Appendix A. Supplementary data

Effect of phosphate-solubilizing bacteria on the mobility of insoluble cadmium and metabolic analysis

Ping Yang, Xue-Fang Zhou, Li-Li Wang, Qu-Sheng Li*, Ting Zhou, Yu-Kun Chen, Zi-Yi Zhao, Bao-Yan He

Corresponding Author: Qu-Sheng Li, School of Environment, Jinan University, Guangzhou, China, E-mail: <u>liqusheng@21cn.com</u>

The supplementary material includes Figure S1, Figure S2, Figure S3, Table S1, Table S2, Table S3, Text S1, and Text S2.

Figure S1. Colony morphology of Bacillus cereus qh-35.

Figure S2. Colony morphology of Pseudomonas fluorescens gim-3.

Figure S3. Curve of the cadmium (CdCO₃) solubilization ability of organic acids.

Dicarboxylic acid exhibits higher efficiency in dissolving Cd than monocarboxylic acids, although succinic acid has high pK_a (pK_{a1} = 4.21). The acid dissolution and coordination reactions of organic acids can stimulate the release of non-soluble compounds. Acid dissolution depends on pK_a value and concentrations of organic acids. The coordination reaction depends on the structure of organic acids. Obviously the first carboxyl-dissociated and -coordinated Cd greatly promote the dissociation and coordination of the second carboxyl. Although pyruvic acid has a small pK_a ($pK_a = 2.49$), the solubilizing Cd effect is similar to that of alpha-hydroxyl carboxylic acids, because the carbonyl group is much weaker than hydroxyl coordination. Gluconic acid (p K_a = 3.86), oxalic acid ($pK_{a1} = 1.22$), glycolic acid ($pK_a = 3.83$), lactic acid ($pK_a = 3.86$), 3-hydroxybutyric acid ($pK_a = 4.36$), glyceric acid ($pK_a = 3.42$), erythronic acid ($pK_a = 3.47$), ribonic acid (pKa = 3.38), 3-hydroxypropionic acid (pKa = 4.39), 2,4-dihydroxybutanoic acid (p K_a = 3.71), 3,4-dihydroxybutanoic acid (p K_a = 4.27), and hexadecanoic acid (p K_a = 4.78).

API 50 CHB	Strain qh-35
Assimilation of	
Glycerol (GLY)	-
Erythritol (ERY)	-
D-Arabinose (DARA)	-
L-Arabinose (LARA)	-
Ribose (RIB)	+
D-Xylose (DXYL)	-
L-Xylose (LXYL)	-
Adonitol (ADO)	-
Methyl-β-D-xylopyranoside (MDX)	_
Galactose (GAL)	_
Glucose (GLU)	+
Fructose (FRU)	+
Mannose (MNE)	_
Sorbose (SBE)	_
Rhamnose (RHA)	_
Dulcitol (DUL)	_
Inositol (INO)	_
Mannitol (MAN)	_
Sorbitol (SOB)	_
Methyl- α -D-mannopyranoside (MDM)	_
Methyl- α -D-glucopyranoside (MDG)	_
N-acetyl-glucosamine (NAG)	+
Amygdalin (AMY)	_
Arbutin (ARB)	_
Esculin (ESC)	+
Salicin (SAL)	_
Cellobiose (CEL)	_
Maltose (MAL)	+
Lactose (LAC)	_
Melibiose (MEL)	_
Saccharose (SAC)	_
Trehalose (TRE)	+
Inulin (INU)	_
Melezitose (MLZ)	_
Raffinose (RAF)	_
Acid modified starch (AMD)	+
Glycogen (GLYG)	+
Xylitol (XLT)	_
Gentiobiose (GEN)	_
Turanose (TUR)	_
Lyxose (LYX)	_
Tagatose (TAG)	_
D-Fucose (DFUC)	_
L-Fucose (LFUC)	_
D-Arabinitol (DARL)	_
L-Arabinitol (LARL)	_
Potassium gluconate (GNT)	_
Potassium 2-ketogluconate (2KG)	_

Table S1. The physiological and biochemical reactions of Bacillus cereus qh-35.

Potassium 5-ketogluconate (5KG)	-
API 20 E	Strain qh-35
o-Nitrophenyl-β-D-galactosidase (ONPG)	_
Arginine dihydrolase (<u>ADH</u>)	-
Lysine decarboxylase (<u>LDC</u>)	-
Ornithine decarboxylase (ODC)	-
Assimilation of citrate (CIT)	-
H ₂ S production (<u>H₂S</u>)	-
Urease (<u>URE</u>)	+
Tryptophan deaminase (TDA)	-
Indole production (IND)	-
Voges-Proskauer test (<u> VP </u>)	+
Gelatin hydrolysis (<u> GEL </u>) (protease)	+
Glucose fermentation or oxidation (GLU)	-
Identification	Bacillus cereus

API 20 NE	Strain gim-3
Nitrate reduction (NO3)	+
Tryptophan producing indole (TRP)	-
Glucose fermentation (GLU)	-
Arginine dihydrolase (<u>ADH</u>)	+
Urease (<u>URE</u>)	-
Esculine hydrolysis (ESC) (β-glucosidase)	-
Gelatin hydrolysis (GEL) (protease)	+
p-Nitrophenyl-β-D-galactosidase (PNPG)	-
Assimilation of	
Glucose (GLU)	+
Arabinose (ARA)	+
Mannose (MNE)	+
Mannitol (MAN)	+
N-acetyl-glucosamine (NAG)	+
Maltose (MAL)	-
Potassium gluconate (GNT)	+
Capric acid (CAP)	-
Adipic acid (ADI)	-
Malic acid (MLT)	+
Citrate (CIT)	+
Phenylacetic acid (PAC)	-
Oxidase (OX)	+
Identification	Pseudomonas fluorescens

Table S2. The physiological and biochemical reactions of *Pseudomonas fluorescens* gim-3.

		14010 001 00	cretions or	Bi cereme u				
Time	Compound	Formula	RI calcula tion	RI refere nce	Derivat ization	Mark peak	Peak area (×10 ⁵) ª	Peak area (×10 ⁵) ^b
6.476	1-Hexanol	C6H14O	991.1	982	O-TMS	159	89.6262 6	84.261 75
8.732	Pyruvic acid	C3H4O3	1050.2	-	MO, O-TMS	73	3.12031	-
9.116	Lactic acid	C3H6O3	1060.2	1051	O,O-T MS	73	3.96691	1.7605 3
9.739	Glycolic acid	C2H4O3	1076.5	1078	O,O-T MS	73	11.1635 4	0.5196 9
10.708	Alanine	C3H7O2 N	1102.1	1093	N,O-T MS	116	1.20397	17.275 14
11.008	Hydroxylami ne ^b	H3ON	1110.6	1123	N,N,O- TMS	73	-	0.3207 7
12.046	Oxalic acid ^b	C2H2O4	1140.3	1131	O,O-T MS	73	-	1.3780 9
12.238	3-Hydroxypr opionic acid ^a	C3H6O3	1145.7	1144	O,O-T MS	177	0.07348	-
12.783	3-Hydroxybu tyric acid ª	C4H8O3	1161.3	1163	O,O-T MS	73	0.55035	-
14.569	Valine ^b	C5H11O 2N	1213.8	1221	N,O-T MS	144	-	0.3010 8
14.806	Glyceraldehy de	C3H6O3	1221.4	-	MO, O,O-T MS	73	1.88081	0.6056 8
16.143	Ethanolamin e	C2H7ON	1264.3	1281	N,N,O- TMS	174	0.21725	0.5552 9
16.309	Phosphoric acid	H3O4P	1269.5	1283	0,0,0- TMS	299	9.72631	22.670 24
16.494	Glycerol	C3H8O3	1275.5	1282	0,0,0- TMS	73	2.81253	2.6210 4
17.614	Succinic acid	C4H6O4	1312.6	1314	O,O-T MS	73	0.85247	0.4900 4
18.093	Glyceric acid	C3H6O4	1329.5	1336	0,0,0- TMS	73	1.73067	0.5522 2
20.369	2,4-Dihydrox ybutanoic acid	C4H8O4	1410.9	1431	0,0,0- TMS	103	0.64563	0.7812 0
20.934	3,4-Dihydrox ybutanoic acid	C4H8O4	1432.7	1448	0,0,0- TMS	73	0.60173	0.7390 6
21.101	Erythrose	C4H8O4	1439.1	-	MO, 0,0,0- TMS	73	2.73090	1.7666 1
21.483	Erythrose	C4H8O4	1453.7	-	MO, 0,0,0- TMS	73	13.7551 7	8.8203 4
22,773	Salicylic acid	C7H6O3	1503.4	1507	0.0-T	73	0.95474	0.7060

Table S3. Secretions of *B. cereus* and *P. fluorescens*.

	(internal reference)				MS			8
23.705	Erythronic acid	C4H8O5	1541.8	-	0,0,0, 0-TMS	73	2.88888	5.3010 7
25.782	Ribono-gam ma-lactone ^ь	C5H8O5	1629.0	-	0,0,0- TMS	73	-	2.2126 6
26.523	Ribose	C5H10O 5	1661.4	-	MO, 0,0,0, 0-TMS	73	18.5698 4	17.653 98
28.077	Putrescine ^b	C4H12N 2	1731.0	-	N,N,N, N-TMS	174	-	16.813 08
28.466	2-Desoxy-pe ntos-3-ulose	C5H8O4	1749.1	-	2MO, O,O-T MS	73	4.64678	2.5702 7
28.993	3-Deoxy-arab ino-hexonic acid 1,4-lactone	C6H10O 5	1773.3	-	0,0,0- TMS	73	1.24872	1.5223 0
29.078	Ribonic acid	C5H10O 6	1777.2	1799	0,0,0, 0,0-T MS	73	3.23952	2.6260 6
29.751	3-Desoxy-pe ntitol ª	C5H12O 4	1808.7	-	0,0,0, 0-TMS	73	2.71802	-
30.153	Galacto-hexo dialdoseª	C6H12O 6	1828.3	-	2MO, 0,0,0, 0-TMS	160	2.76357	-
30.454	Galactofuran ose ^a	C6H12O 6	1842.9	1852	0,0,0, 0,0-T MS	73	14.9376 2	-
30.993	Fructose ^a	C6H12O 6	1869.1	-	0,0,0, 0,0-T MS	103	55.7691 7	-
31.214	Gluconolacto ne ^b	C6H10O 6	1879.8	1916	0,0,0, 0-TMS	73	-	10.255 91
31.225	Fructose ^a	C6H12O 6	1880.3	-	0,0,0, 0,0-T	103	49.8506 9	-
31.407	Glucose ª	C6H12O 6	1889.1	-	мз 0,0,0, 0,0-Т MS	204	129.386 53	-
31.422	Glucono-ga mma-lactone ^b	C6H10O 6	1889.8	-	0,0,0, 0-TMS	73	-	6.5060 6
31.688	Glucose ª	C6H12O 6	1902.9	-	MO, O,O,O, O,O-T	319	169.757 58	-
31.966	Glucose ^a	C6H12O	1917.1	-	м5 МО, 000	73	144.251 18	-

					O,O-T MS			
33.217	Galactopyran ose ^a	C6H12O 6	1980.8	-	0,0,0, 0,0-T MS	204	119.516 40	-
33.456	Gluconic acid ^b	C6H12O 7	1993.0	1997	0,0,0, 0,0,0- TMS	73	-	35.724 10
34.431	Hexadecanoi c acid	C16H32 O2	2044.7	2047	O-TMS	117	0.62709	0.3412 5

Note: Superscript a means only *B. cereus* secretion, superscript b means only *P. fluorescens* secretion, and no superscript means both secretions. MO was methoximation, TMS was trimethylsilyl, O was oxygen, and N was nitrogen. RI reference was derived from NIST05. Peak area data include the mean of six replicates.

Text S1. The 16S rDNA gene sequences of Bacillus cereus qh-35. **G**GGGAGTGGCGGCAGCTATACATGCAGTCGAGCGAATGGATTAAGAGCTTGCTCTTAT GAAGTTAGCGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCCATAAGACTGGGAT AACTCCGGGAAACCGGGGCTAATACCGGATAACATTTTGAACTGCATGGTTCGAAATT GAAAGGCGGCTTCGGCTGTCACTTATGGATGGACCCGCGTCGCATTAGCTAGTTGGTG AGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCAC ACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCG TAAAACTCTGTTGTTAGGGAAGAACAAGTGCTAGTTGAATAAGCTGGCACTGACGGTA CCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGG CAAGCGTTATCCGGAATTATTGGGCGTAAAGCGCGCGCAGGTGGTTTCTTAAGTCTGAT GTGAAAGCCCACGGCTCAACCGTGGAGGGTCATTGGAAACTGGGAGACTTGAGTGCA GAAGAGGAAAGTGGAATTCCATGTGTAGCGGTGAAATGCGTAGAGATATGGAGGAAC ACCAGTGGCGAAGGCGACTTTCTGGTCTGTAACTGACACTGAGGCGCGAAAGCGTGG GGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGT GTTAGAGGGTTTCCGCCCTTTAGTGCTGAAGTTAACGCATTAAGCACTCCGCCTGGGG AGTACGGCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTG GAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCT GAAAACCCTAGAGATAGGGCTTCTCCTTCGGGAGCAGAGTGACAGGTGGTGCATGGT TGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTG ATCTTAGTTGCCATCATTAAGTTGGGCACTCTAAGGTGACTGCCGGTGACAAACCGGA GGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACGTGC TACAATGGACGGTACAAAGAGCTGCAAGACCGCGAGGTGGAGCTAATCTCATAAAAC CGTTCTCAGTTCGGATTGTAGGCTGCAACTCGCCTACATGAAGCTGGAATCGCTAGTAA TCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCA CCTAAGTGACAGC

Text S2. The 16S rDNA gene sequences of Pseudomonas fluorescens gim-3. CGGACGGGTGAGTAATGCCTAGGAATCTGCCTGGTAGTGGGGGGATAACGTCCGGAAA CGGACGCTAATACCGCATACGTCCTACGGGAGAAAGCAGGGGACCTTAGGGCCTTGC GCTATCAGATGAGCCTAGGTCGGATTAGCTAGTTGGTGAGGTAATGGCTCACCAAGGC GACGATCCGTAACTGGTCTGAGAGGATGATCAGTCACACTGGAACTGAGACACGGTC CAGACTCCTACGGGAGGCAGCAGTGGGGGAATATTGGACAATGGGCGAAAGCCTGATC CAGCCATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTAAAGCACTTTAAGTTGGGAG GAAGGGTACTTACCTAATACGTGAGTATTTTGACGTTACCGACAGAATAAGCACCGGC TAACTCTGTGCCAGCAGCCGCGGTAATACAGAGGGGTGCAAGCGTTAATCGGAATTAC TGGGCGTAAAGCGCGCGTAGGTGGTTCGTTAAGTTGGATGTGAAATCCCCGGGCTCAA CCTGGGAACTGCATCCAAAACTGGCGAGCTAGAGTATGGTAGAGGGTGGTGGAATTT CCTGTGTAGCGGTGAAATGCGTAGATATAGGAAGGAACACCAGTGGCGAAGGCGACC ACCTGGACTGATACTGACACTGAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGAT ACCCTGGTAGTCCACGCCGTAAACGATGTCAACTAGCCGTTGGGAGCCTTGAGCTCTT AGTGGCGCAGCTAACGCATTAAGTTGACCGCCTGGGGAGTACGGCCGCAAGGTTAAA ACTCAAATGAATTGACGGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAA GCAACGCGAAGAACCTTACCAGGCCTTGACATCCAATGAACTTTCCAGAGATGGATT GGTGCCTTCGGGAGCATTGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTGTGGTGA GATGTTGGGTTAAGTCCCGTAACGAGCGCAACCCTTGTCCTTAGTTACCAGCACGTTAT GGTGGGCACTCTAAGGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGGATGACGT CAAGTCATCATGGCCCTTACGGCCTGGGCTACACGCGCTACAATGGTCGGTACAGA GGGTTGCCAAGCCGCGAGGTGGAGCTAATCCCATAAAACCGATCGTAGTCCGGATCG CAGTCTGCAACTCGACTGCGTGAAGTCGGAATCGCTAGTAATCGCGAATCAGAATGTC GCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGGAGTGGGTT GCACCAGAAGTAGCTAGTCTAACCTTCGGGAGGACGGTACCAGCGGTGATTACGG