Identifying the Driving Factors of Water Quality in a Sub-Watershed of the Republican River Basin, Kansas USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Selection
2.2. Land Cover Area, Cropland Area and Production Calculations
2.3. Weather Data—Precipitation and Growing Degree Days
2.4. Well Water Irrigation
2.5. Estimating Nitrate Flux
2.6. Statistical Model
3. Results
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
Independent Variable Name | Mean | SD | Min | Max | Coefficients | p Value | R2 | n |
---|---|---|---|---|---|---|---|---|
Winter Wheat Planted (Acres) | 2.36 × 105 | 1.98 × 104 | 1.84 × 105 | 2.74 × 105 | 7.356 | 0.179 | 0.134 | 15 |
Corn Planted (Acres) | 1.14 × 105 | 1.70 × 104 | 8.47 × 104 | 1.49 × 105 | −0.95 | 0.885 | 0.002 | 15 |
Soybeans Planted (Acres) | 1.72 × 105 | 3.20 × 104 | 1.26 × 105 | 2.26 × 105 | 4.35 | 0.202 | 0.122 | 15 |
Alfalfa Planted (Acres) | 29,992 | 5008.29 | 23,344 | 39,135 | 32.87 | 0.348 | 0.126 | 9 |
Oats Planted (Acres) | 270.02 | 265.74 | 69.28 | 951.03 | −766.4 | 0.236 | 0.193 | 9 |
Rye Planted (Acres) | 71.34 | 82.29 | 1.56 | 217.92 | 2043 | 0.337 | 0.132 | 9 |
Sorghum Planted (Acres) | 89,047 | 17,596.86 | 69,024 | 122,766 | 1.135 | 0.912 | 0.002 | 9 |
Sunflowers Planted (Acres) | 683.40 | 765.25 | 3.78 | 2194.06 | −168.5 | 0.468 | 0.077 | 9 |
Barley Planted (Acres) | 7.74 | 10.10 | 0.67 | 30.98 | 5493 | 0.787 | 0.013 | 8 |
Fallow/Idle Cropland (Acres) | 7879 | 10,224 | 2318 | 34,955 | −15.01 | 0.384 | 0.110 | 9 |
Winter Wheat Production (BU) | 2.54 × 107 | 6.51 × 106 | 1.84 × 107 | 4.37 × 107 | −0.012 | 0.469 | 0.041 | 15 |
Corn Production (BU) | 1.46 × 107 | 7.96 × 106 | 1.18 × 106 | 2.53 × 107 | 0.003 | 0.841 | 0.003 | 15 |
Soybeans Production (BU) | 5.80 × 106 | 3.65 × 106 | 0 | 1.09 × 107 | 0.020 | 0.516 | 0.033 | 15 |
Precipitation Fall/Winter (mm) | 93.61 | 65.35 | 21.90 | 256.20 | 1605.0 | 0.258 | 0.097 | 15 |
Precipitation Spring (mm) | 304.97 | 94.20 | 131.50 | 448.90 | 2897.0 | 0.005 ** | 0.470 | 15 |
Precipitation Summer (mm) | 331.68 | 105.52 | 177.80 | 535.10 | 555.1 | 0.601 | 0.022 | 15 |
Snow Fall/Winter (mm) | 393.07 | 257.80 | 89.00 | 1012.00 | 251.0 | 0.563 | 0.026 | 15 |
Snow Spring (mm) | 40.53 | 47.38 | 0.00 | 152.00 | −2048.0 | 0.381 | 0.059 | 15 |
Total Irrigation from Well Water (mm) | 82.35 | 26.90 | 44.48 | 129.21 | −9108 | 0.015 * | 0.379 | 15 |
GDD Fall/Winter Base Level 0 °C | 338.54 | 129.14 | 130.15 | 557.75 | −1696.1 | 0.033 * | 0.303 | 15 |
GDD Spring Base Level 0 °C | 1715.56 | 278.47 | 1148.15 | 2189.75 | 28.27 | 0.944 | <0.001 | 15 |
GDD Summer Base Level 0 °C | 2535.54 | 189.78 | 2128.45 | 2807.20 | −26.24 | 0.965 | <0.001 | 15 |
GDD Fall/Winter Base Level 10 °C | 22.16 | 22.38 | 1.95 | 75.35 | −5310.0 | 0.280 | 0.089 | 15 |
GDD Spring Base Level 10 °C | 750.95 | 131.98 | 510.35 | 1017.55 | −300.5 | 0.724 | 0.010 | 15 |
GDD Summer Base Level 10 °C | 1377.58 | 140.51 | 1045.75 | 1612.75 | −184.2 | 0.818 | 0.004 | 15 |
Grassland/Pasture (Acres) | 452,543 | 63,233 | 375,554 | 577,197 | −2.877 | 0.296 | 0.154 | 9 |
Barren Land (Acres) | 38.35 | 18.89 | 10.80 | 67.92 | 5542 | 0.559 | 0.051 | 9 |
Herbaceous Wetlands (Acres) | 106.88 | 88.75 | 30.01 | 311.34 | 724.6 | 0.722 | 0.019 | 9 |
Woody Wetlands (Acres) | 4543 | 1445 | 2704 | 6493 | 97.91 | 0.424 | 0.093 | 9 |
Open Water (Acres) | 9635 | 1721 | 6973 | 12,876 | 171.1 | 0.066 • | 0.404 | 9 |
Deciduous Forest (Acres) | 62,573 | 10,631 | 53,039 | 88,223 | 21.07 | 0.187 | 0.234 | 9 |
Evergreen Forest (Acres) | 5.79 | 10.42 | 0.44 | 30.98 | −13295 | 0.502 | 0.078 | 8 |
Mixed Forest (Acres) | 43.26 | 28.05 | 7.98 | 97.60 | 4596 | 0.468 | 0.077 | 9 |
Developed Land—High Intensity (Acres) | 303.7 | 30.91 | 250.2 | 335.8 | 5824 | 0.301 | 0.151 | 9 |
Developed Land—Medium Intensity (Acres) | 1102.7 | 105.03 | 995.4 | 1305.9 | −1548 | 0.354 | 0.123 | 9 |
Developed Land—Low Intensity (Acres) | 8450 | 429.27 | 7829 | 8,902 | −116.4 | 0.782 | 0.012 | 9 |
Developed Land—Open Space (Acres) | 60,907 | 15,513.63 | 47,337 | 83,324 | −2.325 | 0.842 | 0.006 | 9 |
References
- U.S. Environmental Protection Agency. National Water Quality Inventory: Report to Congress, 2017 Reporting Cycle. Available online: https://www.epa.gov/sites/production/files/2017-12/documents/305brtc_finalowow_08302017.pdf (accessed on 24 April 2018).
- Bennett, E.M.; Carpenter, S.R.; Caraco, N.F. Human impact on erodable phosphorus and eutrophication: A global perspective. Bioscience 2001, 51, 227–234. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Goolsby, D.A.; Battaglin, W.A.; Lawrence, G.B.; Artz, R.S.; Aulenbach, B.T.; Hooper, R.P.; Keeney, D.R.; Stensland, G.J. Flux and Sources of Nutrients in the Mississippi-Atchafalaya River Basin: Topic 3 Report for the Integrated Assessment on Hypoxia in the Gulf of Mexico; NOAA Coastal Ocean Program Decision Analysis Series 17; NOAA/National Centers for Coastal Ocean Science: Silver Spring, MD, USA, 1999.
- Mitsch, W.J.; Day, J.W.; Gilliam, J.W.; Groffman, P.M.; Hey, D.L.; Randall, G.W.; Wang, N. Reducing Nitrogen Loading to the Gulf of Mexico from the Mississippi River Basin: Strategies to Counter a Persistent Ecological Problem. BioScience 2001, 51, 373–388. [Google Scholar] [CrossRef]
- Rabalais, N.N.; Turner, R.E.; Wiseman, W.J. Gulf of Mexico Hypoxia, A.K.A “The Dead Zone”. Annu. Rev. Ecol. Syst. 2002, 33, 235–263. [Google Scholar] [CrossRef]
- Silvis, B.J. An Assessment of the Influence of Economic Drivers of Land Use Change on Nitrate Concentrations in the Red River of the North Basin. Master Thesis, University of North Dakota, Grand Forks, ND, USA, May 2016. [Google Scholar]
- Schilling, K.E.; Libra, R.D. The relationship of nitrate concentrations in streams to row crop land use in Iowa. J. Environ. Qual. 2000, 29, 1846–1851. [Google Scholar] [CrossRef]
- Donner, S.D.; Kucharik, C.J.; Foley, J.A. Impact of Changing Land Use Practices on Nitrate Export by the Mississippi River. Glob. Biogeochem. Cycles 2004, 18. [Google Scholar] [CrossRef]
- Broussard, W.; Turner, R.E. A century of changing land-use and water quality relationships in the continental US. Front. Ecol. Environ. 2009, 7, 302–307. [Google Scholar] [CrossRef]
- Donner, S. The Impact of Cropland Cover on River Nutrient Levels in the Mississippi River Basin. Glob. Ecol. Biogeogr. 2003, 12, 341–355. [Google Scholar] [CrossRef]
- Schilling, K.E.; Chan, K.; Liu, H.; Zhang, Y. Quantifying the Effect of Land Use Land Cover Change on Increasing Discharge in the Upper Mississippi River. J. Hydrol. 2010, 387, 343–345. [Google Scholar] [CrossRef]
- Aguilera, R.; Marcé, R.; Sabater, S. Linking in-stream nutrient flux to land use and inter-annual hydrological variability at the watershed scale. Sci. Total Environ. 2012, 440, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Shabani, A.; Zhang, X.; Ell, M. Modeling Water Quantity and Sulfate Concentrations in the Devils Lake Watershed Using Coupled SWAT and CE-QUAL-W2. JAWRA 2017, 53, 748–760. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture. 2012 Census of Agriculture; United States Summary and State Data. Available online: https://www.agcensus.usda.gov/Publications/2012/Full_Report/Volume_1,_Chapter_1_US/usv1.pdf (accessed on 12 March 2018).
- U.S. Department of the Interior. Reclamation, Managing Water in the West; Final Full Report; Republican River Basin study: Denver, CO, USA, 2016. Available online: https://www.usbr.gov/watersmart/bsp/docs/finalreport/republican/republican-river-basin-study-final-report.pdf (accessed on 12 March 2018).
- U.S. Department of Agriculture. CropScape—Cropland Data Layer. 2016. Available online: https://nassgeodata.gmu.edu/CropScape/ (accessed on 10 November 2017).
- U.S. Department of Agriculture. Field Crops: Usual planting and harvesting dates. 2010. Available online: http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1251 (accessed on 31 July 2017).
- U.S. Department of Agriculture, Agriculture Economic Research Service. Tailored Reports: Crop Production Practices. 2017. Available online: https://data.ers.usda.gov/reports.aspx?ID=17883 (accessed on 29 April 2018).
- McMaster, G.S.; Wilhelm, W.W. Growing degree-days: One equation, two interpretations. Agric. For. Meteorol. 1997, 87, 291–300. [Google Scholar] [CrossRef]
- Runkel, R.L.; Crawford, C.G.; Cohn, T.A. Load Estimator (LOADEST): A FORTRAN Program for Estimating Constituent Loads in Streams and Rivers: U.S. Geological Survey Techniques and Methods; U.S. Geological Survey: Reston, VA, USA, 2004.
- Booth, G.; Raymond, P.; Oh, N.H. LoadRunner, Software and website, 2007. Yale University: New Haven, CT. Available online: https://environment.yale.edu/loadrunner/ (accessed on 15 March 2017).
- Gunst, R.F.; Webster, J.T. Regression analysis and problems of multicollinearity. Commun. Stat.-Theory Methods 1975, 4, 277–292. [Google Scholar] [CrossRef]
- Royer, T.V.; David, M.B.; Gentry, L.E. Timing of Riverine Export of Nitrate and Phosphorus from Agricultural Watersheds in Illinois: Implications for Reducing Nutrient Loading to the Mississippi River. Environ. Sci. Technol. 2006, 40, 4126–4131. [Google Scholar] [CrossRef] [PubMed]
- Brown, C. Climate change and compact breaches: How the Supreme Court missed an opportunity to incentivize future interstate-water-compact compliance in Kansas v. Nebraska. Ecol. Law Q. 2016, 43, 245–274. [Google Scholar]
- Hooper, D.U.; Johnson, L. Nitrogen Limitation in Dryland Ecosystems: Responses to Geographical and Temporal Variation in Precipitation. Biogeochemistry 1999, 46, 247–293. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, L.; Jia, X.; Seielstad, G.; Helgason, C. Zone mapping application for precision-farming: A decision support tool for variable rate application. Precis. Agric. 2010, 11, 103–114. [Google Scholar] [CrossRef]
- Mayer, P.M.; Reynolds, S.K.; McCutchen, M.D.; Canfield, T.J. Meta-Analysis of Nitrogen Removal in Riparian Buffers. J. Environ. Qual. 2007, 36, 1172–1180. [Google Scholar] [CrossRef] [PubMed]
Independent Variable Name | Mean | SD | Min | Max | Coefficients | p Value | R2 | n |
---|---|---|---|---|---|---|---|---|
Precipitation Spring (mm) | 304.97 | 94.20 | 131.50 | 448.90 | 2897.0 | 0.005 ** | 0.470 | 15 |
Total Irrigation from Well Water (mm) | 82.35 | 26.90 | 44.48 | 129.21 | −9108 | 0.015 * | 0.379 | 15 |
GDD Fall/Winter Base Level 0 °C | 338.54 | 129.14 | 130.15 | 557.75 | −1696.1 | 0.033 * | 0.303 | 15 |
Open Water (Acres) | 9635 | 1721 | 6973 | 12,876 | 171.1 | 0.066 • | 0.404 | 9 |
Coefficients | p Value | |
---|---|---|
Spring Precipitation (mm) (1) | 7669.7 | <0.001 *** |
Annual Irrigation from Well Water (mm) (2) | 10,769.9 | 0.07 • |
(1) × (2) | −55.1 | 0.004 ** |
Intercept | −1,449,518 | 0.020 * |
Model R2 | 0.858 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burke, M.W.V.; Shahabi, M.; Xu, Y.; Zheng, H.; Zhang, X.; VanLooy, J. Identifying the Driving Factors of Water Quality in a Sub-Watershed of the Republican River Basin, Kansas USA. Int. J. Environ. Res. Public Health 2018, 15, 1041. https://doi.org/10.3390/ijerph15051041
Burke MWV, Shahabi M, Xu Y, Zheng H, Zhang X, VanLooy J. Identifying the Driving Factors of Water Quality in a Sub-Watershed of the Republican River Basin, Kansas USA. International Journal of Environmental Research and Public Health. 2018; 15(5):1041. https://doi.org/10.3390/ijerph15051041
Chicago/Turabian StyleBurke, Morgen W. V., Mojtaba Shahabi, Yeqian Xu, Haochi Zheng, Xiaodong Zhang, and Jeffrey VanLooy. 2018. "Identifying the Driving Factors of Water Quality in a Sub-Watershed of the Republican River Basin, Kansas USA" International Journal of Environmental Research and Public Health 15, no. 5: 1041. https://doi.org/10.3390/ijerph15051041
APA StyleBurke, M. W. V., Shahabi, M., Xu, Y., Zheng, H., Zhang, X., & VanLooy, J. (2018). Identifying the Driving Factors of Water Quality in a Sub-Watershed of the Republican River Basin, Kansas USA. International Journal of Environmental Research and Public Health, 15(5), 1041. https://doi.org/10.3390/ijerph15051041