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Abstract: Analysis of sediment grain sizes and heavy metal correlations in the western part of Lake
Taihu shows that the grain size of the sediment is stable as a whole. With increasing depth, the grain
size tends to decrease. Heavy metals such as Cr, Cd, Pd and Sr are strongly correlated and influence
each other. Based on the positive matrix factorization (PMF) model, this study classified the origin
of heavy metals in the sediments of western Lake Taihu into three major categories: Agricultural,
industrial and geogenic. The contributions of the three heavy metal sources in each sample were
analyzed and calculated. Overall, prior to the Chinese economic reform, the study area mainly
practiced agriculture. The sources of heavy metals in the sediments were mostly of agricultural and
geogenic origin, and remained relatively stable with contribution rates of 44.07 ± 11.84% (n = 30) and
35.67 ± 11.70% (n = 30), respectively. After the reform and opening up of China, as the economy
experienced rapid development, industry and agriculture became the main sources of heavy metals
in sediments, accounting for 56.99 ± 15.73% (n = 15) and 31.22 ± 14.31% (n = 15), respectively.
The PMF model is convenient and efficient, and a good method to determine the origin of heavy
metals in sediments.

Keywords: sediment; positive matrix factorization; heavy metal; source resolution

1. Introduction

Lake Taihu, located in Southern Jiangsu Province, is the third largest freshwater lake in China,
with an area of 2338 km2, and plays a decisive role in regional and socioeconomic development.
Heavy metals enter aquatic systems via surface runoff or atmospheric deposition and accumulate
in sediments through the adsorption and sedimentation of suspended matter. Heavy metals are
important pollutants of aquatic ecosystems because of their environmental persistence, toxicity and
potential for accumulation in food chains [1–4]. Lake Taihu water flows in mainly from the west, and
the environmental quality of the western part of the lake plays a crucial role in the environment of the
entire lake. However, the sources and history of heavy metals in the sediments of West Lake Taihu are
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unclear. Therefore, it is necessary to investigate these issues and provide a basis for the monitoring
and management of heavy metal pollution.

At this stage, the models of source determination for sediment heavy metals can be divided
into two main types: diffusion and receptor-oriented models. The diffusion model (which involves
a mathematical model combined with certain assumptions to select a series of parameters to calculate
the diffusion and migration of pollutants in a simulation of the actual situation), has the pollution
source as the main research object [5,6]. The diffusion equation can be used to calculate the source
contributions according to the pollutant discharge, distance between the study area and the discharge
source, physical and chemical properties of the pollutants, discharge rate, weather conditions, and
other parameters. On the other hand, the receptor-oriented model (a digital model and method for
identifying and analyzing the different sources and contribution rates of receptor contaminants) takes
a contaminated area as the research object [7–10]. The positive matrix factorization (PMF) model is
one of the source resolution methods recommended by the US Environmental Protection Agency [11]
(USEPA). The method is mainly applied to air pollution, water pollution, sediment, etc. [7,12,13] and
has been shown to be a powerful model for analyzing the source of material in the environment [13,14].

In this study, we investigated the heavy metal concentrations in the sediment of Lake Taihu.
The specific objectives were as follows: (1) to analyze characteristics of the grain size of Lake Taihu
sediments; (2) to measure the concentrations of heavy metals in the sediments; and (3) to analyze the
sources of heavy metals in the sediments of western Lake Taihu and quantify the historical changes in
the sources of heavy metals in the sediments using the PMF model.

2. Materials and Methods

2.1. Study Area and Sampling

Lake Taihu Basin is a key area in eastern China because of its high population. Rainfall in the area,
controlled by the Pacific monsoon, is moderately high (905–1956 mm/a), and precipitation in summer
is approximately 37% of the total annual rainfall. The average annual evaporation is approximately
1001 mm, and the mean annual temperature is 16 ◦C. In this study, we selected the western part of
Lake Taihu, shown in Figure 1, and collected a 45-cm long sediment column using a non-interfering
gravity sampler. The column was sliced into 1 cm samples (a total of 45 samples) and freeze-dried at
−40 ◦C for 48–72 h.
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2.2. Analysis of Sediment

A laser grain size analyzer (Malvern Mastersizer 2000) was used to measure the grain size
(a separate sample aliquot of 2 g of sediment was pretreated using 15 mL of 0.6% (NaPO3)6 for 24 h
to be dispersed and homogenized). The total heavy metal concentrations and 210Pb in the prepared
samples were determined with a HCl-HNO3-HF-HClO4 extraction [15]. Approximately 100 mg of
sample was digested with 3 mL of 37% HCL, 1 mL of 65% HNO3, 6 mL of 65% HF, and 0.5 mL
of 65% HClO4. There were two steps as follows: in the first step, the temperature was increased
to 200 ◦C in 15 min, and in the second step it was maintained at 200 ◦C for approximately 20 min
to continue digestion. The sample digestion solutions were evaporated to near dryness after the
microwave pretreatment and then dissolved with 65% HNO3, after which 20 mL of deionized water
was added to each sample. Prior to the experimental analysis, the solution was stored in 25-mL
high-density polyethylene vials. The concentrations of K, As, Mn, Cu, Fe, Zn, Al, Ni, Sr, Ti, Ni and Cr
were determined by inductively coupled plasma optical emission spectrometry (ICP-OES), and the
concentrations of Cd and Pb were determined with an inductively coupled plasma mass spectrometer
(ICP-MS). The accuracy and precision were verified using standard reference materials (soil GBW07405,
Chinese geological reference materials). In addition, blank and duplicate samples were also prepared
and analyzed (Tables S1 and S2), and the detection limit, quantification limit and recovery rate are
shown in Table S4.

The activity of 210Pb was determined by γ analysis, using a high-purity germanium detector (EC
& GORTEC, Meriden, CT, USA), digital spectrometer and multi-channel analysis system. The sample
measurement time was 40,000 s, with a measurement error controlled at the 95% confidence level and
measured data errors of less than 5%.

2.3. Data Analysis

The Al is the main component of clay minerals, and its content is an important indicator of
the coarse grain size. It is an ideal element to normalize the effect of grain size on the content of
heavy metals. In this study, Al was used to normalize heavy metal elements [16–18], using the
following formula:

Ci
N = Ci

0/CAl
O (1)

where Ci
N is the normalized value of the i element in the sediment; Ci

0 is the measured value of the i
element in the sediment; CAl

O is the measured value of the Al in the sediment [19].
PMF multivariate statistical analysis was proposed by Paatero and Tapper [20]. PMF is applied

mainly through the least squares method to determine the source of the receptor media and its
contribution rate. Its mathematical principle is expressed as follows: define matrix X, which can
be expressed as n × m, where n represents the number of samples and m represents the number
of contaminants; decompose matrix X into two factor matrices and one residual matrix, G (n × p),
F (p × m) and E (n × m), respectively, where p is the number of pollution sources; the mathematical
formula is expressed as X = GF + E; the matrix F represents the factor loading, the matrix G represents
the factor contribution, and the matrix E represents the residual matrix, defined as the difference
between the actual data and the result of the analysis.

The matrix conversion is performed as follows:

Xij = ∑p
k=1 gik fkj + eij (2)

where Xij represents the content (concentration) of the jth pollutant in the ith sample; gik represents
the contribution rate of the kth source to the ith sample; fkj represents the content of the jth pollutant
in the source k concentration; eij represents the residual matrix. At the same time, PMF defines
an objective function:

Q(E) = ∑n
i=1 ∑m

j=1 (
eij

uij
)

2
(3)
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where uij denotes the jth pollutant uncertainty of the ith sample. The uncertainty is calculated based
mainly on the uncertainty of the sample measurement (MU) and the method detection limit (MDL).
When the sample content (concentration) is less than or equal to the MDL, the uncertainty [21] u is
calculated as:

u =
5
6
× MDL (4)

When the sample content (concentration) is greater than the MDL, the uncertainty u is
calculated as:

u =

√
(MU × concentration)2 + (MDL)2 (5)

PMF analysis was performed using the USEPA PMF 5.0 model (USEPA, 2014). The IBM SPSS
Statistics 21 package was used for data description and correlation analysis.

3. Results and Discussion

3.1. Sediment Properties

Figure 2 shows the variation in particle size with depth in the sedimentary column. Most samples
could be classified as sandy silt, clayey silt, or silty sand [22]. In the sediment column, the silt fraction
was predominant, and its proportion varied between 73% and 82% with an average content of 76%.
The proportion of the clay fraction varied between 9% and 27% with an average content of 17%.
The sand fraction of the sediment samples gradually increased from the bottom to the surface, and the
variation range was 0–16%. In general, the particle size in the sediment column tended to increase
from the bottom to the surface and remained relatively stable as a whole, indicating that the sediment
column particle diameter had not been affected by historical floods [23,24].
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3.2. 210Pb Geochronology

The profiles of excessive 210Pb activity in the sediment core are shown in Figure 3. The vertical
profiles of the excessive 210Pb activity in the sediment core exhibited an approximately monotonic
decline with depth. The 210Pbex values in the core were significantly correlated with sample depths
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(R2 = 0.765), which indicates that the slices from both of the cores can reflect historic change.
The constant initial concentration (CIC) mode of 210Pb requires a better index distribution of the
210Pbex specific activity with depth, so the study area with a stable depositional environment tends to
use the CIC mode to calculate the year [25,26]. In this study, the dates were calculated based on a CIC
of 210Pb model [25,26].
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3.3. Heavy Metal Characteristics

On the basis of the dating, the description and analysis of the heavy metals in the upper part of
the sediment column (after 1978 ± 0.7838) and the lower part (before 1978 ± 0.7838) showed that the
content of heavy metals such as Cr, Cd, Sr and Pb were obviously higher in the upper part than in the
lower part. In Table 1, the average concentrations of Cr and Cd in the upper part were 70.6 mg kg−1 and
465.1 µg kg−1, respectively; in the lower part, they were 51.7 mg kg −1 and 136.0 µg kg−1, respectively.
The coefficients of variation for the other elements were not significantly large, and the coefficients of
variation for various metals after the 1980s were slightly larger than those before the 1980s. Correlation
analysis (CA) was performed.

Table 1. Heavy metals in sedimentary columns around 1978 (± 0.7838).

Upper Part (After 1978 ± 0.7838) Lower Part (Before 1978 ± 0.7838)

Minimum Maximum Mean CV Minimum Maximum Mean CV

Cr (mg kg−1) 51.3 84.0 70.6 14.9 43.1 67.8 51.9 10.8
Cu (mg kg−1) 13.5 27.8 19.7 24.2 17.6 36.2 23.9 18.1
Fe (mg kg−1) 22,284.0 27,289.9 24,972.3 5.3 22,747.9 28,965.8 25,869.8 6.3
Mg (mg kg−1) 5286.6 7783.3 6407.2 11.0 5996.2 9648.3 8216.9 11.2
Mn (mg kg−1) 504.2 1231.0 810.7 27.1 487.6 1044.2 811.9 20.4
Ni (mg kg−1) 30.6 92.9 42.5 39.4 34.4 47.1 41.1 8.8
K (mg kg−1) 15,576.8 18,928.6 17,341.9 5.9 15,240.7 21,698.1 18,935.6 9.7
Sr (mg kg−1) 131.4 268.5 198.6 19.5 67.8 255.9 123.8 38.6
Ti (mg kg−1) 3984.0 5963.2 4492.8 9.8 3894.2 5128.1 4374.5 7.0
Zn (mg kg−1) 89.2 153.8 114.7 17.7 94.4 129.2 110.9 9.0
Cd (mg kg−1) 0.125 0.836 0.465 61.8 0.082 0.244 0.136 28.5
Pb (mg kg−1) 17.4 29.4 23.6 17.2 18.1 23.7 20.8 7.6
Al (mg kg−1) 22.0 34.9 27.0 11.8 21.5 43.6 35.0 15.4
As (mg kg−1) 16.3 33.6 21.5 18.1 14.9 43.5 25.5 27.8

CV: coefficient of variation in %.
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Table 2 lists the correlation coefficients between the deposition parameters (clay, silt, sand) and
metals (Cr, Cu, Fe, Mg, Mn, Ni, K, Sr, Ti, Zn, Cd, Pb, Al and As). The CA of the data showed that heavy
metals such as Cu, Fe, Mg and Al were positively correlated with the clay fraction and negatively
correlated with the sand fraction (significant at p < 0.01), reflecting the adsorption and enrichment of
heavy metals on fine clay [27,28]. However, Cr, Cd, Pd, Sr and other heavy metals were negatively
correlated with fine clay (significant at p < 0.01), and there was no correlation for Ti and Fe. With the
decrease of fine grain content, these heavy metal contents increased, reflecting the impact of human
activities on the import of heavy metals into lake sediments [29,30].

3.4. Source Identification by PMF

We used PMF to analyze the sources of heavy metals in the sediments of the western Lake
Taihu. The PMF model was simulated with three to six factors, and the starting point of each run was
different. We selected a random seed pattern with 20 random origins and checked for three to six
factors. Finally, the PMF analysis identified three appropriate factors in the sediments of the western
Lake Taihu (the uncertainty of the factor changed by 10%, and its analysis results are shown in Table
S3; the analysis of the model with four to six factors is shown in Table S5). The tentative identification
of the factor profiles was based on the characteristic geochemical signature from different sources.

The source composition of the three-factor solution is summarized in Figure 4, with factor 1
accounting for 29% of the total heavy metals in the sediments of western Lake Taihu, dominated by As,
K and Cu. According to previous studies, fertilization can effectively increase the concentration of K in
the soil [31,32]. Elements such as As and Cu are commonly used to make pesticides [33]. The main
agricultural practice in the study area is the growing of rice and tea. To increase output, local farmers
often use pesticides and chemical fertilizers such as sodium methylarsonate and potassium [34].
Therefore, factor 1 indicated agricultural sources. Factor 2 had a degree of interpretation of 46% and
was dominated by Cd, Cr, Pb, Sr and Mn. The research area mainly has metallurgical industry, building
materials industry, ceramic industry and so on [34,35]. These industries can produce large quantities of
pollutants containing Cd, Cr, Pb and Mn in the process of production [36–38]; thus, factor 2 represented
industrial sources. Factor 3 accounted for 25% of the total heavy metals and was mainly composed of
Ti, Al and Ni, while Mg also showed some loadings on this factor. Ti, Al and Ni mainly come from the
erosion of the riverbed and dissolution of minerals; thus, factor 3 represented geogenic sources [39].
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Table 2. Pearson’s correlation of metal concentrations for Lake Taihu sedimentary column.

Cr Cu Fe Mg Mn Ni K Sr Ti Zn Cd Pb Al As Sand Silt Clay

Cr 1
Cu −0.057 1
Fe −0.166 0.286 1
Mg −0.487 ** 0.691 ** 0.594 ** 1
Mn 0.264 0.669 ** 0.282 0.490 ** 1
Ni 0.343 * 0.477 ** 0.180 0.224 0.435 ** 1
K −0.208 0.629 ** 0.599 ** 0.863 ** 0.570 ** 0.277 1
Sr 0.557 ** −0.213 0.087 −0.227 0.387 ** 0.194 0.073 1
Ti 0.188 −0.254 −0.013 −0.257 −0.452 ** 0.006 −0.153 −0.163 1
Zn 0.437 ** 0.709 ** 0.355 * 0.364 * 0.814 ** 0.600 ** 0.475 ** 0.357 * −0.163 1
Cd 0.801 ** 0.140 −0.116 −0.373 * 0.457 ** 0.472 ** −0.191 0.562 ** −0.083 0.659 ** 1
Pb 0.652 ** 0.343 * 0.083 −0.092 0.570 ** 0.487 ** 0.077 0.335 * −0.092 0.772 ** 0.861 ** 1
Al −0.526 ** 0.349 * −0.127 0.451 ** 0.060 −0.030 0.254 −0.597 ** −0.104 −0.176 −0.504 ** −0.278 1
As −0.247 0.191 0.477 ** 0.293 −0.011 0.070 0.216 −0.127 −0.039 0.179 −0.065 0.023 −0.043 1

Sand 0.599 ** −0.507 ** −0.340 * −0.766 ** −0.030 −0.058 −0.556 ** 0.652 ** 0.049 0.043 0.646 ** 0.361 * −0.639 ** −0.246 1
Silt 0.260 −0.468 ** −0.186 −0.410 ** −0.181 −0.081 −0.267 0.433 ** 0.344 * −0.122 0.181 −0.011 −0.311 * −0.142 0.370 * 1

Clay −0.573 ** 0.588 ** 0.328 * 0.780 ** 0.106 0.062 0.562 ** −0.677 ** −0.168 0.013 −0.588 ** −0.282 0.626 ** 0.234 −0.943 ** −0.648 ** 1

* Significantly correlated at the 0.05 level (2-tailed); ** Significantly correlated at the 0.01 level (2-tailed).
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The PMF model was successfully applied to the identification of sediment pollution sources in
western Lake Taihu. Figure 5 shows that before the 1980s, the contributions of industry, agriculture and
geological processes to the origin of heavy metals were relatively stable, with a significant contribution
of geological processes and agriculture, and a certain degree of contribution of industry. After the
1980s, the contribution of geological processes to sediment heavy metals decreased rapidly, while
that of industry rose rapidly and reached stability in approximately 2003. Before the reform and
opening up of China, the contributions of industry, agriculture and geological processes to sediment
heavy metals were 20.26 ± 15.61% (n = 30), 35.67 ± 11.70% (n = 30) and 44.07 ± 11.84% (n = 30),
respectively. After the reform and opening up, their contributions to heavy metals were 56.99 ± 15.73%
(n = 15), 31.22 ± 14.31% (n = 15) and 11.79 ± 9.83% (n = 15), respectively (Figure 6a,b). In recent years,
the proportion of heavy metals in sediments originating from industrial sources has declined.
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This trend is in good agreement with historical policies and economic development in China.
Figure 7 shows the relationship between the GDP of Jiangsu Province (Jiangsu Statistical Yearbook,
1975–2015) [40] and the ratio of industrial sources of heavy metals based on the PMF model. Before
2003, there was a significant positive correlation between the GDP of Jiangsu Province and ratio of
industrial sources of heavy metals. With the rapid increase in GDP, the proportion of heavy metals
produced by industrial activities rose quickly. However, after 2003, the two variables showed opposite
trends, and economic development did not increase the proportion of heavy metals produced by
industrial activities. This phenomenon has also been reported in the records of lakes and marine
sediments in other regions [41–43]. For example, Li [11] and Wan [44] reported that the pollutants in
Chaohu and Gonghai reached their maximum level in the late 20th century and began to decline in the
early 21st century. These research results are in agreement with ours and indicate that the PMF model
in the present study is highly reliable.
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Before the 1980s, China’s scientific, technological and economic conditions were limited, with
agriculture as the mainstay. After the reform and opening up in 1978, China’s economy developed
rapidly, and the output value of industry and agriculture soared [40]. At the same time, this
development brought about serious environmental pollution problems. The proportion of heavy metal
pollution caused by industrial production was highest in the early 21st century. With the promulgation
and implementation of a series of environmental laws, China’s environment has improved greatly
after the 2000s. The proportion of heavy metal pollution brought about by industrial production has
been curbed and is showing a downward trend, as shown in Figure 5.

4. Conclusions

With the development of the Chinese economy, heavy metal pollution became increasingly serious.
In general, this period can be divided into two stages. Before 1978 ± 0.7838, the heavy metals in the
study area were mainly of geogenic and agricultural origins. After 1978 ± 0.7838, rapid industrial
development occurred, and the heavy metals in the sediments originated mainly from industry
and agriculture and were less affected by geological processes. This result is in good agreement
with the GDP of the study area. The PMF model and quantitative analysis of sediment for heavy
metal sources from the bottom depths to the top provide an efficient and convenient combination of
analytical methods.
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