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Abstract: Soil erosion is one of the most severe problems facing environments and has increased
throughout the 20th century. Soil erodibility (K-factor) is one of the important indicators of land
degradation, and many models have been used to estimate K values. Although soil erodibility
has been estimated, the comparison of different models and their usage at a regional scale and,
in particular, for different land use types, need more research. Four of the most widely distributed
land use types were selected to analyze, including introduced and natural grassland, as well as
introduced and natural shrubland. Soil particle size, soil organic matter and other relevant soil
properties were measured to estimate soil erodibility in the Loess Plateau. The results show
that: (1) the erosion productivity impact calculator (EPIC) model and SHIRAZI model are both
suitable for the Loess Plateau, while the SHIRAZI model has the advantage of fewer parameters;
(2) introduced grassland has better ability to protect both the 0–5 cm soils and 5–20 cm soils, while the
differences between introduced and natural shrubland are not obvious at a catchment scale; (3) the K
values of introduced grassland, natural grassland, introduced shrubland and natural shrubland
in the 0–5 cm layer vary from 0.008 to 0.037, 0.031 to 0.046, 0.012 to 0.041 and 0.008 to 0.045
(t·hm2·h/(MJ·mm·hm2)), while the values vary from 0.009 to 0.039, 0.032 to 0.046, 0.012 to 0.042
and 0.008 to 0.048 (t·hm2·h/(MJ·mm·hm2)) in the 5–20 cm layer. The areas with a mean multiyear
precipitation of 370–440 mm are the most important places for vegetation restoration construction
management at a regional scale. A comprehensive balance between water conservation and soil
conservation is needed and important when selecting the species used to vegetation restoration.
This study provides suggestions for ecological restoration and provides a case study for the estimate
of soil erodibility in arid and semiarid areas.
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1. Introduction

Soil erosion is one of the most severe problems related to the environment, society and the
economy [1,2]. Soil erosion has increased throughout the 20th century [3,4]. It not only causes
land degradation, but also threatens local food security and social sustainability [1]. Soil erosion
may contain multiple erosion types, including wind erosion, water erosion, gravity erosion and
freeze-thaw erosion [5,6]. Scientists have realized that, for the control of soil erosion, it is necessary
to provide policy makers and soil scientists with information about the processes of soil erosion
based on a reliable assessment of vulnerability and risk levels [7]. Soil erodibility is the ease with
which soil is detached by splash during rainfall, by surface flow or both [8], and it is one of the
important indicators of land degradation [9–11]. Existing studies at the arid and semiarid places in
Anatolia [12], Argentina [13], Australia [14], China [15–17], Morocco [18], Iran [19–21], Spain [22] and
United states [23] have shown that soil erodibility is influenced by global climate change [24] and land
use change [9–11,25]. The changes of land use types alter the vegetation coverage and then influence
the soil quality and soil properties such as the soil particle distribution, soil organic carbon content and
soil texture [19,23]. Runoff plots and check dams are the traditional monitoring methods [20,26,27].
Recently, the development of GIS has provided new methods for soil erosion research [28,29], such as
geomatics approach [30] and geospatial approach [31], and electrical resistivity tomography [32]
has also been used for in situ measurement. In the data-scarce regions, genetic algorithm can be
utilized to estimate the average erodibility parameters [33]. These new methods make the mapping
of soil erodibility faster and keep the land surface undisturbed, although their accuracy needs more
verification, especially when predicting the soil erodibility in hilly areas.

China has more severe soil erosion than other countries, which has resulted in many problems [3,34].
The Loess Plateau that is located in the middle part of China has both the largest and deepest loess
deposit in the world. The thickness of loess soil layers is usually 50–200 m, and some places may even
reach more than 300 m depth [35]. This area has long been one of the most severely eroded areas on
earth, especially in its loess hilly region [36]. The northern part of the Loess Plateau has been severely
affected by wind–water erosion, and water erosion has gradually become the main type of erosion in
the southern part of the Loess Plateau [37]. Many soil and water conservation engineering measures,
such as terracing and check-dam constructions, have been used since the 1970s and achieve good
results [36,38]. In addition to these engineering measures, the Chinese government implemented the
Grain to Green project in 1999 to protect soil and water [39,40]. After more than 10 years, the coverage
of vegetation has increased markedly in the Loess Plateau [41,42]. The Yellow River sediments reduced
significantly, while the amount of river flows reduced as well [43]. One reason is the existence of plants,
which protect the water from running away rapidly after rainfall, so more water can get into the soil;
another reason is the growth of plants using a large amount of water [1,44,45]. So, for future vegetation
restoration, species with lower water consumption rates and higher soil protection ability should be
used to avoid further soil degradation [37,46].

The concept of soil erodibility is commonly represented by the K factor, which is defined as
the average rate of soil loss per unit of rainfall erosion index from a cultivated continuous fallow
plot, on a 9% slope 22.1 m long, by the universal soil loss equation (USLE) and revised USLE
(RUSLE) [8,47,48]. K-factor values are best obtained from long-term direct measurements on natural
runoff plots [49,50], but this method is hard to use at a large scale. So, the estimate of K values by
using soil physical or chemical properties attracts more attention [50–55]. There is a long history of the
research on soil erodibility, and USLE/RUSLE are the most widely used models in the world [56–60]
to analyze the distribution of K or identify the erosion risk zones [61–63]. Many new models and
indicators are emerging constantly to predicting the soil erodibility or evaluate the certainty of modeled
data [64–68], such as Jet Erosion Device (Jed) [69–71], artificial neural network (ANN) model [72],
erosion productivity impact calculator (EPIC) model [73] and rangeland hydrology and erosion
model (RHEM) [74]. Most of them are based on the principle of USLE/RUSLE and have been used
regionally [75]. There are also many models that have been used to estimate K values in the Loess
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Plateau, although the accuracy of results differs between different soil and land use conditions.
For example, the K values estimated with NOMO model would considerably over-predict the rate of
soil loss, so it is important to choose the model that is the most suitable for the research areas [44,49,76].

According to the existing studies, USLE/RUSLE model, NOMO model, EPIC model, SHIRAZI
model and TORRI model are commonly used for estimating the K value in China [35,44,49]. For specific
land use types, the comparison of different models and their usage at the regional scale need more
research, although the K value of these models has been estimated. The Loess Plateau has a thick soil
layer which is loose, and the surface soil is highly susceptible to erosion, so the study of subsurface
erodibility is also important because it reflects the potential erosion of the soil [77–79]. This study
chose the most widely distributed land use types (introduced grassland, natural grassland, introduced
shrubland and natural shrubland) at catchment scale and regional scales [41,80,81], and estimated K
values both in 0–5 cm (surface) soil layers and 5–20 cm (subsurface) soil layers. Other common land
use types were also analyzed as a comparison at the catchment scale. This paper aims to: (1) compare
and choose the most suitable models for K calculation at the small scale of the hilly areas in the
Loess Plateau; (2) calculate K at catchment and regional scales by using the most suitable models and
analyze the spatial distribution of soil erodibility at the regional scale to provide support to local soil
conservation; (3) provides suggestions for the ecological restoration in arid and semiarid areas.

2. Materials and Methods

2.1. Description of the Sites

The runoff plots (109.32◦ E, 36.86◦ N) is located on 5◦, 15◦ and 25◦ slopes at the south part of the
Ansai catchment. They belong to Ansai Research Station of Soil and Water Conservation, Chinese
Academy of Sciences. The horizontal projection area of each plot is 4 m × 10 m. The aspect of the slope
is 82◦ east by north.

The Ansai catchment (108.01◦–109.44◦ E, 36.51◦–37.32◦ N) is located in the upper reaches of
the Yanhe River. This area belongs to a typical loess hilly region and the mid-temperate continental
semiarid monsoon climate region. The topography is fragmented and the soil erosion is heavy [82].
Grassland (24% to be included), shrubland (22% to be included), forest (24% to be included), farmland
(15% to be included) and orchard (15% to be included) are the most widely distributed land use types
in this catchment [81,83].

The regional scale research areas are along the north–south sampling belt, which is located in the
north-central Loess Plateau of China. The sampling areas are Yijinghuoluo county (108.97◦–110.42◦ E,
38.93◦–39.82◦ N), Shenmu county (109.67◦–110.90◦ E, 38.22◦–39.45◦ N), Suide county (110.07◦–110.68◦ E,
37.27◦–37.75◦ N), Ansai county (108.10◦–109.44◦ E, 36.51◦–37.32◦ N), Baota district (109.24◦–110.85◦ E,
36.18◦–37.03◦ N) and Fuxian county (108.50◦–109.72◦ E, 35.74◦–36.39◦ N) from the north to the south.
The mean annual precipitation calculated over multiyear periods ranges from 300 to 600 mm [81,84].
The precipitation in a given year is unevenly timed, and more than 60% falls during the growing
season (from May to September) [85]. In the summer, the heavy rainfall usually results in soil and
water losses [86]. Grasslands which are dominated by Medicago sativa or Stipa bungeana and shrublands
which are dominated by Hippophae rhamnoides or Caragana korshinskii are the most widely distributed
land use types at the regional scale [42,44,87].

2.2. Experimental Design

At the runoff plots, the grassland with introduced species (G1), grassland with natural species
(G2), farmland (FA) and shrubland with natural species (S2) plots in each slope were chosen as the
RUSLE estimate points. Precipitation was monitored by HOBO Rain Gauge Data Logger (RG3-M
resolution: 0.2 mm; Onset Computer Corporation, Bourne, Massachusetts, USA). The vegetation
coverage of each plot was measured by photographic method [88,89]. The soil loss for each plot was
measured from June 2013 to September 2014. After each precipitation, the soil-water suspension in
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the runoff-collecting bucket was collected. Then, the suspension samples were allowed to sit for 24 h
to make the sediment separate from the water, and the sediment was dried in an oven at 105 ◦C to a
constant weight. The mean soil loss (A in RUSLE model) was calculated as the annual average value of
the ratio of the sediment mass to the area of the plot [26,27,90,91]. The runoff-collecting buckets were
cleaned after each collection of soil-water suspension samples.

At the Ansai catchment, the distribution of sampling points was as uniform as possible in order
to make the sampling points more representative. With the help of Google Earth, the sampling areas
were chosen along most of the main tributaries inside the catchment. The area of the chosen sampling
places is more than 30 m × 30 m for each land use type and the sampling plots were set at the center of
the sampling places. Sampling places of the same land use type were more than 100 m apart, and 133
sample points in total were chosen at this catchment. They included 11 introduced grassland points
(G1), 25 natural grassland points (G2), 18 introduced shrubland points (S1), 15 natural shrubland
points (S2), 37 forest points (FO), 23 farmland points (FA) and 23 orchard points (OR). The sampling
points of G1, G2, FA and S2 were divided into three groups by the slope (less than 10◦, 10–20◦ and
more than 20◦) to match the sample data obtained from the runoff plots (5◦,15◦,25◦) when comparing
the estimate methods results with the RUSLE estimate result.

At the regional scale, 62 sample points were chosen, which included 14 introduced grassland
points (G1), 14 natural grassland points (G2), 20 introduced shrubland points (S1) and 13 natural
shrubland points (S2). For each land use type, there were two to four sampling points in each sampling
area at the south–north sample belt. The precipitation was collected at 62 Loess Plateau meteorological
monitoring stations of China Meteorological Administration from 1998–2012. With the landscape type
and administrative boundary in research area, the spatial distribution of precipitation was calculated
by the weighted interpolating method (IDW) in ArcGIS 10.0, and the precipitation isoline interval was
set to 70 cm.

The sampling plots were 2 m × 2 m for grasslands and farmland, 5 m × 5 m for shrublands and
10 m × 10 m for orchards. The distribution of the sampling points is shown in Figure 1. For the RUSLE
estimate points in the runoff plots, the 0–5 cm (surface) soil samples were collected, while for the
catchment and north–south sampling belt points, soil samples were collected both from the 0–5 cm
layer (surface) and 5–20 cm layers (subsurface). Three repetitions were completed per sampling
point, and each sample was divided into two parts after being air dried. One part was used to
determine soil particle sizes using a Mastersizer 2000 (Malvern Instruments Ltd., Worcestershire,
United Kingdom) after removing organic matter and dispersion with H2O2 (10%), HCl (10%) and
SHMP (sodium hexametaphosphate) [92–95]. The other part was used to determine soil organic carbon
with the K2Cr2O7 volumetric method. The soil particle size distributions were divided into sand
(0.005–2.0 mm), silt (0.002–0.05 mm) and clay (<0.002 mm) with the USDA classification system [96,97].
Soil erodibility factor (K-factor) was chosen to represent soil erodibility of research areas [8,35,49].
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2.3. Data Analysis

2.3.1. K Value Based on RUSLE

The K value based on USLE model [8] is calculated by Equation (1):

K =
A

R·L·S·C·P (1)

where K represents soil erodibility factor (short ton·ac·h/(100 ft·short ton·ac·in)); A represents the
mean soil loss (t/(ha·year)); R represents the rainfall erosivity ((MJ·mm)/(ha·h)); L represents the slope
length factor; S represents the slope steepness factor; C represents vegetation cover factor; P represents
the support practice factor.

For Equation (1), the R, L and S are calculated by Equations (2)–(4) [8,91,98]:

R = E × I30 (2)

where I30 is maximum rainfall intensity over 30 min for a single rainfall and E represents rainfall
kinetic energy [99].

S = 21.91 sinθ − 0.96 (3)

where θ represents the slope angle (rad).

L =

(
λ

22.13

)m
(4)

where λ represents the length of the plot and m represents the slope length exponent (m = 0.5 if the
slope is 5% or greater) [35,98].

The value of C and P in Equation (1) are set to unity with the existing studies [8,27,35,88,91].
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2.3.2. Estimated K Value

Four widely used models were chosen to calculate the K values: NOMO model, EPIC model,
SHIRAZI model and TORRI model [99–104].

The NOMO model [47,103] is calculated as Equation (5):

K = [2.1×10−4M1.14 (12−OM) + 3.25 (S−2) + 2.5 (P−3)]/100 (5)

where K represents soil erodibility factor (short ton·ac·h/(100 ft·short ton·ac·in)); M represents the
product of the percent of silt and very fine sand, as well as the percent of all soil fractions other than
clay; OM represents the soil organic matter content (%); S represents the soil structure code; and P
represents the soil permeability code [48,105].

The EPIC model [99] is calculated as Equation (6):

K =
[
0.2 + 0.3e−0.0256SAN(1− SIL

100 )
]( SIL

CLA + SIL

)0.3
(1.0− 0.25C

C + e3.72−2.95C )(1.0− 0.7SN1

SN1 + e−5.51+22.9SN1
) (6)

where K represents soil erodibility factor (short ton·ac·h/(100 ft·short ton·ac·in)); SAN represents the
percent sand content; SIL represents the percent silt content; CLA represents the percent clay content;
C represents the percent organic carbon content; and SN1 = 1 − SAN/100.

The SHIRAZI model [104] is calculated as Equations (7) and (8):

K = 7.594{0.0034 + 0.0405e−
1
2 [

log (Dg)+1.659
0.7101 ]

2

} (7)

Dg(mm) = e0.01 ∑ fi lnmi (8)

where K represents soil erodibility factor (short ton·ac·h/(100 ft·short ton·ac·in)); Dg represents the
geometric mean diameter of the soil particles; fi represents the weight percentage of the i-th particle
size fraction (%); mi represents the arithmetic mean of the particle size limits for the i-th fraction (mm);
and n represents the number of particle size fractions.

The Torri model [102] is calculated as Equations (9) and (10):

K = 0.0293
(

0.65− Dg + 0.24Dg
2
)

exp {−0.0021
OM

c
− 0.00037

(
OM

c

)2
− 4.02c + 1.72c2} (9)

Dg = ∑ filg
√

didi−1 (10)

where K represents soil erodibility factor (short ton·ac·h/(100 ft·short ton·ac·in)); OM represents the
percent content of soil organic matter; c represents the percent content of clay; Dg represents the
Napierian logarithm of the geometric mean of the particle size distribution; di (mm) represents the
maximum diameter of the i-th class; di−1 (mm) represents the minimum diameter; fi represents the
mass fraction of the corresponding particle size class.

To compare among different models, all the results in the United States customary units were
multiplied by 0.1317 to convert to the international units for the K values (t·hm2·h/(MJ·mm·hm2)).

The one-way analysis of variance (ANOVA) and the least squares difference method (LSD) were
used to analyze and verify the values among different models and places. Data pretreatment was
performed using Excel 2016. One-way ANOVA and correlation and significance tests were conducted
using SPSS 23.0 (IBM, Armonk, NY, USA). The figures were plotted using ArcGIS 10.0 (Redlands,
CA, USA), Origin 9.2 (Origin Lab Corporation, Northampton, MA, USA) and R Studio 1.1.447 (RStudio
Inc., Boston, MA, USA).
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3. Results

3.1. The K Value in RUSLE Estimate Points

The K values calculated by RUSLE estimate data from runoff plots are shown in Table 1. The K
value varies with slope and land uses. For the 5◦ slope, the K value ranges from 0.005 to 0.019
(t·hm2·h/(MJ·mm·hm2)). The K values decrease in shrubland and increase in natural grassland with
the increase of slope, while the values differ in introduced grassland and farmland. For each slope,
farmland has a higher K value than plots with other land uses.

The K values estimated by NOMO model, EPIC model, SHIRAZI model and TORRI model are
shown in Table 2. The K value ranges from 0.089 to 0.100 with NOMO model, from 0.045 to 0.050 with
EPIC model, from 0.047 to 0.049 with SHIRAZI model and from 0.013 to 0.060 with TORRI model
(unit: t·hm2·h/(MJ·mm·hm2)). The standard deviation (SD) of K values with each model are K-NOMO
(0.003), K-EPIC (0.002), K-SHIRAZI (0.001) and K-TORRI (0.012). The coefficient of variation (CV) of K
values with each model are K-NOMO (0.031), K-EPIC (0.033), K-SHIRAZI (0.012) and K-TORRI (0.253).

The comparison of K values between RUSLE K-factor values and other estimated values are
shown in Figure 2. Most of the data are located under the 1:1 line. The different models show different
relationships to RUSLE values.

Table 1. The mean value of K in runoff plots (revised universal soil loss equation (RUSLE) estimate
(t·hm2·h/(MJ·mm·hm2)).

Slope Introduced Grass (G1) Natural Grass (G2) Farmland (FA) Natural Shrubland (S2)

5◦ 0.011 0.009 0.019 0.014
15◦ 0.014 0.013 0.014 0.008
25◦ 0.010 0.014 0.017 0.005

Table 2. The estimated value of K used to compare models at Ansai catchment (t·hm2·h/(MJ·mm·hm2)).

Species Slope Number of Samples K-NOMO K-EPIC K-SHIRAZI K-TORRI

Introduced grass (G1)
<10◦ 4 0.097 0.045 0.047 0.056

10◦–20◦ 4 0.096 0.045 0.047 0.049
>20◦ 3 0.096 0.045 0.047 0.055

Natural grass (G2)
<10◦ 7 0.094 0.046 0.048 0.047

10◦–20◦ 8 0.096 0.047 0.048 0.054
>20◦ 9 0.098 0.050 0.049 0.060

Shrubland (S2)
<10◦ 6 0.089 0.045 0.048 0.041

10◦–20◦ 14 0.095 0.046 0.048 0.050
>20◦ 7 0.093 0.046 0.048 0.048

Farmland (FA)
<10◦ 13 0.099 0.048 0.048 0.058

10◦–20◦ 3 0.098 0.046 0.048 0.056
>20◦ 1 0.100 0.048 0.048 0.013
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scale (unit: t·hm2·h/(MJ·mm·hm2)).

3.2. The Comparison between the Modeling Results of K Value and the RUSLE Estimate Value

The comparison of different models is shown in Figure 3. The root-mean-square error (RMSE),
standard deviation (SD) and correlation coefficient are all shown in the Taylor diagram [106].
The TORRI model shows obvious difference from other models. The SD of NOMO model is closer to
the RUSLE estimate values than other models, while the correlation coefficients of SHIRAZI model and
EPIC model are closer to 1 than other models. The differences of SD and RMSE between EPIC model
and SHIRAZI model are not obvious. When taking SD, RMSE, correlation coefficient and number of
parameters of each model into consideration, SHIRAZI model was chosen to apply at catchment scale
and regional scale.
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3.3. The Distribution of Shrubland and Grassland K Values at Catchment and Regional Scales

The K values of shrubland and grassland at catchment and regional scales were calculated by
SHIRAZI model, and the results are shown in Figure 4, Tables 3 and 4.

At catchment scale (Figure 4 and Table 3), the mean K values of introduced grassland are clearly
lower than other land use types in both 0–5 cm and 5–20 cm soil layers. For the grassland and
shrubland, the K values of the 5–20 cm soil layer range from 0.025 to 0.035 (t·hm2·h/(MJ·mm·hm2))
and the mean K values are lower than that in the 0–5 cm soil layers.

At regional scale (Figure 4 and Table 4), the mean K values increase from north to south along
the sampling belt. The K values of G1, G2, S1 and S2 in the 0–5 cm layer vary from 0.008 to 0.037,
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0.031 to 0.046, 0.012 to 0.041 and 0.008 to 0.045 (t·hm2·h/(MJ·mm·hm2)). The K values of G1, G2, S1
and S2 in the 5–20 cm layer vary from 0.009 to 0.039, 0.032 to 0.046, 0.012 to 0.042 and 0.008 to 0.048
(t·hm2·h/(MJ·mm·hm2)). From Shenmu county to Suide county, most of the K values of introduced
vegetation (G1 and S1) are lower than those of natural vegetation (G2 and S2). The differences between
introduced and natural vegetation are not obvious in Baota county and Fuxian county. For G1, G2 and
S2, most of the K values in the 0–5 cm layers are lower than those in the 5–20 cm layers.
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Table 3. The mean value of K at catchment scale (t·hm2·h/(MJ·mm·hm2)).

Depth G1 G2 S1 S2 FO FA OR

0–5 cm 0.047 0.048 0.048 0.048 0.048 0.048 0.048
5–20 cm 0.027 0.032 0.030 0.030 - - -

Note: G1 represents introduced grassland; G2 represents natural grassland; S1 represents introduced shrubland;
S2 represents natural shrubland; FO represents forest; FA represents farmland; OR represents orchard.



Int. J. Environ. Res. Public Health 2018, 15, 1193 10 of 17

Table 4. The mean value of K at regional scale (t·hm2·h/(MJ·mm·hm2)).

County
0–5 cm 5–20 cm

G1 G2 S1 S2 G1 G2 S1 S2

Yijinhuoluo 0.008 - 0.012 0.008 0.009 - 0.012 0.008
Shenmu 0.028 0.031 0.021 0.032 0.030 0.032 0.021 0.032

Suide 0.036 0.038 0.036 0.040 0.037 0.038 0.032 0.040
Ansai 0.037 0.036 0.035 0.031 0.039 0.037 0.035 0.032
Baota - 0.040 0.041 0.041 - 0.040 0.042 0.042

Fuxian - 0.046 - 0.045 - 0.046 - 0.048

Note: G1 represents introduced grassland; G2 represents natural grassland; S1 represents introduced shrubland;
S2 represents natural shrubland.

4. Discussion

4.1. Comparison of the Soil Erodibility Models Used in Loess Plateau

According to the results from this paper and existing studies, the estimated K values change
in different models and have clear differences with the RUSLE K-factor value [8,34,35,45]. Even for
the same species in the same slope, the maximum value of estimate K value could be four times the
minimum value (Table 2, Figure 3). All the estimated K values in this paper are higher than the RUSLE
estimate K values (Table 2, Figure 3). It is difficult to measure K value in the field because it needs a
long observation time and the runoff plots must be in good condition [8]. Existing studies have shown
that the K value is influenced by many factors, and the factors are always changing [4,8]. In addition,
different kinds of erosion may come together when erosion occurs, and the intensity of each kind of
erosion is influenced by many factors as well [8]. So, it is also difficult to estimate K value accurately
when only using a few kinds of soil properties. The K values which are calculated by USLE/RUSLE
model are usually regarded as the benchmark value, although the complex index in USLE/RUSLE
increases the uncertainty of the results [91,107].

Among the four models mentioned in this paper, the NOMO model considers the soil particle size
distribution, soil organic matter and soil structure characteristics [101]; the EPIC model and TORRI
model consider the soil particle size distribution and soil organic carbon [100,102]; while the SHIRAZI
model only considers the soil particle size distribution [104]. There are many ways to evaluate a model.
RMSE, SD and correlation coefficient were used to evaluate models in this study. As the existing studies
showed, the estimate values are more credible when the RMSE becomes closer to 0, the SD becomes
closer to the SD of RUSLE K-factor value and the correlation coefficient becomes closer to 1 (Figure 3,
Table 2). In this study, the K-TORRI values show obvious differences from the RUSLE K-factor value
and other models, so this model was excluded first (Figure 3). The NOMO model is suitable for the
middle-western part of America with low aggregate structure and medium-textured soils. The NOMO
model performs better in terms of SD than other models in our research area, while the RMSE and
correlation coefficient are similar in EPIC and SHIRAZI models (Figure 3). The NOMO model also
needs more parameters than other models, which makes it hard to use at a large scale, because the
large scale usually lacks detailed data. So, EPIC and SHIRAZI models are more suitable in our research
areas. As SHIRAZI model needs fewer parameters than EPIC model, SHIRAZI model was chosen to
estimate K values at catchment and regional scales in this study.

4.2. K Value Variation of Different Kinds of Land Use Types at Catchment Scales

The K values of catchment scales show obvious differences between 0–5 cm soil layers and
5–20 cm soil layers (Table 3, Figure 4). For the 0–5 cm layers, this study takes seven kinds of land use
types into consideration. According to existing studies, soil erosion of farmland is the most serious [37].
In this study, K values in farmland are similar to other kinds of vegetation (Table 3). It indicates that the
Grain to Green project has remarkable results. This project returns farmland into forest, shrub or grass
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in the areas which are easily eroded, and it also encourages farmers to build terraces on slopes. Both of
these practices can protect soil from erosion. In the same small watershed in the catchment, surface K
values change with the position and the dominant species of the sampling points. However, at the
catchment scale, mean 0–5 cm K values of most kinds of vegetation are similar to each other. Only the
K values of G1 are obviously lower than others, which indicates the introduced grasslands (usually
dominated with leguminous plants) are better for soil conservation, while previous studies showed
that the introduced grasslands use more water and may cause unrecoverable loss of soil moisture in
deep soil layers (usually in 500–800 cm depth) in the short term [108–110]. For the Ansai catchment,
the planting area and age of introduced grassland should be controlled to protect deep soil moisture,
although it has a good performance in protecting surface soil particles.

For the 5–20 cm soil layers, only the most widely distributed land use types (G1, G2, S1, S2) in this
catchment were analyzed (Table 3, Figure 4). The K values of 5–20 cm soil layers show the magnitude
of potential erosion risk. The 5–20 cm K values of these four kinds of land use types are all lower than
the 0–5 cm values, while the variations show differences among vegetation covers (Table 3). The K
values in introduced shrublands and in natural shrublands are similar to each other in this layer. The K
values of introduced grassland are lower than those in shrublands, which are similar to the 0–5 cm
layer, while the K values of natural grassland (usually dominated with Gramineae plants) are higher
than those in shrublands in 5–20 cm soil layers. It may be because the roots of most Gramineae plants
are weak and their leaves are soft [110–113]. In that case, the leaves can hardly slow down the drops of
rainfall or prevent soil from being detached by runoff. Although soil moisture in natural grassland is
higher than in other land use types of this catchment, natural grassland is not good for soil protection.

4.3. K Value Variation of Shrubland and Grassland at Regional Scale

Different from the catchment scale, the K values do not show obvious differences between 0–5 cm
layers and 5–20 cm layers at regional scale (Table 4, Figure 4). With the expansion of the study
area, the differences in environmental factors and soil factors of sampling points gradually increase,
and the differences in K value increase as well. Previously studies have shown that the amount of
precipitation and the percentage of clay in soil increase from north to the south along the sampling
belt [81]. In the sampling areas, nearly 20 years have passed since the beginning of Grain to Green
project, and the vegetation coverage increases continuously [114–116]. In this study, the K values
show obvious differences in different sampling areas (Table 4, Figure 4). The Yijinhuoluo county has
a multiyear precipitation of 310–370 mm [84], and the K values are the lowest in this sampling belt
(Table 4, Figure 4). The Shenmu county, Suide county and the north part of the Ansai county have a
multiyear precipitation of 370–440 mm [84]. In these two areas, the K values of introduced vegetation
are lower than that of natural vegetation. The K values of introduced grassland are higher than those
of introduced shrubland, while the K values of natural grassland are lower than those of natural
shrubland. The Baota district and the south part of the Ansai county have multiyear precipitations of
440–510 mm [84]. In these areas, the K values of introduced vegetation are higher than those of natural
vegetation, which shows different trends with the 370–440 mm areas (Table 4). The Fuxian county has
a multiyear precipitation of 510–580 mm [84]. In this area, the soil moisture is high enough to support
most of the plants’ growth, so there is little introduced vegetation here. For the natural vegetation,
the K values of grassland are higher than those of shrubland in 0–5 cm layers, while the K values of
grassland are lower than those of shrubland in 5–20 cm layers (Table 4).

According to previous studies, the areas with a multiyear precipitation of 370–440 mm are those
where the vegetation has the greatest impact on and response from soil moisture [84]. In this study,
these areas are also the places where differences in K values among land uses are larger than other
areas (Figure 4). In addition, these areas also belong to the hilly region of the Loess Plateau, where the
erosion is heavier than in other places [46]. In the north part of the sampling belt, the lower soil
moisture limits the growth of plants, so all kinds of plants have low vitality; in the south part of the
sampling belt, the higher soil moisture can support the growth of nearly all kinds of plants, so the
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plants can grow healthily and protect the soil better. In that case, the vegetation restoration in the
middle part of the sampling belt needs to concentrate on the species, plant area and plant age.

5. Conclusions

This study compares the four commonly used K value estimate models, including NOMO model,
EPIC model, SHIRAZI model and TORRI model. Both the EPIC model and SHIRAZI model are
suitable to estimate the K value in the Loess Plateau. The SHIRAZI model has the advantage of fewer
parameters, so it is more suitable for a large scale, where the data are usually incomplete. For the
catchment scale, introduced grass has better ability to protect both the 0–5 cm soils and 5–20 cm soils,
while the differences between introduced and natural shrubland are not obvious. For regional scale,
the differences between the 0–5 cm layers and 5–20 cm layers are not obvious in all the introduced
and natural shrubland and grassland. The K values increase with the increase of mean multiyear
precipitation, and the areas with a mean multiyear precipitation of 370–440 mm are the most important
places for vegetation restoration construction management. The introduced grass and shrub show
better ability in protecting soils, though they use too much soil moisture after a long period of growth.
The soil moisture in natural grassland is higher than in other land use types of most research areas,
but these kinds of plants are not good for soil protection. In that case, a comprehensive balance
between water conservation and soil conservation is needed and important when selecting the species
used for vegetation restoration in arid and semiarid areas.
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