Relationship between Body Mass Index, Cardiorespiratory and Musculoskeletal Fitness among South African Adolescent Girls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Participants
2.3. Measures
2.3.1. Anthropometric Measures
2.3.2. Cardiorespiratory Fitness
2.3.3. Muscular Strength
Upper and Lower Extremity Isometric Strength
Handgrip Strength
2.3.4. Flexibility
2.3.5. Joint Mobility
2.3.6. Musculoskeletal Complaints
2.4. Statistical Analysis
3. Results
3.1. Participants’ Characteristics
3.2. The Differences between Cardiorespiratory Fitness and Measures of Musculoskeletal Fitness among the BMI Groups
3.3. The Relationship between Body Mass Index, Cardiorespiratory and Musculoskeletal Fitness among the Participants
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Muthuri, S.K.; Francis, C.E.; Wachira, L.J.M.; LeBlanc, A.G.; Sampson, M.; Onywera, V.O.; Tremblay, M.S. Evidence of an overweight/obesity transition among school-aged children and youth in Sub-Saharan Africa: A systematic review. PLoS ONE 2014, 9, e92846. [Google Scholar] [CrossRef] [PubMed]
- Lopes, V.P.; Malina, R.M.; Maia, J.A.R.; Rodrigues, L.P. Body mass index and motor coordination: Non-linear relationships in children 6–10 years. Child Care Health Dev. 2018, 44, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef]
- Lundeen, E.A.; Norris, S.A.; Adair, L.S.; Richter, L.M.; Stein, A.D. Sex differences in obesity incidence: 20-Year prospective cohort in South Africa. Pediatr. Obes. 2016, 11, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Pienaar, A.E. Prevalence of overweight and obesity among primary school children in a developing country: NW-CHILD longitudinal data of 6–9-yr-old children in South Africa. BMC Obes. 2015, 2, 2. [Google Scholar] [CrossRef] [PubMed]
- Truter, L.; Du Toit, D. The relationship of overweight and obesity to the motor performance of children living in South Africa. S. Afr. Fam. Pract. 2012, 54, 429–435. [Google Scholar] [CrossRef]
- Kruger, H.S.; Puoane, T.; Senekal, M.; Van Der Merwe, M.T. Obesity in South Africa: Challenges for government and health professionals. Public Health Nutr. 2005, 8, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Monyeki, K.D.; Monyeki, M.A.; Brits, S.J.; Kemper, H.C.G.; Makgae, P.J. Development and tracking of body mass index from preschool age into adolescence in rural South African children: Ellisras Longitudinal Growth and Health Study. J. Health Popul. Nutr. 2008, 26, 405–417. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.P.; Resnicow, K.; James, S.; Funani, I.N.; Kambaran, N.S.; Omardien, R.G.; Masuka, P.; Sewpaul, R.; Vaughan, R.D.; Mbewu, A. Rapid increases in overweight and obesity among South African adolescents: Comparison of data from the South African National Youth Risk Behaviour Survey in 2002 and 2008. Am. J. Public Health 2012, 102, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, P.L.; Chen, M.L.; Huang, C.M.; Chen, W.C.; Li, C.H.; Chang, L.C. Physical activity, body mass index, and cardiorespiratory fitness among school children in Taiwan: A cross-sectional study. Int. J. Environ. Res. Public Health 2014, 11, 7275–7285. [Google Scholar] [CrossRef] [PubMed]
- Daniels, S.R. Complications of obesity in children and adolescents. Int. J. Obes. 2009, 33, S60. [Google Scholar] [CrossRef] [PubMed]
- Must, A.; Strauss, R.S. Risks and consequences of childhood and adolescent obesity. Int. J. Obes. 1999, 23, S2–S11. [Google Scholar] [CrossRef]
- Wu, N.; Chen, Y.; Yang, J.; Li, F. Childhood obesity and academic performance: The role of working memory. Front. Psychol. 2017, 8, 611. [Google Scholar] [CrossRef] [PubMed]
- Ortega, F.B.; Ruiz, J.R.; Castillo, M.J.; Sjöström, M. Physical fitness in childhood and adolescence: A powerful marker of health. Int. J. Obes. 2008, 32, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef] [PubMed]
- Deforche, B.; Lefevre, J.; Bourdeaudhuij, I.; Hills, A.P.; Duquet, W.; Bouckaert, J. Physical fitness and physical activity in obese and nonobese Flemish youth. Obesity 2003, 11, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Thivel, D.; Isacco, L.; Lazaar, N.; Aucouturier, J.; Ratel, S.; Doré, E.; Meyer, M.; Duché, P. Effect of a 6-month school-based physical activity program on body composition and physical fitness in lean and obese schoolchildren. Eur. J. Pediatr. 2011, 170, 1435–1443. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, C.; Shephard, R.J.; Stephans, T. (Eds.) Physical Activity, Fitness, and Health: The Model and Key Concepts Physical Activity, Fitness and Health: International Proceedings and Consensus Statement; Human Kinetics Publishers: Champaign, IL, USA, 1994. [Google Scholar]
- Knöpfli, B.H.; Radtke, T.; Lehmann, M.; Schätzle, B.; Eisenblätter, J.; Gachnang, A.; Wiederkehr, P.; Hammer, J.; Brooks-Wildhaber, J. Effects of a multidisciplinary inpatient intervention on body composition, aerobic fitness, and quality of life in severely obese girls and boys. J. Adolesc. Health 2008, 42, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Shultz, S.P.; Anner, J.; Hills, A.P. Paediatric obesity, physical activity and the musculoskeletal system. Obes. Rev. 2009, 10, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Wearing, S.C.; Hennig, E.M.; Byrne, N.M.; Steele, J.R.; Hills, A.P. The impact of childhood obesity on musculoskeletal form. Obes. Rev. 2006, 7, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, S.M.; Afifi, R.A.; Bearinger, L.H.; Blakemore, S.J.; Dick, B.; Ezeh, A.C.; Patton, G.C. Adolescence: A foundation for future health. Lancert 2012, 379, 1630–1640. [Google Scholar] [CrossRef]
- Olds, T.; Tomkinson, G.; Léger, L.; Cazorla, G. Worldwide variation in the performance of children and adolescents: An analysis of 109 studies of the 20-m shuttle run test in 37 countries. J. Sports Sci. 2006, 24, 1025–1038. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.R.; Castro-Piñero, J.; España-Romero, V.; Artero, E.G.; Ortega, F.B.; Cuenca, M.M.; Jimenez-Pavón, D.; Chillón, P.; Girela-Rejón, M.J.; Mora, J.; et al. Field-based fitness assessment in young people: The ALPHA health-related fitness test battery for children and adolescents. Br. J. Sports Med. 2010, 45, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Ortega, F.B.; Artero, E.G.; Ruiz, J.R.; España-Romero, V.; Jiménez-Pavón, D.; Vicente-Rodríguez, G.; Moreno, L.A.; Manios, Y.; Beghin, L.; Ottevaere, C.; et al. Physical fitness levels among European adolescents: The HELENA study. Br. J. Sports Med. 2011, 45, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Ortega, F.B.; Ruiz, J.R.; Labayen, I.; Martínez-Gómez, D.; Vicente-Rodriguez, G.; Cuenca-García, M.; Gracia-Marco, L.; Manios, Y.; Beghin, L.; Molnar, D.; et al. Health inequalities in urban adolescents: Role of physical activity, diet, and genetics. Pediatrics 2014, 133, e884–e895. [Google Scholar] [CrossRef] [PubMed]
- Malina, R.M.; Beunen, G.P.; Claessens, A.L.; Lefevre, J.; Eynde, B.V.; Renson, R.; Simons, J. Fatness and physical fitness of girls 7 to 17 years. Obesity 1995, 3, 221–231. [Google Scholar] [CrossRef]
- Thivel, D.; Ring-Dimitriou, S.; Weghuber, D.; Frelut, M.L.; O’Malley, G. Muscle strength and fitness in pediatric obesity: A systematic review from the European Childhood Obesity Group. Obes. Facts 2016, 9, 52–63. [Google Scholar] [CrossRef] [PubMed]
- O’malley, G.; Hussey, J.; Roche, E. A pilot study to profile the lower limb musculoskeletal health in children with obesity. Pediatr. Phys. Ther. 2012, 24, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.C.; Malina, R.M. Body mass index and individual physical fitness tests in Taiwanese youth aged 9–18 years. Pediatr. Obes. 2010, 5, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Cole, T.J.; Flegal, K.M.; Nicholls, D.; Jackson, A.A. Body mass index cut offs to define thinness in children and adolescents: International survey. BMJ 2007, 335, 194. [Google Scholar] [CrossRef] [PubMed]
- Leger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The multistage 20 metre shuttle run test for aerobic fitness. J. Sports Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Mahar, M.T.; Guerieri, A.M.; Hanna, M.S.; Kemble, C.D. Estimation of aerobic fitness from 20-m multistage shuttle run test performance. Am. J. Prev. Med. 2011, 41, S117–S123. [Google Scholar] [CrossRef] [PubMed]
- Beenakker, E.A.C.; Van der Hoeven, J.H.; Fock, J.M.; Maurits, N.M. Reference values of maximum isometric muscle force obtained in 270 children aged 4–16 years by hand-held dynamometry. Neuromuscul. Disord. 2001, 11, 441–446. [Google Scholar] [CrossRef]
- Bohannon, R.W. Test-retest reliability of hand-held dynamometry during a single session of strength assessment. Phys. Ther. 1986, 66, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, G.D.; Jelsma, D.; Jelsma, J.; Smits-Engelsman, B.C.M. The efficacy of two task-orientated interventions for children with Developmental Coordination Disorder: Neuromotor Task Training and Nintendo Wii Fit training. Res. Dev. Disabil. 2013, 34, 2449–2461. [Google Scholar] [CrossRef] [PubMed]
- Van den Beld, W.A.; Van der Sanden, G.A.; Janssen, A.J.; Sengers, R.C.; Verbeek, A.L.; Gabreëls, F.J. Comparison of 3 instruments to measure muscle strength in children: A prospective study. Eur. J. Paediatr. Neurol. 2011, 15, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Mathiowetz, V. Comparison of Rolyan and Jamar dynamometers for measuring grip strength. Occup. Ther. Int. 2002, 9, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Fess, E.E. Grip strength. In Clinical Assessment Recommendations, 2nd ed.; Casanova, J.S., Ed.; American Society of Hand Therapists: Chicago, IL, USA, 1992; pp. 163–177. [Google Scholar]
- López-Miñarro, P.A.; de Baranda Andújar, P.S.; Rodrñguez-Garcña, P.L. A comparison of the sit-and-reach test and the back-saver sit-and-reach test in university students. J. Sports Sci. Med. 2009, 8, 116–122. [Google Scholar] [PubMed]
- Mayorga-Vega, D.; Merino-Marban, R.; Viciana, J. Criterion-related validity of sit-and-reach tests for estimating hamstring and lumbar extensibility: A meta-analysis. J. Sports Sci. Med. 2014, 13, 1. [Google Scholar] [PubMed]
- Smits-Engelsman, B.; Klerks, M.; Kirby, A. Beighton score: A valid measure for generalized hypermobility in children. J. Pediatr. 2011, 158, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Hicks, C.L.; von Baeyer, C.L.; Spafford, P.A.; van Korlaar, I.; Goodenough, B. The Faces Pain Scale–Revised: Toward a common metric in pediatric pain measurement. Pain 2001, 93, 173–183. [Google Scholar] [CrossRef]
- Cunningham, S.A.; Kramer, M.R.; Narayan, K.V. Incidence of childhood obesity in the United States. N. Engl. J. Med. 2014, 370, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Ogden, C.L.; Carroll, M.D.; Kit, B.K.; Flegal, K.M. Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA 2014, 311, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Micklesfield, L.K.; Lambert, E.V.; Hume, D.J.; Chantler, S.; Pienaar, P.R.; Dickie, K.; Goedecke, J.H.; Puoane, T. Socio-cultural, environmental and behavioural determinants of obesity in black South African women: Review articles. Cardiovasc. J. Afr. 2013, 24, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Okop, K.J.; Mukumbang, F.C.; Mathole, T.; Levitt, N.; Puoane, T. Perceptions of body size, obesity threat and the willingness to lose weight among black South African adults: A qualitative study. BMC Public Health 2016, 16, 365. [Google Scholar] [CrossRef] [PubMed]
- Watts, K.; Jones, T.W.; Davis, E.A.; Green, D. Exercise training in obese children and adolescents. Sports Med. 2005, 35, 375–392. [Google Scholar] [CrossRef] [PubMed]
- Faigenbaum, A.D.; Myer, G.D. Pediatric resistance training: Benefits, concerns, and program design considerations. Curr. Sports Med. 2010, 9, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Strutzenberger, G.; Richter, A.; Schneider, M.; Mündermann, A.; Schwameder, H. Effects of obesity on the biomechanics of stair-walking in children. Gait Posture 2011, 34, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Almuzaini, K.S. Muscle function in Saudi children and adolescents: Relationship to anthropometric characteristics during growth. Pediatr. Exerc. Sci. 2007, 19, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Nunez-Gaunaurd, A.; Moore, J.G.; Roach, K.E.; Miller, T.L.; Kirk-Sanchez, N.J. Motor proficiency, strength, endurance, and physical activity among middle school children who are healthy, overweight, and obese. Pediatr. Phys. Ther. 2013, 25, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Dimitri, P.; Bishop, N.; Walsh, J.S.; Eastell, R. Obesity is a risk factor for fracture in children but is protective against fracture in adults: A paradox. Bone 2012, 50, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Kessler, J.; Koebnick, C.; Smith, N.; Adams, A. Childhood obesity is associated with increased risk of most lower extremity fractures. Clin. Orthop. Relat. Res. 2013, 471, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
Groups | |||||
---|---|---|---|---|---|
Variables | Normal-Weight (n = 78) | Overweight (n = 51) | Obese (n = 22) | ANOVA (F) | p-Value |
Age (years) | 14.3 ± 0.9 | 14.4 ± 0.9 | 14.2 ± 0.9 | 0.455 | 0.636 |
Height (cm) | 158.2 ± 6.8 | 157.9 ± 6.3 | 157.8 ± 6.1 | 0.050 | 0.951 |
Weight (kg) | 51.1 ± 6.6 | 64.9 ± 5.7 * | 85.8 ± 14.1 +,# | 177.203 | 0.001 |
BMI (kg/m2) | 20.4 ± 2.0 | 26.0 ± 1.5 * | 34.4 ± 5.1 +,# | 277.057 | 0.001 |
Groups | |||||
---|---|---|---|---|---|
Variables | Normal-Weight (n = 78) | Overweight (n = 51) | Obese (n = 22) | ANOVA (F) | p-Value |
Cardiorespiratory fitness | |||||
20 m shuttle run test (level) | 2.6 ± 1.3 | 2.2 ± 1.1 | 1.4 ± 0.6 +,# | 9.878 | 0.001 |
Muscular strength | |||||
Knee extension (Right leg) (N) | 187.2 ± 68.9 | 159.3 ± 24.9 * | 159.3 ± 27.9 | 5.275 | 0.006 |
Knee extension (Left leg) (N) | 176.6 ± 63.4 | 154.5 ± 26.2 * | 158.2 ± 29.5 | 3.437 | 0.035 |
Ankle plantarflexion (Right leg) (N) | 160.5 ± 79.7 | 108.4 ± 28.0 * | 108.7 ± 22.5 # | 14.019 | 0.001 |
Ankle plantarflexion (Left leg) (N) | 162.0 ± 81.5 | 109.1 ± 22.4 * | 113.8 ± 23.2 # | 13.549 | 0.001 |
Ankle dorsiflexion (Right leg) (N) | 167.5 ± 70.9 | 127.5 ± 20.9 * | 127.4 ± 20.5 # | 10.677 | 0.001 |
Ankle dorsiflexion (Left leg) (N) | 162.3 ± 69.6 | 125.5 ± 21.4 * | 124.9 ± 23.1 # | 9.365 | 0.001 |
Elbow flexion (Right arm) (N) | 138.4 ± 27.2 | 128.8 ± 16.0 | 128.6 ± 20.5 | 3.307 | 0.039 |
Elbow flexion (Left arm) (N) | 138.4 ± 26.7 | 138.9 ± 21.1 | 138.6 ± 21.3 | 0.007 | 0.993 |
Elbow extension (Right arm) (N) | 91.1 ± 17.5 | 97.8 ± 23.9 | 109.4 ± 29.8 # | 6.273 | 0.002 |
Elbow extension (Left arm) (N) | 90.0 ± 19.4 | 99.4 ± 16.7 * | 111.7 ± 30.7 # | 10.341 | 0.001 |
Grip strength (Right arm) (N) | 20.7 ± 3.7 | 24.5 ± 4.3 * | 24.8 ± 5.0 # | 17.317 | 0.001 |
Grip strength (Left arm) (N) | 20.7 ± 4.1 | 23.8 ± 4.6 * | 25.0 ± 4.9 # | 12.143 | 0.001 |
Flexibility | |||||
Sit-and-reach test (cm) | 6.3 ± 5.9 | 10.5 ± 6.2 * | 12.1 ± 6.5 + | 11.849 | 0.001 |
Groups | |||
---|---|---|---|
Variables | Normal-Weight (n = 78) | Overweight (n = 51) | Obese (n = 22) |
Dorsiflexion of the fifth metacarpophalangeal joint (Right arm) (degrees) | 77.7 ± 15.9 | 81.8 ± 16.9 | 77.5 ± 17.2 |
Dorsiflexion of the fifth metacarpophalangeal joint (Left arm) (degrees) | 80.9 ± 15.8 | 86.6 ± 15.2 | 83.6 ± 15.7 |
Hyperextension of the elbow (Right arm) (degrees) | 8.1 ± 6.8 | 11.2 ± 6.3 * | 8.8 ± 5.7 |
Hyperextension of the elbow (Left arm) (degrees) | 8.3 ± 6.8 | 11.7 ± 6.6 * | 9.8 ± 7.8 |
Hyperextension of the knee (Right leg) (degrees) | 7.5 ± 7.4 | 6.0 ± 4.9 | 9.2 ± 6.6 |
Hyperextension of the knee (Left leg) (degrees) | 6.9 ± 5.3 | 8.1 ± 6.1 | 11.4 ± 12.9 # |
Apposition of the thumb to the flexor side of the forearm (Right arm) Yes No | 28 (35.9) 50 (64.1) | 27 (40.3) 24 (47.1) | 12 (54.5) 10 (45.5) |
Apposition of the thumb to the flexor side of the forearm (Left arm) Yes No | 24 (30.8) 54 (69.2) | 28 (54.9) 22 (43.1) | 13 (59.1) 9 (40.9) |
Forward flexion of the trunk with the knee straight and hands on the floor Yes No | 14 (17.9) 64 (82.1) | 13 (25.5) 38 (74.5) | 9 (40.9) 13 (59.1) |
Beighton total score | 3.0 ± 2.2 | 4.2 ± 2.2 * | 4.3 ± 2.5 |
Groups | |||||
---|---|---|---|---|---|
Variables | Normal Weight (n = 78) | Overweight (n = 51) | Obese (n = 22) | χ2 (df = 2) | p-Value |
Joint pain Yes No | 12 (15.4) 66 (84.6) | 5 (9.8) 46 (90.2) | 5 (18.2) 18 (81.8) | 1.195 | 0.550 |
Muscle pain Yes No | 17 (21.8) 61 (78.2) | 7 (13.7) 44 (86.3) | 7 (31.8) 15 (68.2) | 3.242 | 0.198 |
Pain severity 0 2 4 6 8 10 | 55 (70.5) 12 (15.4) 8 (10.3) 1 (1.3) 2 (2.6) 0 | 41 (80.4) 2 (3.9) 6 (11.8) 2 (3.9) 0 0 | 14 (63.6) 5 (22.7) 2 (9.1) 1 (4.5) 0 0 | 9.193 | 0.514 |
Correlations | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
BMI (kg/m2) | - | |||||||||
Beighton total score | 0.215 ** | - | ||||||||
Sit-and-reach score (cm) | 0.310 ** | 0.241 ** | - | |||||||
Mean elbow flexors strength (N) | −0.090 | −0.119 | −0.057 | - | ||||||
Mean elbow extensors strength (N) | 0.323 ** | 0.055 | 0.124 | 0.374 ** | - | |||||
Mean knee extensors strength (N) | −0.224 ** | −0.278 ** | −0.248 ** | 0.723 ** | 0.251 ** | - | ||||
Mean ankle plantarflexors strength (N) | −0.362 ** | −0.365 ** | −0.274 ** | 0.613 * | 0.219 ** | 0.825 ** | - | |||
Mean ankle dorsiflexors strength (N) | −0.312 ** | −0.303 ** | −0.258 ** | 0.697 ** | 0.232 ** | 0.856 ** | 0.872 ** | - | ||
mean Grip strength (N) | 0.410 ** | 0.117 | 0.236 ** | 0.030 | 0.225 ** | −0.130 | −0.217 ** | −0.210 ** | - | |
20 m shuttle run test (level) | −0.336 ** | 0.062 | 0.004 | 0.102 | −0.107 | 0.036 | 0.059 | 0.113 | −0.051 | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonney, E.; Ferguson, G.; Smits-Engelsman, B. Relationship between Body Mass Index, Cardiorespiratory and Musculoskeletal Fitness among South African Adolescent Girls. Int. J. Environ. Res. Public Health 2018, 15, 1087. https://doi.org/10.3390/ijerph15061087
Bonney E, Ferguson G, Smits-Engelsman B. Relationship between Body Mass Index, Cardiorespiratory and Musculoskeletal Fitness among South African Adolescent Girls. International Journal of Environmental Research and Public Health. 2018; 15(6):1087. https://doi.org/10.3390/ijerph15061087
Chicago/Turabian StyleBonney, Emmanuel, Gillian Ferguson, and Bouwien Smits-Engelsman. 2018. "Relationship between Body Mass Index, Cardiorespiratory and Musculoskeletal Fitness among South African Adolescent Girls" International Journal of Environmental Research and Public Health 15, no. 6: 1087. https://doi.org/10.3390/ijerph15061087
APA StyleBonney, E., Ferguson, G., & Smits-Engelsman, B. (2018). Relationship between Body Mass Index, Cardiorespiratory and Musculoskeletal Fitness among South African Adolescent Girls. International Journal of Environmental Research and Public Health, 15(6), 1087. https://doi.org/10.3390/ijerph15061087