Association of Insulin Resistance with Bone Strength and Bone Turnover in Menopausal Chinese-Singaporean Women without Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cohort Characteristics
2.2. Anthropometric Data
2.3. Biochemical Measurements
2.4. Body Composition and Areal Bone Mineral Density (aBMD)
2.5. Volumetric Bone Mineral Density (vBMD)
2.6. Femoral Neck Strength
2.7. Statistical Analysis
3. Results
3.1. Cohort Characteristics
3.2. Associations between Bone Strength Parameters and Homeostasis Model Assessment of Insulin Resistance (HOMA-IR)
3.3. Comparison of Bone Strength Parameters between “High HOMA-IR” and “Low HOMA-IR” Groups
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Vestergaard, P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—A meta-analysis. Osteoporos. Int. 2007, 18, 427–444. [Google Scholar] [CrossRef] [PubMed]
- King, H.; Aubert, R.E.; Herman, W.H. Global burden of diabetes, 1995–2025: Prevalence, numerical estimates, and projections. Diabetes Care 1998, 21, 1414–1431. [Google Scholar] [CrossRef] [PubMed]
- Johnell, O.; Kanis, J. Epidemiology of osteoporotic fractures. Osteoporos. Int. 2005, 16, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Tonks, K.T.; White, C.P.; Center, J.R.; Samocha-Bonet, D.; Greenfield, J.R. Bone turnover is suppressed in insulin resistance, independent of adiposity. J. Clin. Endocrinol. Metab. 2017, 102, 1112–1121. [Google Scholar] [CrossRef] [PubMed]
- Jiajue, R.; Jiang, Y.; Wang, O.; Li, M.; Xing, X.; Cui, L.; Yin, J.; Xu, L.; Xia, W. Suppressed bone turnover was associated with increased osteoporotic fracture risks in non-obese postmenopausal Chinese women with type 2 diabetes mellitus. Osteoporos. Int. 2014, 25, 1999–2005. [Google Scholar] [CrossRef] [PubMed]
- Thrailkill, K.M. Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. AJP Endocrinol. Metab. 2005, 289, E735–E745. [Google Scholar] [CrossRef] [PubMed]
- De Paula, F.J.A.; Horowitz, M.C.; Rosen, C.J. Novel insights into the relationship between diabetes and osteoporosis. Diabetes Metab. Res. Rev. 2010, 26, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Fulzele, K.; Riddle, R.C.; Di Girolamo, D.J.; Cao, X.; Wan, C.; Chen, D.; Faugere, M.C.; Aja, S.; Hussain, M.A.; Brüning, J.C.; et al. Insulin Receptor Signaling in Osteoblasts Regulates Postnatal Bone Acquisition and Body Composition. Cell 2010, 142, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Ferron, M.; Wei, J.; Yoshizawa, T.; Del Fattore, A.; De Pinho, R.A.; Teti, A.; Ducy, P.; Karsenty, G. Insulin Signaling in Osteoblasts Integrates Bone Remodeling and Energy Metabolism. Cell 2010, 142, 296–308. [Google Scholar] [CrossRef] [PubMed]
- Johansson, H.; Kanis, J.A.; Odén, A.; McCloskey, E.; Chapurlat, R.D.; Christiansen, C.; Cummings, S.R.; Diez-Perez, A.; Eisman, J.A.; Fujiwara, S.; et al. A meta-analysis of the association of fracture risk and body mass index in women. J. Bone Miner. Res. 2014, 29, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Beck, T.J.; Petit, M.A.; Wu, G.; LeBoff, M.S.; Cauley, J.A.; Chen, Z. Does Obesity Really Make the Femur Stronger? BMD, Geometry, and Fracture Incidence in the Women’s Health Initiative-Observational Study. J. Bone Miner. Res. 2009, 24, 1369–1379. [Google Scholar] [CrossRef] [PubMed]
- Petit, M.A.; Beck, T.J.; Shults, J.; Zemel, B.S.; Foster, B.J.; Leonard, M.B. Proximal femur bone geometry is appropriately adapted to lean mass in overweight children and adolescents. Bone 2005, 36, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Srikanthan, P.; Crandall, C.J.; Miller-Martinez, D.; Seeman, T.E.; Greendale, G.A.; Binkley, N.; Karlamangla, A.S. Insulin resistance and bone strength: Findings from the study of midlife in the United States. J. Bone Miner. Res. 2014, 29, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Shanbhogue, V.V.; Finkelstein, J.S.; Bouxsein, M.L.; Yu, E.W. Association between insulin resistance and bone structure in nondiabetic postmenopausal women. J. Clin. Endocrinol. Metab. 2016, 101, 3114–3122. [Google Scholar] [CrossRef] [PubMed]
- Karlamangla, A.S.; Barrett-Connor, E.; Young, J.; Greendale, G.A. Hip fracture risk assessment using composite indices of femoral neck strength: The Rancho Bernardo study. Osteoporos. Int. 2004, 15, 62–70. [Google Scholar] [PubMed]
- Ishii, S.; Cauley, J.A.; Crandall, C.J.; Srikanthan, P.; Greendale, G.A.; Huang, M.H.; Danielson, M.E.; Karlamangla, A.S. Diabetes and femoral neck strength: Findings from the hip strength across the menopausal transition study. J. Clin. Endocrinol. Metab. 2012, 97, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Moseley, K.F.; Dobrosielski, D.A.; Stewart, K.J.; Sellmeyer, D.E.; jan de Beur, S.M. Lean Mass Predicts Hip Geometry in Men and Women With Non-Insulin-Requiring Type 2 Diabetes Mellitus. J. Clin. Densitom. 2011, 14, 332–339. [Google Scholar] [CrossRef] [PubMed]
- DeFronzo, R.A.; Tobin, J.D.; Andres, R. Glucose clamp technique: A method for quantifying insulin secretion and resistance. Am. J. Physiol. 1979, 237, E214–E223. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Bonora, E.; Targher, G.; Alberiche, M.; Bonadonna, R.C.; Saggiani, F.; Zenere, M.B.; Monauni, T.; Muggeo, M. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: Studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care 2000, 23, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and abuse of HOMA modeling. Diabetes Care 2004, 27, 1487–2004. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Shih, A.Z.; Woo, Y.C.; Fong, C.H.; Leung, O.Y.; Janus, E.; Cheung, B.M.; Lam, K.S. Optimal cut-offs of homeostasis model assessment of insulin resistance (HOMA-IR) to identify dysglycemia and type 2 diabetes mellitus: A15-year prospective study in Chinese. PLoS ONE 2016, 11, 1–11. [Google Scholar]
- Shin, D.; Kim, S.; Kim, K.H.; Lee, K.; Park, S.M. Association Between Insulin Resistance and Bone Mass in Men. J. Clin. Endocrinol. Metab. 2014, 99, 988–995. [Google Scholar] [CrossRef] [PubMed]
- Beck, T.J.; Ruff, C.B.; Warden, K.E.; Scott, W.W.; Rao, G.U. Predicting femoral neck strength from bone mineral data. A structural approach. Invest. Radiol. 1990, 25, 6–18. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ye, J.; Guo, G.; Lan, Z.; Li, X.; Pan, Z.; Rao, X.; Zheng, Z.; Luo, F.; Lin, L.; et al. Vitamin D Status Is Negatively Correlated with Insulin Resistance in Chinese Type 2 Diabetes. Int. J. Endocrinol. 2016, 2016, 7–11. [Google Scholar] [CrossRef] [PubMed]
- von Hurst, P.R.; Stonehouse, W.; Coad, J. Vitamin D supplementation reduces insulin resistance in South Asian women living in New Zealand who are insulin resistant and vitamin D deficient—A randomised, placebo-controlled trial. Br. J. Nutr. 2010, 103, 549. [Google Scholar] [CrossRef] [PubMed]
- Chiu, K.C.; Chuang, L.M.; Lee, N.P.; Ryu, J.M.; McGullam, J.L.; Tsai, G.P.; Saad, M.F. Insulin sensitivity is inversely correlated with plasma intact parathyroid hormone level. Metabolism 2000, 49, 1501–1505. [Google Scholar] [CrossRef] [PubMed]
- Stanley, T.; Bredella, M.A.; Pierce, L.; Misra, M. The ratio of parathyroid hormone to vitamin D is a determinant of cardiovascular risk and insulin sensitivity in adolescent girls. Metab. Syndr. Relat. Disord. 2013, 11, 56–62. [Google Scholar] [CrossRef] [PubMed]
All Subjects | Low HOMA-IR | High HOMA-IR | p | |||||||
---|---|---|---|---|---|---|---|---|---|---|
N (Group Size) | 96 | 60 | 36 | |||||||
Age (years) | 60.70 | ± | 4.17 | 60.80 | ± | 4.30 | 60.50 | ± | 3.99 | 0.76 |
Years menopausal | 10.60 | ± | 6.04 | 10.20 | ± | 6.00 | 11.33 | ± | 6.15 | 0.39 |
Weight (kg) | 55.90 | ± | 7.25 | 54.20 | ± | 6.26 | 58.78 | ± | 7.96 | <0.01* |
Height (m) | 1.56 | ± | 0.05 | 1.56 | ± | 0.06 | 1.56 | ± | 0.05 | 0.94 |
Body mass index (BMI) (kg/m2) | 22.90 | ± | 2.69 | 22.20 | ± | 2.44 | 24.03 | ± | 2.76 | <0.01* |
Fat Mass (kg) | 21.90 | ± | 4.96 | 20.86 | ± | 4.25 | 23.62 | ± | 5.62 | <0.01* |
Lean Body Mass (kg) | 31.59 | ± | 3.10 | 30.93 | ± | 2.88 | 32.69 | ± | 3.19 | <0.01* |
Fasting glucose (mmol/L) | 4.90 | ± | 0.46 | 4.80 | ± | 0.41 | 5.04 | ± | 0.51 | <0.05* |
Fasting Insulin (mIU/L) | 6.20 | ± | 3.05 | 4.40 | ± | 1.21 | 9.25 | ± | 2.70 | <0.01* |
HOMA-IR | 1.36 | ± | 0.71 | 0.93 | ± | 0.27 | 2.07 | ± | 0.64 | <0.01* |
Unadjusted | Adjusted for LBM | Adjusted for LBM and Age | |||||||
---|---|---|---|---|---|---|---|---|---|
β | p | R2 | β | p | R2 | β | p | R2 | |
DXA aBMD | |||||||||
Femoral neck | 0.054 | 0.604 | 0.003 | −0.064 | 0.540 | 0.113 | −0.064 | 0.531 | 0.162 |
Total hip | 0.000 | 0.997 | 0.000 | −0.096 | 0.365 | 0.075 | −0.096 | 0.359 | 0.111 |
Lumbar spine | −0.053 | 0.605 | 0.003 | −0.199 | 0.050 | 0.172 | −0.199 | 0.049 | 0.189 |
QCT aBMD | |||||||||
Femoral neck | |||||||||
total | −0.062 | 0.549 | 0.004 | −0.144 | 0.185 | 0.057 | −0.144 | 0.177 | 0.097 |
cortical | −0.047 | 0.648 | 0.002 | −0.103 | 0.350 | 0.027 | −0.103 | 0.346 | 0.050 |
trabecular | 0.008 | 0.942 | 0.000 | −0.050 | 0.645 | 0.027 | −0.051 | 0.644 | 0.041 |
Total hip | |||||||||
total | −0.015 | 0.888 | 0.000 | −0.097 | 0.367 | 0.055 | −0.098 | 0.358 | 0.095 |
cortical | −0.044 | 0.671 | 0.002 | −0.103 | 0.349 | 0.029 | −0.103 | 0.337 | 0.083 |
trabecular | 0.086 | 0.410 | 0.007 | −0.013 | 0.899 | 0.085 | −0.013 | 0.900 | 0.087 |
QCT vBMD | |||||||||
Femoral neck | |||||||||
total | −0.046 | 0.659 | 0.002 | −0.065 | 0.557 | 0.005 | −0.065 | 0.555 | 0.026 |
cortical | 0.085 | 0.415 | 0.007 | 0.088 | 0.426 | 0.007 | 0.088 | 0.416 | 0.052 |
trabecular | −0.019 | 0.855 | 0.000 | −0.022 | 0.840 | 0.000 | −0.023 | 0.837 | 0.031 |
cort.vol/tot.vol | −0.093 | 0.369 | 0.009 | −0.114 | 0.301 | 0.012 | −0.114 | 0.293 | 0.054 |
Total hip | |||||||||
total | −0.006 | 0.956 | 0.000 | −0.003 | 0.976 | 0.000 | −0.003 | 0.975 | 0.040 |
cortical | −0.049 | 0.636 | 0.002 | −0.107 | 0.329 | 0.029 | −0.107 | 0.328 | 0.047 |
trabecular | 0.040 | 0.703 | 0.002 | 0.023 | 0.835 | 0.004 | 0.023 | 0.836 | 0.015 |
cort.vol/tot.vol | −0.070 | 0.500 | 0.005 | −0.048 | 0.666 | 0.009 | −0.048 | 0.666 | 0.016 |
L3 vertebra | |||||||||
trabecular | −0.140 | 0.175 | 0.020 | −0.187 | 0.087 | 0.037 | −0.187 | 0.075 | 0.120 |
Composite Strength Indices | |||||||||
CSI | −0.360 | 0.000* | 0.130 | −0.319 | 0.003* | 0.143 | −0.320 | 0.002* | 0.186 |
BSI | −0.261 | 0.011* | 0.068 | −0.219 | 0.042* | 0.083 | −0.220 | 0.039* | 0.112 |
ISI | −0.397 | 0.000* | 0.158 | −0.373 | 0.000* | 0.162 | −0.374 | 0.000* | 0.197 |
Bone Turnover Markers | |||||||||
CTx-1 | 0.071 | 0.491 | 0.005 | 0.064 | 0.561 | 0.005 | 0.064 | 0.562 | 0.009 |
25(OH) Vitamin D3 | −0.002 | 0.984 | 0.000 | 0.028 | 0.798 | 0.007 | 0.028 | 0.798 | 0.024 |
PTH | 0.109 | 0.291 | 0.012 | 0.030 | 0.780 | 0.062 | 0.030 | 0.780 | 0.069 |
Low HOMA-IR Group | High HOMA-IR Group | p | |||||
---|---|---|---|---|---|---|---|
DXA aBMD | |||||||
Femoral neck (g/cm2) | 0.64 | ± | 0.09 | 0.64 | ± | 0.08 | 0.978 |
Total hip (g/cm2) | 0.79 | ± | 0.11 | 0.78 | ± | 0.09 | 0.536 |
Lumbar spine (g/cm2) | 0.87 | ± | 0.14 | 0.85 | ± | 0.13 | 0.404 |
QCT aBMD | |||||||
Femoral neck | |||||||
total (g/cm2 K2HPO4) | 0.69 | ± | 0.11 | 0.66 | ± | 0.09 | 0.160 |
cortical (g/cm2 K2HPO4) | 0.44 | ± | 0.11 | 0.42 | ± | 0.07 | 0.299 |
trabecular (g/cm2 K2HPO4) | 0.24 | ± | 0.03 | 0.24 | ± | 0.04 | 0.377 |
Total hip | |||||||
total (g/cm2 K2HPO4) | 0.75 | ± | 0.12 | 0.72 | ± | 0.10 | 0.257 |
cortical (g/cm2 K2HPO4) | 0.46 | ± | 0.11 | 0.43 | ± | 0.08 | 0.169 |
trabecular (g/cm2 K2HPO4) | 0.28 | ± | 0.03 | 0.29 | ± | 0.04 | 0.683 |
QCT vBMD | |||||||
Femoral neck | |||||||
total (mg/cm3 K2HPO4) | 312.58 | ± | 56.31 | 301.46 | ± | 36.53 | 0.294 |
cortical (mg/cm3 K2HPO4) | 982.96 | ± | 113.00 | 998.28 | ± | 109.29 | 0.518 |
trabecular (mg/cm3 K2HPO4) | 139.44 | ± | 19.42 | 134.77 | ± | 19.70 | 0.261 |
cortical to total volume ratio | 0.21 | ± | 0.07 | 0.20 | ± | 0.05 | 0.266 |
Total hip | |||||||
total (mg/cm3 K2HPO4) | 277.32 | ± | 59.01 | 270.17 | ± | 37.19 | 0.516 |
cortical (mg/cm3 K2HPO4) | 926.69 | ± | 85.80 | 924.89 | ± | 76.49 | 0.918 |
trabecular (mg/cm3 K2HPO4) | 133.29 | ± | 17.45 | 131.23 | ± | 17.76 | 0.580 |
cortical to total volume ratio | 0.22 | ± | 0.24 | 0.18 | ± | 0.04 | 0.294 |
L3 vertebra | |||||||
trabecular (mg/cm3 K2HPO4) | 109.08 | ± | 24.55 | 99.86 | ± | 28.79 | 0.098 |
Composite strength indices | |||||||
CSI (g/(kg×m)) | 3.56 | ± | 0.61 | 3.16 | ± | 0.57 | 0.002* |
BSI (g/(kg×m)) | 0.99 | ± | 0.22 | 0.89 | ± | 0.19 | 0.019* |
ISI (g/(kg×m)) | 0.23 | ± | 0.04 | 0.20 | ± | 0.04 | 0.001* |
Bone Turnover Markers | |||||||
CTx-1 (µg/L) | 0.51 | ± | 0.18 | 0.60 | ± | 0.30 | 0.067 |
25(OH)D3 (nmol/L) | 59.03 | ± | 14.65 | 60.33 | ± | 14.30 | 0.672 |
PTH (pmol/L) | 4.65 | ± | 1.26 | 5.24 | ± | 3.30 | 0.218 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalimeri, M.; Leek, F.; Wang, N.X.; Koh, H.R.; Roy, N.C.; Cameron-Smith, D.; Kruger, M.C.; Henry, C.J.; Totman, J.J. Association of Insulin Resistance with Bone Strength and Bone Turnover in Menopausal Chinese-Singaporean Women without Diabetes. Int. J. Environ. Res. Public Health 2018, 15, 889. https://doi.org/10.3390/ijerph15050889
Kalimeri M, Leek F, Wang NX, Koh HR, Roy NC, Cameron-Smith D, Kruger MC, Henry CJ, Totman JJ. Association of Insulin Resistance with Bone Strength and Bone Turnover in Menopausal Chinese-Singaporean Women without Diabetes. International Journal of Environmental Research and Public Health. 2018; 15(5):889. https://doi.org/10.3390/ijerph15050889
Chicago/Turabian StyleKalimeri, Maria, Francesca Leek, Nan Xin Wang, Huann Rong Koh, Nicole C. Roy, David Cameron-Smith, Marlena C. Kruger, Christiani Jeyakumar Henry, and John J. Totman. 2018. "Association of Insulin Resistance with Bone Strength and Bone Turnover in Menopausal Chinese-Singaporean Women without Diabetes" International Journal of Environmental Research and Public Health 15, no. 5: 889. https://doi.org/10.3390/ijerph15050889
APA StyleKalimeri, M., Leek, F., Wang, N. X., Koh, H. R., Roy, N. C., Cameron-Smith, D., Kruger, M. C., Henry, C. J., & Totman, J. J. (2018). Association of Insulin Resistance with Bone Strength and Bone Turnover in Menopausal Chinese-Singaporean Women without Diabetes. International Journal of Environmental Research and Public Health, 15(5), 889. https://doi.org/10.3390/ijerph15050889