A.; Guedes, R.N.C.; Picanco, M.C. Insecticide resistance in populations of Tuta absoluta (Lepidoptera: Gelechiidae). Agric. For. Entomol. 2000, 2, 147–153. [Google Scholar] [CrossRef]
- Achaleke, J.; Brévault, T. Inheritance and stability of pyrethroid resistance in the cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) in Central Africa. Pest Manag. Sci. 2009, 66, 137–141. [Google Scholar]
- Gnankiné, O.; Mouton, L.; Savadogo, A.; Martin, T.; Sanon, A.; Dabire, R.K.; Vavre, F.; Fleury, F. Biotype status and resistance to neonicotinoids and carbosulfan in Bemisia tabaci (Hemiptera: Aleyrodidae) in Burkina Faso, West Africa. Int. J. Pest Manag. 2013, 59, 95–102. [Google Scholar] [CrossRef]
- Kim, K.-H.; Kabir, E.; Jahan, S.A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Berenstein, G.A.; Hughes, E.A.; March, H.; Rojic, G.; Zalts, A.; Montserrat, J.M. Pesticide potential dermal exposure during the manipulation of concentrated mixtures at small horticultural and floricultural production units in Argentina: The formulation effect. Sci. Total Environ. 2014, 472, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Jallow, M.F.A.; Awadh, D.G.; Albaho, M.S.; Devi, V.Y.; Thomas, B.M. Pesticide risk behaviors and factors influencing pesticide use among farmers in Kuwait. Sci. Total Environ. 2017, 574, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Lebailly, P.; Bouchart, V.; Baldi, I.; Lecluse, Y.; Heutte, N.; Gislard, A.; Malas, J.-P. Exposure to pesticides in open-field farming in France-Abstract. Ann. Occup. Hyg. 2009, 53, 69–81. [Google Scholar] [PubMed]
- Hruska, A.J.; Corriols, M. The impact of training in integrated pest management among nicaraguan maize farmers: Increased net returns and reduced health risk. Int. J. Occup. Environ. Health 2002, 8, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Settle, W.; Soumare, M.; Sarr, M.; Garba, M.H.; Poisot, A.-S. Reducing pesticide risks to farming communities: Cotton farmer field schools in Mali. Philos. Trans. R. Soc. B Biol. Sci. 2014. [Google Scholar] [CrossRef] [PubMed]
- Nigg, H.N.; Stamper, J.H.; Queen, R.M. Dicofol exposure to Florida citrus applicators: Effects of protective clothing. Arch. Environ. Contam. Toxicol. 1986, 15, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Flores, A.P.; Berenstein, G.A.; Hughes, E.A.; Zalts, A.; Montserrat, J.M. Pesticide risk assessment in flower greenhouses in Argentina: The importance of manipulating concentrated products. J. Hazard. Mater. 2011, 189, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Lawson, A.J.; Akohou, H.; Lorge, S.; Schiffers, B. Three methods to assess levels of farmers’ exposure to pesticides in the urban and peri-urban areas of Northern Benin. Tunis. J. Plant Prot. 2017, 12, 91–108. [Google Scholar]
- Syamimi, I.; Tengku Hanidza, T.I.; Puziah, A.L. Estimation of the pesticide exposure during spraying among applicators. Health Environ. J. 2011, 2, 18–22. [Google Scholar]
- Kim, E.; Moon, J.-K.; Lee, H.; Kim, S.; Hwang, Y.-J.; Kim, B.-J.; Lee, J.; Lee, D.-H.; Kim, J.-H. Exposure and risk assessment of operators to insecticide acetamiprid during treatment on apple orchard. Korean J. Hort. Sci. Technol. 2013, 31, 239–245. [Google Scholar] [CrossRef]
- Kim, E.; Moon, J.-K.; Choi, H.; Kim, J.-H. Probabilistic exposure assessment for applicators during treatment of the fungicide kresoxim-methyl on an apple orchard by a speed sprayer. J. Agric. Food Chem. 2015, 63, 10366–10371. [Google Scholar] [CrossRef] [PubMed]
- Agence Nationale de Sécurité Sanitaire de L’alimentation, de L’environnement et du Travail (ANSES). Exposition aux Pesticides; ANSES: Maisons-Alfort, France, 2010; 52p.
- Fenske, R.A.; Day, E.W. Assessment of exposure for pesticide handlers in agricultural, residential and institutional environments. In Occupational and Residential Exposure Assessment for Pesticides; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2005; pp. 11–43. [Google Scholar]
- Baldi, I.; Lebailly, P.; Bouvier, G.; Rondeau, V.; Kientz-Bouchart, V.; Canal-Raffin, M.; Garrigou, A. Levels and determinants of pesticide exposure in re-entry workers in vineyards: Results of the PESTEXPO study. J. Expo. Sci. Environ. Epidemiol. 2012, 22, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Poet, T.S. Assessing dermal absorption. Toxicol. Sci. 2000, 58, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Aubertot, J.N.; Barbier, J.M.; Carpentier, A.; Gril, J.J.; Guichard, L.; Lucas, P.; Savary, S.; Savini, I.V.M. Agriculture et environnement. In Réduire L’utilisation des Pesticides et en Limiter les Impacts Environnementaux Expertise Scientifique Collective, Synthèse du Rapport; INRA et Cemagref: Paris, France, 2005; 64p. [Google Scholar]
- Gil, Y.; Sinfort, C.; Guillaume, S.; Brunet, Y.; Palagos, B. Influence of micrometeorological factors on pesticide loss to the air during vine spraying: Data analysis with statistical and fuzzy inference models. Biosyst. Eng. 2008, 100, 184–197. [Google Scholar] [CrossRef]
- Schiffers, B.; Moreira, C. Fondements de la Protection des Cultures; COLEACP/PIP Press: Brussels, Belgium, 2011; 294p. [Google Scholar]
- El-Aissaoui, A. Guide Pratique pour les Opérateurs Agricoles: Les Bases de L’application Rationnelle des Produits Phytosanitaires; INRA: Settat, Maroc, 2015; 32p. [Google Scholar]
- Ohui, D.H. Risques Environnementaux et Sanitaires Associés à L’utilisation des Pesticides Autour de Petites Retenues d’eau: Cas du Bassin Versant de Nariarlé; En Ingénierie de l’eau et de L’environnement: Ouagadougou, Burkina Faso, 2014; 110p. [Google Scholar]
- Lehmann, E.; Dibié, J.-J.N.; Konaté, Y.; de Alencastro, L.P. Pesticides use in gardening areas in Burkina Faso and evaluation of the resulting risk for the operator using the new AOEM proposed by EFSA guidelines. In Proceedings of the 68th International Symposium on Crop Protection, Ghent, Belgique, 17 May 2016. [Google Scholar]
- Joint Meeting on Pesticide Residues (JMPR). Lambda-Cyhalothrin; Federal Institute for Risk Assessment: Berlin, Germany, 2007; pp. 549–783. [Google Scholar]
- Institut National de l’Environnement Industriel et des Risques (INERIS). Fiche de la Lambda Cyhalothine-N° CAS 91465-08-6; Validation du Groupe D’experts de Juin 2011; INERIS: Paris, France, 2011; 18p. [Google Scholar]
- Toé, A.M.; Ouedraogo, M.; Ouedraogo, R.; Ilboudo, S.; Guissou, P.I. Pilot study on agricultural pesticide poisoning in Burkina Faso. Interdiscip. Toxicol. 2013, 6, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Wumbei, A. Risk assessment of applicator exposure to pesticides on cotton farms in Ghana. J. Environ. Earth Sci. 2013, 3, 156–172. [Google Scholar]
Parameters Used in the UK-POEM Model | Details |
---|---|
Application method | Backpack sprayer (15 L tank) |
Formulation type | EC, SC or WP |
Dermal absorption from product | 10% default value [28] |
Absorption through inhalation | 100% default value [28] |
Container | 1 L, any closure |
Personal Protective Equipment (PPE) | Scenario 1: none Scenario 2: mask, gloves and coverall |
Surface treated/day | 1 ha (default value) |
Duration of spraying | 6 h (default value) |
Operator weight | 60 kg (WHO conventional body weight) |
Trade Name of PPP | Area of Use | Formulation | Active Substances | Chemical Families | SPC Approval | WHO Class |
---|---|---|---|---|---|---|
ACARIUS 018 EC | Vegetables | EC | Abamectin (18 g/L) | Avermectin | Yes | I |
AVAUNT 150 SC | Cotton | CS | Indoxacarb 150 g/L | Carbamates | Yes | - |
BIOK 16 | Vegetables | WP | Bt var. kurstaki: 2–4% (16,000 UI/mg) | Bacillaceae | Yes | III |
COGA 80 WP | Vegetables | WP | Mancozeb (800 g/kg) | Carbamates | Yes | U |
CONQUEST 176 EC | Cotton | EC | Cypermethrin (144 g/L) + Acetamiprid (32 g/L) | Pyrethroids + Neonicotinoids | Yes | II |
DUEL CP 186 EC | Cotton | EC | Cypermethrin (36 g/L) + Profenofos (150 g/L) | Pyrethroids + Organophosphates | None | II |
EMA 19.2 EC | Cotton | EC | Emamectin benzoate (19.2 g/L) | Avermectin | Yes | II |
EMACOT 019 EC | Cotton | EC | Emamectin benzoate (19 g/L) | Avermectin | Yes | II |
EMIR FORT 104 EC | Cotton | EC | Cypermethrin (72 g/L) + Acetamiprid (32 g/L) | Pyrethroids + Neonicotinoids | Yes | II |
JUMPER 75 WG | Vegetables | WG | Chlorothalonil (750 g/kg) | Chloronitrile | Yes | U |
K-OPTIMAL | Vegetables | EC | -Cyhalothrin (15 g/L) + Acetamiprid (20 g/L) | Pyrethroids + Neonicotinoids | Yes | II |
LAMBDA POWER | Vegetables | EC | λ-Cyhalothrin (25 g) | Pyrethroids | None | II |
LAMBDA SUPER 2.5 EC | Vegetables | EC | λ-Cyhalothrin (25 g) | Pyrethroids | None | II |
LAMBDACAL P636EC | Cotton | EC | Λ-Chyhalothrine (36 g/L) + Profenofos (600 g/L) | Pyrethroids + Organophosphates | Yes | II |
PACHA 25 EC | Vegetables | EC | Λ-Cyhalothrin (15 g/L) + Acetamiprid (10 g/L) | Pyrethroids + Neonicotinoids | Yes | II |
POLYTRINE 336 EC | Cotton | EC | Cypermethrin (36 g/L) + Profenofos (300 g/L) | Pyrethroids + Organophosphates | None | II |
SAVAHALER | Vegetables | WP | Methomyl (250 g/kg) | Carbamates | Yes | Ib |
TROPISTAR 336 EC | Cotton | EC | Cypermethrin (36 g/L) + Profenofos (300 g/L) | Pyrethroids + Organophosphates | None | II |
Active Substances | Use Rate | Σ of Acute Toxicity Points | Σ of Chronic Toxicity Points | FPer | TRI | FPf | FCP | Points Allocated to HRI | CLP Classification |
---|---|---|---|---|---|---|---|---|---|
Profenofos | 12% | 20 | 18 | 1 | 1444 | 2 | 0.73 | 209.4 | H302, H312, H332 |
Indoxacarb | 6% | 15 | 18 | 1.5 | 1764 | 2 | 0.52 | 183.2 | H301, H317, H332, H372 |
Methomyl | 2% | 26 | 4 | 1.5 | 1024 | 2 | 0.78 | 160.0 | H300 |
Mancozeb | 1% | 10 | 6 | 1 | 256 | 2 | 2.00 | 102.4 | H317, H361d |
Cypermethrin | 13% | 18 | 4 | 2 | 676 | 2 | 0.53 | 71.3 | H302, H332, H335 |
Chlorothalonil | 1% | 20 | 0 | 1 | 400 | 1 | 1.63 | 65.0 | H317, H318, H330, H335, H351 |
Abamectin | 4% | 19 | 4 | 1.5 | 625 | 2 | 0.51 | 64.2 | H300, H330, H361d, H372 |
λ-Cyhalothrin | 35% | 25 | 0 | 2 | 625 | 2 | 0.50 | 64.0 | H301, H312, H330 |
Emamectin benzoate | 5% | 17 | 0 | 1 | 289 | 2 | 0.51 | 29.3 | Unclassified |
Acetamiprid | 26% | 9 | 2 | 1 | 121 | 2 | 0.52 | 12.5 | H302 |
Bacillus thuringiensis | 1% | Unclassified | Unclassified | Unclassified | Unclassified | Unclassified | Unclassified | Unclassified | Unclassified |
Trade Name of PPP | Active Substances | Points Allocated to HRI |
---|---|---|
POLYTRINE 336 EC | Cypermethrin + Profenofos | 280.63 |
TROPISTAR P 186 EC | Cypermethrin + Profenofos | 280.63 |
LAMBDACAL P 636 EC | Lambda-cyhalothrin + Profenofos | 273.29 |
AVAUNT 150 SC | Indoxacarb | 183.15 |
SAVAHALER | Methomyl | 160.00 |
DUEL CP 186 EC | Cypermethrin + Profenofos | 136.05 |
COGA 80 WP | Mancozeb | 102.40 |
CONQUEST 176 EC | Acetamiprid + Cypermethrin | 83.71 |
EMIR FORT | Acetamiprid + Cypermethrin | 83.71 |
K-OPTIMAL | λ-Cyhalothrin + Acetamiprid | 76.37 |
LAMANET 46 EC | λ-Cyhalothrin + Acetamiprid | 76.37 |
PACHA 25 EC | λ-Cyhalothrin + Acetamiprid | 76.37 |
JUMPER 75 WC | Chlorothalonil | 65.00 |
ACARIUS 018 EC | Abamectin | 64.19 |
LAMBDA POWER | λ-Cyhalothrin | 63.91 |
LAMDA SUPER 2.5 EC | λ-Cyhalothrin | 63.91 |
EMA 19.2 EC | Emamectin benzoate | 29.32 |
EMACOT 019 EC | Emamectin benzoate | 29.32 |
BIO K 16 | Bacillus thuringiensis | Unclassified |
PPE/Clothing | SS and S | SS and T | LS and T | Total |
---|---|---|---|---|
No protection | 20% | 43% | 7% | 70% |
Mask | 0% | 7% | 17% | 24% |
Mask + Gloves | 0% | 3% | 3% | 6% |
Total | 20% | 53% | 27% | 100% |
Communes | Number of Producers | TFI Minimum | Average TFI | TFI at the 70th Percentile | Maximum TFI |
---|---|---|---|---|---|
Kouka | 15 | 0.36 | 2.29 ± 2.24 | 2.32 | 9.78 |
Toussiana | 15 | 0.03 | 0.27 ± 0.20 | 0.30 | 0.83 |
Total | 30 | 0.03 | 1.28 ± 1.87 | 1.67 | 9.78 |
Active Substances | LD50 (Dermal) (mg/kg·bw/day) | Number of Producers Using This Active Substance | Operator Exposure (mg/kg·bw/day): Unprotected | Operator Exposure (mg/kg·bw/day): Complete Protection | AOEL (mg/kg·bw/day) | % AOEL (Unprotected) | % AOEL (Complete Protection) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Kouka | Toussiana | Kouka | Toussiana | Kouka | Toussiana | Kouka | Toussiana | Kouka | Toussiana | |||
Chlorothalonil | >10,000 | 1 | 0 | 1.7855 | - | 0.3978 | - | 0.0090 | 19,839% | - | 4420% | - |
Methomyl | >2000 | 0 | 2 | - | 0.1738 | - | 0.0204 | 0.0025 | - | 6950% | - | 816% |
Mancozeb | >5000 | 1 | 0 | 1.6905 | - | 0.2371 | - | 0.035 | 4830% | - | 677% | - |
Emamectin benzoate | >2000 | 2 | 2 | 0.0129 | 0.0144 | 0.0018 | 0.0018 | 0.0003 | 4314% | 4800% | 611% | 583% |
Lamda-cyhalothrin | 632 | 14 | 12 | 0.0172 | 0.0151 | 0.0021 | 0.0021 | 0.0006 | 2732% | 2410% | 339% | 339% |
Indoxacarb | >5000 | 5 | 0 | 0.0714 | - | 0.0080 | - | 0.0040 | 1785% | - | 199% | - |
Profenofos | >2000 | 9 | 1 | 0.2753 | 0.2914 | 0.0319 | 0.0442 | Unavailable | - | - | - | - |
Abamectine | >2000 | 0 | 3 | - | 0.0151 | - | 0.0021 | 0.0025 | - | 604% | - | 83% |
Cypermethrin | >4920 | 9 | 2 | 0.0595 | 0.0407 | 0.0065 | 0.0058 | 0.0600 | 99% | 68% | 11% | 10% |
Acetamiprid | >2000 | 10 | 12 | 0.0136 | 0.0105 | 0.0016 | 0.0015 | 0.0700 | 19% | 15% | 2% | 2% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, D.; Zerbo, F.K.B.; Bonzi, S.; Schiffers, B.; Somda, I.; Schiffers, B.; Legreve, A. Assessment of Tomato (Solanum lycopersicum L.) Producers’ Exposure Level to Pesticides, in Kouka and Toussiana (Burkina Faso). Int. J. Environ. Res. Public Health 2018, 15, 204. https://doi.org/10.3390/ijerph15020204
Son D, Zerbo FKB, Bonzi S, Schiffers B, Somda I, Schiffers B, Legreve A. Assessment of Tomato (Solanum lycopersicum L.) Producers’ Exposure Level to Pesticides, in Kouka and Toussiana (Burkina Faso). International Journal of Environmental Research and Public Health. 2018; 15(2):204. https://doi.org/10.3390/ijerph15020204
Chicago/Turabian StyleSon, Diakalia, Fabrice K. B. Zerbo, Schémaeza Bonzi, Bruno Schiffers, Irénée Somda, Bruno Schiffers, and Anne Legreve. 2018. "Assessment of Tomato (Solanum lycopersicum L.) Producers’ Exposure Level to Pesticides, in Kouka and Toussiana (Burkina Faso)" International Journal of Environmental Research and Public Health 15, no. 2: 204. https://doi.org/10.3390/ijerph15020204
APA StyleSon, D., Zerbo, F. K. B., Bonzi, S., Schiffers, B., Somda, I., Schiffers, B., & Legreve, A. (2018). Assessment of Tomato (Solanum lycopersicum L.) Producers’ Exposure Level to Pesticides, in Kouka and Toussiana (Burkina Faso). International Journal of Environmental Research and Public Health, 15(2), 204. https://doi.org/10.3390/ijerph15020204