The Rapid Degradation of Lambda-Cyhalothrin Makes Treated Vegetables Relatively Safe for Consumption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Pesticide Utilization in Vegetable Farming
2.3. Handling and Transportation of Vegetables from Farms to Markets
2.4. Collection of Lettuce and Cabbage from Target Farms (Houeyiho and Bawera) for λ-Cyhalothrin Residue Analysis
2.5. Collection of Lettuce and Cabbage from Market Gates in Surveyed Towns (Cotonou and Parakou) for λ-Cyhalothrin Residue Analysis
2.6. Collection of Water Samples from Water Bodies Found within Vegetable Farms for λ-Cyhalothrin Residue Analysis
2.7. Processing of Samples in the Laboratory for Detection of λ-Cyhalothrin Residues Using HPLC
2.7.1. Extraction of Insecticide Residues from Collected Samples (Lettuce, Cabbage, Water Mixed with Soil Particles)
2.7.2. Quantification of λ-Cyhalothrin Residues in Collected Samples after Extraction
2.7.3. Method Validation: λ-Cyhalothrin Standard Curve Plotting, Computation of Limit of Detection (LOD) and Limit of Quantification (LOQ) of the HPLC, and Recovery
2.8. Screening of Potential Factors of λ-Cyhalothrin Degradation
2.8.1. Effect of Photolysis on λ-Cyhalothrin Degradation
2.8.2. Effect of Ultra Violet (UV) Light (Direct Exposure) on λ-Cyhalothrin Degradation
2.8.3. Effect of Alkaline Solutions (Hydrolysis) on λ-Cyhalothrin Degradation
3. Results
3.1. Pesticides Utilization by Farmers at Houeyiho and Bawera
3.2. Vegetable Handling from Farms to Market Gates
3.3. On Farm Monitoring of λ-Cyhalothrin Residues in Growing Vegetables Post Treatment
3.4. Screening of Pesticide Residues in Water Bodies Found in Vegetable Farms at Houeyiho
3.5. Screening of λ-Cyhalothrin Residues in Lettuces and Cabbages from Vegetable Markets of Cotonou and Parakou
3.6. Screening of Potential Factors of λ-Cyhalothrin Degradation
3.6.1. Effect of Photolysis on λ-Cyhalothrin Degradation
3.6.2. Effect of UV Light (Direct Exposure) on λ-Cyhalothrin Degradation
3.6.3. Effect of Alkaline Solutions (Hydrolysis) on λ-Cyhalothrin Degradation
4. Discussion
4.1. Pesticides Utilization by Vegetable Farmers in Benin
4.2. Vegetable Handling from Farms to Market Gates
4.3. On-Farm Analysis of λ-Cyhalothrin Residues in Growing Vegetables Post Last Treatment
4.4. Monitoring of λ-Cyhalothrin Residues In Lettuce and Cabbage on Sale at Vegetable Markets in Cotonou and Parakou
4.5. Screening of λ-Cyhalothrin Residues in Water Bodies Found in Vegetable Farms at Houeyiho
4.6. Screening of Potential Factors of λ-Cyhalothrin Degradation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gangnibo, C.N.; Cheng, S.; Huang, I.; Sambou, A. Sustainable agriculture in Benin: Strategies for applying the Chinese circular agriculture model. J. Sustain. Dev. 2010, 3, 69–80. [Google Scholar] [CrossRef]
- Sæthre, M.G.; Assogba-Komlan, F.; Oseth-Svendsen, N.; Holen, B.; Godonou, I. Pesticide Residues Analysis of Three Vegetable Crops for Urban Consumers in Benin-Human and Environmental Consequences of Abuse and Misuse of Synthetic Pesticides. Acta Hortic. 2012, 1007, 393–401. [Google Scholar] [CrossRef]
- Assogba-Komlan, F.; Anihouvi, P.; Achigan, E.; Sikirou, R.; Boko, A.; Adje, C.; Ahle, V.; Vodouhe, R.; Assa, A. Pratiques culturales et teneur en éléments anti nutritionnels (nitrates et pesticides) du Solanum macrocarpum au sud du Bénin. Afr. J. Food Agric. Nutr. Dev. 2007, 7, 1–21. [Google Scholar]
- Pretty, J.; Bharucha, Z.P. Integrated pest management for sustainable intensification of agriculture in Asia and Africa. Insects 2015, 6, 152–182. [Google Scholar] [CrossRef] [PubMed]
- Zaim, M.; Aitio, A.; Nakashima, N. Safety of pyrethroid treated mosquito nets. Med. Vet. Entomol. 2000, 14, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Bradberry, S.M.; Cage, S.A.; Proudfoot, A.T.; Vale, J.A. Poisoning due to pyrethroids. Toxicol. Rev. 2005, 24, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Kolmodin-hedman, B.; Åkerblom, M.; Flato, S.; Alex, G. Symptoms in forestry workers handling conifer plants treated with permethrin. Bull. Environ. Contam. Toxicol. 1995, 55, 487–493. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Plan for Insecticide Resistance Management in Malaria Vectors; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Joint FAO/WHO Codex Alimentarius Commission Programme. Codex Alimentarius: Food Hygiene, Basic Texts; Food and Agriculture Organization: Rome, Italy, 2003. [Google Scholar]
- Williamson, S. The Dependency Syndrome: Pesticide Use by African Smallholders; Report for PAN UK’s Pesticides Poverty and Livelihoods Project; Pesticide Action Network: London, UK, 2005. [Google Scholar]
- Akogbeto, M.; Djouaka, R.; Noukpo, H. Utilisation des insecticides agricoles au Bénin. Bull. Soc. Pathol. Exot. 2005, 98, 400–405. [Google Scholar] [PubMed]
- Rosendahl, I.; Laabs, V.; James, B.; Atcha-ahowé, C.; Agbotse, S.; Kone, D.; Kogo, A.; Salawu, R.; Glitho, I. Living with Pesticides: A Vegetable Case Study; CGIAR Systemwide Program on Integrated Pest Management (SP-IPM), IITA: Ibadan, Nigeria, 2008. [Google Scholar]
- Beninese Plant Protection Agency. List of Legal Pesticides in Benin; Comité National d’Agrément et de Contrôle des Produits Phytopharmaceutiques: Porto Novo, Benin, 2012. [Google Scholar]
- Pazou-Yehouenou, E.A.; Soton, A.; Azocli, D.; Acakpko, H.; Lawin, H.; Fourn, L.; Fayomi, B.; Boco, M.; Houinsa, D.; Keke, J.C. Maraîchage et affections digestives sur le site de Houeyiho en République du Bénin. Int. J. Biol. Chem. Sci. 2013, 7, 1976–1986. [Google Scholar] [CrossRef]
- Yolou, I.; Yabi, I.; Kombieni, F.; Tovihoudji, P.G.; Yabi, J.A.; Paraïso, A.A.; Afouda, F. Market gardening in urban area of municipality of Parakou (north Benin) and its profitability. Int. J. Innov. Sci. Res. 2015, 19, 290–302. [Google Scholar]
- Agueh, V.; Degbey, C.; Sossa-jerome, C.; Adomahou, D.; Paraiso, M.N.; Vissoh, S.; Makoutode, M.; Fayomi, B. Niveau de contamination des produits maraîchers par les substances toxiques sur le site de Houéyiho au Bénin. Int. J. Biol. Chem. Sci. 2015, 9, 542–551. [Google Scholar] [CrossRef]
- El-Saeid, M.H.; Al-Wabel, M.I.; Abdel-Nasser, G.; Al-Turki, A.M.; Al-Ghamdi, A.G. One-step Extraction of Multiresidue Pesticides in Soil by Microwave-assisted Extraction Technique. J. Appl. Sci. 2010, 10, 1775–1780. [Google Scholar] [CrossRef]
- Togola, A.; Meseka, S.; Menkir, A.; Badu-Apraku, B.; Boukar, O.; Tamò, M.; Djouaka, R. Measurement of Pesticide Residues from Chemical Control of the Invasive Spodoptera frugiperda (Lepidoptera: Noctuidae) in a Maize Experimental Field in Mokwa, Nigeria. Int. J. Environ. Res. Public Health 2018, 15, 849. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, A.; Gupta, V.B. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2011, 2, 21. [Google Scholar] [CrossRef]
- Tooker, J.F.; Frank, S.D. Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. J. Appl. Ecol. 2012, 49, 974–985. [Google Scholar] [CrossRef] [Green Version]
- Carmo, E.D.; Bueno, A.; Bueno, R. Pesticide selectivity for the insect egg parasitoid Telenomus remus. BioControl 2010, 55, 455–464. [Google Scholar] [CrossRef]
- Waichman, A.V.; Eve, E.; Da silva, N.C. Do farmers understand the information displayed on pesticide product labels? A key question to reduce pesticides exposure and risk of poisoning in the Brazilian Amazon. Crop Prot. 2007, 26, 576–583. [Google Scholar] [CrossRef]
- Djouaka, R.F.; Bakare, A.A.; Bankole, H.S.; Doannio, J.M.C.; Kossou, H.; Akogbeto, M.C. Quantification of the efficiency of treatment of Anopheles gambiae breeding sites with petroleum products by local communities in areas of insecticide resistance in the Republic of Benin. Malar. J. 2007, 6, 56. [Google Scholar] [CrossRef] [PubMed]
- Amoah, P.; Drechsel, P.; Abaidoo, R.C.; Henselerl, M. Irrigated urban vegetable production in Ghana: Microbiological contamination in farms and markets and associated consumer risk groups. J. Water Health 2007, 5, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Chouaibou, M.S.; Fodjo, B.K.; Fokou, G.; Allassane, O.F.; Koudou, B.G.; David, J.; Nkondjio, C.A.; Ranson, H.; Bonfoh, B. Influence of the agrochemicals used for rice and vegetable cultivation on insecticide resistance in malaria vectors in southern Côte d’ivoire. Malar. J. 2015, 15, 426. [Google Scholar] [CrossRef] [PubMed]
- Akogbeto, M.; Djouaka, R.; Kinde-Gazard, D.A. Screening of pesticide residues in soil and water samples from agricultural settings. Malar. J 2006, 5, 22. [Google Scholar] [CrossRef] [PubMed]
- Idah, P.A.; Ajisegiri, E.S.A.; Yisa, M.G. Fruits and Vegetables Handling and Transportation in Nigeria. Aust. J. Technol. 2007, 10, 175–183. [Google Scholar]
- European Food Safety Autority. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for lambda-cyhalothrin according to Article 12 of Regulation (EC) No. 396/20051. EFSA J. 2014, 12, 3546. [Google Scholar]
- Niu, J.; Yu, G. Agricultural chemicals. In Point Sources of Pollution: Local Effects and Their Control; Yi, Q., Ed.; Encyclopedia of Life Support Systems (EOLSS): Oxford, UK, 2009; Volume II, p. 43. [Google Scholar]
- Hill, B.D.; Schaalje, G.B. A two-compartment model for the dissipation of deltamethrin on soil. J. Agric. Food Chem. 1985, 33, 1001–1006. [Google Scholar] [CrossRef]
- Zhu, H.; Selim, H. Retention and mobility of deltamethrin in soils: 1. Adsorption-desorption 1. Soil Sci. 2002, 167, 513–523. [Google Scholar] [CrossRef]
- He, L.M.; Troiano, J.; Wang, A.; Goh, K. Environmental chemistry, ecotoxicity, and fate of lambda-cyhalothrin. Rev. Environ. Contam. Toxicol. 2008, 195, 71–91. [Google Scholar] [PubMed]
- Liu, P.; Liu, Y.; Liu, Q.; Liu, J. Photodegradation mechanism of deltamethrin and fenvalerate. J. Environ. Sci. 2010, 22, 1123–1128. [Google Scholar] [CrossRef]
- Chen, S.; Hu, Q.; Hu, M. Isolation and characterization of a fungus able to degrade pyrethroids and 3-phenoxybenzaldehyde. Bioresour. Technol. 2011, 102, 8110–8116. [Google Scholar] [CrossRef] [PubMed]
- Dubey, K.K.; Kulekar, M.H. Investigation of potential rhizospheric isolate for cypermethrin degradation. 3 Biotech 2013, 3, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Werck-Reichhart, D.; Feyereisen, R. Cytochromes P450: A success story. Genome Biol. 2000, 1, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mochiah, M.; Baidoo, P.; Owusu-Akyaw, M. Influence of different nutrient applications on insect populations and damage to cabbage. J. Appl. Biosci. 2011, 38, 2564–2572. [Google Scholar]
- Henry, L.N.; Ngowo, J.N. Degradation of Lambda-Cyhalothrin in Spinach (Spinacia oleracea) & Collard Green (Brassica oleracea) under Tropical Conditions. IJSR 2015, 5, 79–82. [Google Scholar]
- Lund, T.; Sæthre, M.G.; Nyborg, I.; Coulibaly, O.; Rahman, M. Farmer field school-IPM impacts on urban and peri-urban vegetable producers in Cotonou, Benin. Int. J. Trop. Insect Sci. 2010, 30, 19–31. [Google Scholar] [CrossRef]
- Godonou, I.; James, B.; Atcha-ahowé, C. Locally available mycoinsecticide alternatives to chemical pesticides against leaf feeding pests of vegetables. Pest. Manag. West Afr. 2009, 7, 53–62. [Google Scholar]
- Godonou, I.; James, B.; Atcha-ahowé, C.; Vodouhe, S.; Kooyman, C.; Ahanchédé, A.; Korie, S. Potential of Beauveria bassiana and Metarhizium anisopliae isolates from Benin to control Plutella xylostella L. (Lepidoptera: Plutellidae). Crop Prot. 2009, 28, 220–224. [Google Scholar] [CrossRef]
- Akomea-Frempong, S.; Ofosu, I.W.; Owusu-Ansah, E.J.; Darko, G. Health risks due to consumption of pesticides in ready-to-eat vegetables (salads) in Kumasi, Ghana. Int. J. Food Contam. 2017, 4, 1–11. [Google Scholar] [CrossRef]
- Yadouleton, A.; Martin, T.; Padonou, G.; Chandre, F.; Asidi, A.; Djogbenou, L.; Dabiré, R.; Aïkpon, R.; Boko, M.; Glitho, I.; et al. Cotton pest management practices and the selection of pyrethroid resistance in Anopheles gambiae population in Northern Benin. Parasites Vector 2011, 4, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez-Alvarez, M.; Sanchez-Prado, L.; Lores, M.; Llompart, M.; Garcia-Jares, C.; Cela, R. Alternative sample preparation method for photochemical studies based on solid phase microextraction: Synthetic pyrethroid photochemistry. J. Chromatogr. A 2007, 1152, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Handa, S.K.; Sharma, K.K. A new spray reagent for the detection of synthetic pyrethroids containing a nitrile group on thin-layer plates. Talanta 1998, 45, 1111–1114. [Google Scholar] [CrossRef]
Period of Insecticide Application | Houeyiho | Bawera | |||
---|---|---|---|---|---|
n | % | n | % | ||
Frequency of insecticide treatment | Every 7 days | 10 | 25.6 | 32 | 91.4 |
Every 10 days | 4 | 10.3 | 0 | 0.0 | |
Every 14 days | 20 | 51.3 | 3 | 8.6 | |
Every 30 days | 5 | 12.8 | 0 | 0.0 | |
Insecticide concentration (dilution) | 2.5 mL/10 L | 15 | 38.5 | 18 | 51.4 |
3 mL/10 L | 2 | 5.1 | 0 | 0.0 | |
5 mL/10 L | 22 | 56.4 | 12 | 34.3 | |
7.5 mL/10 L | 0 | 0.0 | 5 | 14.3 | |
Total | 39 | 100 | 35 | 100 |
Water Samples | λ-Cyhalothrin Residues (mg/kg) |
---|---|
WP 1 | ND |
WP 2 | ND |
WP 3 | 0.005 ± 0.008 |
WP 4 | ND |
WP 5 | 0.277 ± 0.090 |
Sampled Cities | Market Name | Types of Vegetables | Mean (mg/kg) ± SD |
---|---|---|---|
Cotonou | Gbedegbe | Lettuce | 0 |
Gbegamey | Lettuce | 0 | |
Ganhi | Lettuce | <0.002 | |
Homel | Lettuce | <0.002 | |
St Michel | Lettuce | 0 | |
Dantokpa | Lettuce | 0 | |
Cocotier/Haie vive | Lettuce | 0 | |
Vodje barriere | Lettuce | 0 | |
Fifatin/Cadjehoun | Lettuce | 0 | |
Parakou | Depot | Cabbage | 0.120 ± 0.016 |
Zongo | Cabbage | <0.002 | |
Arzeke | Cabbage | 0.184 ± 0.020 | |
Guema | Cabbage | 0.142 ± 0.037 | |
Mairie | Cabbage | 0.113 ± 0.065 |
HPLC Grade Water | Liquefied Lettuce | NaOH Solution pH 10 | NaOH Solution pH 12 | |
---|---|---|---|---|
pH | 7 | 6 | 10 | 12 |
λ concentration (μM) | 2.1 | 2.2 | 0 | 0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djouaka, R.; Soglo, M.F.; Kusimo, M.O.; Adéoti, R.; Talom, A.; Zeukeng, F.; Paraïso, A.; Afari-Sefa, V.; Saethre, M.-G.; Manyong, V.; et al. The Rapid Degradation of Lambda-Cyhalothrin Makes Treated Vegetables Relatively Safe for Consumption. Int. J. Environ. Res. Public Health 2018, 15, 1536. https://doi.org/10.3390/ijerph15071536
Djouaka R, Soglo MF, Kusimo MO, Adéoti R, Talom A, Zeukeng F, Paraïso A, Afari-Sefa V, Saethre M-G, Manyong V, et al. The Rapid Degradation of Lambda-Cyhalothrin Makes Treated Vegetables Relatively Safe for Consumption. International Journal of Environmental Research and Public Health. 2018; 15(7):1536. https://doi.org/10.3390/ijerph15071536
Chicago/Turabian StyleDjouaka, Rousseau, Murielle Farrelle Soglo, Michael Olugbenga Kusimo, Razack Adéoti, Armand Talom, Francis Zeukeng, Armand Paraïso, Victor Afari-Sefa, May-Guri Saethre, Victor Manyong, and et al. 2018. "The Rapid Degradation of Lambda-Cyhalothrin Makes Treated Vegetables Relatively Safe for Consumption" International Journal of Environmental Research and Public Health 15, no. 7: 1536. https://doi.org/10.3390/ijerph15071536
APA StyleDjouaka, R., Soglo, M. F., Kusimo, M. O., Adéoti, R., Talom, A., Zeukeng, F., Paraïso, A., Afari-Sefa, V., Saethre, M. -G., Manyong, V., Tamò, M., Waage, J., Lines, J., & Mahuku, G. (2018). The Rapid Degradation of Lambda-Cyhalothrin Makes Treated Vegetables Relatively Safe for Consumption. International Journal of Environmental Research and Public Health, 15(7), 1536. https://doi.org/10.3390/ijerph15071536