Atrazine Contamination of Drinking Water and Adverse Birth Outcomes in Community Water Systems with Elevated Atrazine in Ohio, 2006–2008
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Birth Outcomes
2.3. Exposure Assessment
2.4. Covariates
2.5. Data Analysis
3. Results
3.1. Atrazine Concentrations in Drinking Water
3.2. Study Population
3.3. Regression Analyses
3.4. Sensitivity Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- United States Environmental Protection Agency (USEPA) Atrazine Chemical Summary 2007. Available online: https://archive.epa.gov/region5/teach/web/pdf/atrazine_summary.pdf (accessed on 5 July 2018).
- Jayachandran, K.; Steinheimer, T.R.; Somasundaram, L.; Moorman, T.B.; Kanwar, R.S.; Coats, J.R. Occurrence of atrazine and degradates as contaminants of subsurface drainage and shallow groundwater. J. Environ. Qual. 1994, 23, 311–319. [Google Scholar] [CrossRef]
- Gilliom, R.J.; Barbash, J.E.; Crawford, C.G.; Hamilton, P.A.; Martin, J.D.; Nakagaki, N.; Nowell, L.; Scott, J.C.; Stackelberg, P.E.; Thelin, G.P.; et al. Pesticides in the Nation’s Streams and Ground Water, 1992–2001; Revised February 2007; U.S. Geological Survey: Reston, VA, USA, 2006.
- Quignot, N.; Arnaud, M.; Robidel, F.; Lecomte, A.; Tournier, M.; Cren-Olivé, C.; Barouki, R.; Lemazurier, E. Characterization of endocrine-disrupting chemicals based on hormonal balance disruption in male and female adult rats. Reprod. Toxicol. 2012, 33, 339–352. [Google Scholar] [CrossRef] [PubMed]
- Vandenberg, L.N.; Colborn, T.; Hayes, T.B.; Heindel, J.J.; Jacobs, D.R.; Lee, D.H.; Shioda, T.; Soto, A.M.; vom Saal, F.S.; Welshons, W.V.; et al. Hormones and endocrine-disrupting chemicals: Low-dose effects and nonmonotonic dose responses. Endocr. Rev. 2012, 33, 378–455. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R.L.; Stoker, T.E.; Goldman, J.M.; Parrish, M.B.; Tyrey, L. Effect of atrazine on ovarian function in the rat. Reprod. Toxicol. 1996, 10, 257–264. [Google Scholar] [CrossRef]
- Cooper, R.L.; Stoker, T.E.; Tyrey, L.; Goldman, J.M.; McElroy, W.K. Atrazine disrupts the hypothalamic control of pituitary-ovarian function. Toxicol. Sci. 2000, 53, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Victor-Costa, A.B.; Bandeira, S.M.C.; Oliveira, A.G.; Mahecha, G.A.B.; Oliveira, C.A. Changes in testicular morphology and steroidogenesis in adult rats exposed to Atrazine. Reprod. Toxicol. 2010, 29, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Zorrilla, L.M.; Gibson, E.K.; Stoker, T.E. The effects of simazine, a chlorotriazine herbicide, on pubertal development in the female Wistar rat. Reprod. Toxicol. 2010, 29, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Hayes, T.B.; Collins, A.; Lee, M.; Mendoza, M.; Noriega, N.; Stuart, A.A.; Vonk, A. Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proc. Natl. Acad. Sci. USA 2002, 99, 5476–5480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, T.B.; Khoury, V.; Narayan, A.; Nazir, M.; Park, A.; Brown, T.; Adame, L.; Chan, E.; Buchholz, D.; Stueve, T.; et al. Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis). Proc. Natl. Acad. Sci. USA 2010, 107, 4612–4617. [Google Scholar] [CrossRef] [PubMed]
- Stoker, T.E.; Laws, S.C.; Guidici, D.L.; Cooper, R.L. The effect of atrazine on puberty in male Wistar rats: An evaluation in the protocol for the assessment of pubertal development and thyroid function. Toxicol. Sci. 2000, 58, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Friedmann, A.S. Atrazine inhibition of testosterone production in rat males following peripubertal exposure. Reprod. Toxicol. 2002, 16, 275–279. [Google Scholar] [CrossRef]
- Belloni, V.; Dessì-Fulgheri, F.; Zaccaroni, M.; Di Consiglio, E.; De Angelis, G.; Testai, E.; Santochirico, M.; Alleva, E.; Santucci, D. Early exposure to low doses of atrazine affects behavior in juvenile and adult CD1 mice. Toxicology 2011, 279, 19–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Y.; Wang, L.; Fu, Z. Oral exposure to atrazine modulates hormone synthesis and the transcription of steroidogenic genes in male peripubertal mice. Gen. Comp. Endocrinol. 2013, 184, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Wetzel, L.T.; Luempert, L.G.; Breckenridge, C.B.; Tisdel, M.O.; Stevens, J.T.; Thakur, A.K.; Extrom, P.J.; Eldridge, J.C. Chronic effects of atrazine on estrus and mammary tumor formation in female Sprague-Dawley and Fischer 344 rats. J. Toxicol. Environ. Health 1994, 43, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Winchester, P.D.; Huskins, J.; Ying, J. Agrichemicals in surface water and birth defects in the United States. Acta. Paediatr. 2009, 98, 664–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munger, R.; Isacson, P.; Hu, S.; Burns, T.; Hanson, J.; Lynch, C.F.; Cherryholmes, K.; Van Dorpe, P.; Hausler, W.J. Intrauterine growth retardation in Iowa communities with herbicide-contaminated drinking water supplies. Environ. Health Perspect. 1997, 105, 308–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochoa-Acuña, H.; Frankenberger, J.; Hahn, L.; Carbajo, C. Drinking-water herbicide exposure in Indiana and prevalence of small-for-gestational-age and preterm delivery. Environ. Health Perspect. 2009, 117, 1619–1624. [Google Scholar] [CrossRef] [PubMed]
- Rinsky, J.L.; Hopenhayn, C.; Golla, V.; Browning, S.; Bush, H.M. Atrazine exposure in public drinking water and preterm birth. Public Health Rep. 2012, 127, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Stayner, L.T.; Almberg, K.; Jones, R.; Graber, J.; Pedersen, M.; Turyk, M. Atrazine and nitrate in drinking water and the risk of preterm delivery and low birth weight in four Midwestern states. Environ. Res. 2017, 152, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Chevrier, C.; Limon, G.; Monfort, C.; Rouget, F.; Garlantézec, R.; Petit, C.; Durand, G.; Cordier, S. Urinary biomarkers of prenatal atrazine exposure and adverse birth outcomes in the PELAGIE birth cohort. Environ. Health Perspect. 2011, 119, 1034–1041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- 40 CFR 141.61-Maximum Contaminant Levels for Organic Contaminants. Available online: https://www.gpo.gov/fdsys/granule/CFR-2012-title40-vol24/CFR-2012-title40-vol24-sec141-61 (accessed on 5 July 2018).
- United States Environmental Protection Agency (USEPA) Atrazine-Background and Updates. Available online: https://www.epa.gov/ingredients-used-pesticide-products/atrazine-background-and-updates#drinking-water (accessed on 5 July 2018).
- Balluz, L.S. CDC’s environmental public health tracking network: an innovative dynamic surveillance system for you. J. Environ. Health 2014, 76, 48–50. [Google Scholar] [PubMed]
- Wilcox, A.J. Fertility and Pregnancy: An. Epidemiologic Perspective, 1st ed.; Oxford University Press: New York, NY, USA, 2010. [Google Scholar]
- Duryea, E.L.; Hawkins, J.S.; McIntire, D.D.; Casey, B.M.; Leveno, K.J. A revised birth weight reference for the United States. Obstet. Gynecol. 2014, 124, 16–22. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency Atrazine Monitoring Program Data and Results. Available online: https://www.epa.gov/ingredients-used-pesticide-products/atrazine-monitoring-program-data-and-results (accessed on 5 July 2018).
- Jones, R.M.; Stayner, L.T.; Demirtas, H. Multiple imputation for assessment of exposures to drinking water contaminants: Evaluation with the Atrazine Monitoring Program. Environ. Res. 2014, 134, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Kotelchuck, M. The adequacy of prenatal care utilization index: Its US distribution and association with low birthweight. Am. J. Public Health 1994, 84, 1486–1489. [Google Scholar] [CrossRef] [PubMed]
- United States Department of Agriculture the Special Supplemental Nutrition Program for Women, Infants and Children (WIC Program) 2018. Available online: https://fns-prod.azureedge.net/sites/default/files/wic/wic-fact-sheet.pdf (accessed on 16 August 2018).
- Centers for Disease Control and Prevention about Adult BMI|Healthy Weight|CDC. Available online: https://www.cdc.gov/healthyweight/assessing/bmi/adult_bmi/index.html (accessed on 5 July 2018).
- SAS, version 9.4; SAS Institute: Cary, NC, USA, 2002.
- Rayner, J.L.; Enoch, R.R.; Fenton, S.E. Adverse effects of prenatal exposure to atrazine during a critical period of mammary gland growth. Toxicol. Sci. 2005, 87, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Rayner, J.L.; Wood, C.; Fenton, S.E. Exposure parameters necessary for delayed puberty and mammary gland development in Long-Evans rats exposed in utero to atrazine. Toxicol. Appl. Pharmacol. 2004, 195, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, C.M.; Durand, G.; Coutté, M.B.; Chevrier, C.; Cordier, S. Atrazine in municipal drinking water and risk of low birth weight, preterm delivery, and small-for-gestational-age status. Occup. Environ. Med. 2005, 62, 400–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agency for Toxic Substances and Disease Registry Toxicological Profile for Atrazine. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=338&tid=59 (accessed on 27 August 2018).
- Querec, L.J. Comparability of reporting between the birth certificate and the National Natality Survey. Vital Health Stat. Ser. 2 1980, 83, 1–44. [Google Scholar]
- Schoendorf, K.C.; Parker, J.D.; Batkhan, L.Z.; Kiely, J.L. Comparability of the birth certificate and 1988 Maternal and Infant Health Survey. Vital Health Stat. Ser. 2 1993, 116, 1–19. [Google Scholar]
- Green, D.C.; Moore, J.M.; Adams, M.M.; Berg, C.J.; Wilcox, L.S.; McCarthy, B.J. Are we underestimating rates of vaginal birth after previous cesarean birth? The validity of delivery methods from birth certificates. Am. J. Epidemiol. 1998, 147, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Reichman, N.E.; Hade, E.M. Validation of birth certificate data. A study of women in New Jersey’s Health Start program. Ann. Epidemiol. 2001, 11, 186–193. [Google Scholar] [CrossRef]
- DiGiuseppe, D.L.; Aron, D.C.; Ranbom, L.; Harper, D.L.; Rosenthal, G.E. Reliability of birth certificate data: A multi-hospital comparison to medical records information. Matern. Child Health J. 2002, 6, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Roohan, P.J.; Josberger, R.E.; Acar, J.; Dabir, P.; Feder, H.M.; Gagliano, P.J. Validation of birth certificate data in New York State. J. Community Health 2003, 28, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Northam, S.; Knapp, T.R. The reliability and validity of birth certificates. J. Obstet. Gynecol. Neonatal Nurs. 2006, 35, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Zollinger, T.W.; Przybylski, M.J.; Gamache, R.E. Reliability of Indiana birth certificate data compared to medical records. Ann. Epidemiol. 2006, 16, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Fell, D.B.; Dodds, L.; King, W.D. Residential mobility during pregnancy. Paediatr. Perinat. Epidemiol. 2004, 18, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Canfield, M.A.; Ramadhani, T.A.; Langlois, P.H.; Waller, D.K. Residential mobility patterns and exposure misclassification in epidemiologic studies of birth defects. J. Expo. Sci. Environ. Epidemiol. 2006, 16, 538–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, A.; Siffel, C.; Correa, A. Residential mobility during pregnancy: Patterns and correlates. Matern. Child Health J. 2010, 14, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Zender, R.; Bachand, A.M.; Reif, J.S. Exposure to tap water during pregnancy. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 224–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Year | Geometric Mean, GSD (µg/L) | Median Concentration (µg/L) | Minimum Concentration (µg/L) | Maximum Concentration (µg/L) | Percent Missing a (%) |
---|---|---|---|---|---|
2006 | 0.29, 3.04 | 0.17 | 0.00 | 7.22 | 1.5 |
2007 | 0.15, 3.43 | 0.16 | 0.03 | 4.23 | 0.4 |
2008 | 0.16, 4.35 | 0.17 | 0.03 | 15.66 | 4.9 |
Variable | n (%) | SGA | Term LBW | VLBW | PTB | VPTB |
---|---|---|---|---|---|---|
% | % | % | % | % | ||
Gender | ||||||
Male | 7431 (51) | 9.9 | 1.9 | 1.1 | 10.5 | 1.7 |
Female | 7014 (49) | 10.6 | 3.4 | 1.1 | 9.3 | 1.6 |
Race/Ethnicity | ||||||
Non-Hispanic white | 12,471 (86) | 9.7 | 2.4 | 1.0 | 9.5 | 1.5 |
Non-Hispanic black | 1068 (7) | 17.8 | 6.2 | 2.4 | 13.9 | 2.9 |
Hispanic | 689 (5) | 8.9 | 1.8 | 1.5 | 10.3 | 2.0 |
Other | 217 (2) | 9.7 | 3.2 | 1.4 | 13.4 | 2.3 |
Maternal Age at Birth | ||||||
<20 | 1811 (13) | 15.4 | 4.0 | 1.7 | 13.2 | 2.7 |
20−34 | 11,710 (81) | 9.7 | 2.5 | 1.0 | 9.4 | 1.4 |
35+ | 923 (6) | 7.8 | 2.7 | 1.5 | 10.1 | 2.1 |
Maternal Education | ||||||
High School or less | 7203 (50) | 12.8 | 3.1 | 1.4 | 11.4 | 2.0 |
Some College/Degree | 7203 (50) | 7.7 | 2.2 | 0.8 | 8.4 | 1.3 |
Maternal Smoking | ||||||
Yes | 4995 (35) | 7.9 | 3.9 | 1.4 | 11.5 | 2.1 |
No | 9449 (65) | 14.7 | 2.0 | 0.9 | 9.1 | 1.4 |
Prenatal Care | ||||||
Inadequate | 1861 (13) | 13.2 | 3.8 | 1.0 | 11.2 | 1.9 |
Intermediate/Adequate | 5970 (41) | 9.7 | 1.6 | 0.3 | 3.0 | 0.4 |
Adequate Plus | 3902 (27) | 9.6 | 3.8 | 1.4 | 17.5 | 2.2 |
Unknown | 2712 (19) | 10.6 | 3.0 | 2.5 | 13.3 | 3.3 |
WIC usea | ||||||
Yes | 7064 (50) | 12.6 | 3.3 | 1.2 | 9.1 | 1.8 |
No | 7108 (50) | 7.9 | 2.0 | 1.0 | 10.6 | 1.4 |
Pre-pregnancy BMI | ||||||
Underweight | 673 (8) | 17.8 | 6.8 | 1.2 | 11.6 | 1.5 |
Normal | 6664 (47) | 11.2 | 2.8 | 1.1 | 9.9 | 1.7 |
Overweight | 3170 (22) | 8.8 | 2.0 | 1.0 | 9.2 | 1.4 |
Obese | 3781 (26) | 8.6 | 2.4 | 1.2 | 10.2 | 1.6 |
Parity | ||||||
0 | 5892 (41) | 12.0 | 3.2 | 1.3 | 10.0 | 1.8 |
1 | 4515 (32) | 8.3 | 2.3 | 0.9 | 9.0 | 1.4 |
2 | 2334 (16) | 9.3 | 2.0 | 1.0 | 9.6 | 1.5 |
≥3 | 1483 (10) | 11.2 | 2.9 | 0.7 | 12.8 | 1.7 |
Marital Status | ||||||
Married | 7765 (54) | 7.1 | 1.8 | 0.8 | 8.5 | 1.0 |
Unmarried | 6680 (46) | 13.9 | 3.8 | 1.5 | 11.6 | 2.3 |
Outcome | Model | n | OR g (95% CI) |
---|---|---|---|
SGA b | Crude | 13,942 | 0.99 (0.88, 1.12) |
Adjusted | 13,942 | 1.06 (0.96, 1.17) | |
Term LBW c | Crude | 12,567 | 1.15 (1.01, 1.31) |
Adjusted | 12,567 | 1.27 (1.10, 1.45) | |
VLWB d | Crude | 14,089 | 0.90 (0.50, 1.60) |
Adjusted | 14,089 | 0.81 (0.47, 1.39) | |
PTB e | Crude | 14,098 | 1.01 (0.89, 1.14) |
Adjusted | 14,098 | 0.99 (0.88, 1.11) | |
VPTB f | Crude | 14,349 | 1.15 (0.86, 1.55) |
Adjusted | 14,349 | 1.11 (0.81, 1.51) |
Outcome | Model | n | OR g (95%CI) |
---|---|---|---|
First Trimester | |||
SGA b | Crude | 14,022 | 1.02 (0.95, 1.09) |
Adjusted | 14,022 | 1.04 (0.98, 1.11) | |
Term LBW c | Crude | 12,647 | 1.14 (1.01, 1.28) |
Adjusted | 12,647 | 1.20 (1.08, 1.34) | |
VLWB d | Crude | 14,170 | 1.09 (0.86, 1.37) |
Adjusted | 14,170 | 1.07 (0.86, 1.34) | |
PTB e | Crude | 14,179 | 1.01 (0.90, 1.13) |
Adjusted | 14,179 | 0.99 (0.90, 1.10) | |
VPTB f | Crude | 14,432 | 1.11 (0.81, 1.53) |
Adjusted | 14,432 | 1.11 (0.81, 1.53) | |
Second Trimester | |||
SGA a | Crude | 14,002 | 0.97 (0.93, 1.00) |
Adjusted | 14,002 | 0.99 (0.96, 1.02) | |
Term LBW | Crude | 12,647 | 1.06 (0.98, 1.14) |
Adjusted | 12,647 | 1.13 (1.07, 1.20) | |
VLWB | Crude | 14,148 | 0.79 (0.55, 1.14) |
Adjusted | 14,148 | 0.76 (0.51, 1.13) | |
PTB | Crude | 14,156 | 0.99 (0.95, 1.04) |
Adjusted | 14,156 | 0.99 (0.95, 1.04) | |
Third Trimester | |||
SGA a | Crude | 12,648 | 0.98 (0.87, 1.10) |
Adjusted | 12,648 | 1.00 (0.93, 1.08) | |
Term LBW | Crude | 12,647 | 0.97 (0.80, 1.16) |
Adjusted | 12,647 | 1.03 (0.87, 1.22) |
Tertile | Exposure Range (µg/L) | OR a (95% CI) |
---|---|---|
1 | 0–0.1537 | Ref. |
2 | 0.1538–0.4622 | 1.11 (0.92, 1.34) |
3 | 0.4623–5.9337 | 1.26 (1.11, 1.44) |
p for trend = 0.0007 |
Exposure | Model | n | OR b (95% CI) |
---|---|---|---|
Gestational mean | Crude | 3929 | 1.04 (0.62, 1.72) |
Adjusted | 3929 | 1.16 (0.77, 1.74) | |
First trimester | Crude | 3961 | 1.13 (0.96, 1.33) |
Adjusted | 3961 | 1.17 (1.03, 1.34) | |
Second trimester | Crude | 3961 | 0.95 (0.77, 1.17) |
Adjusted | 3961 | 1.01 (0.83, 1.22) | |
Third trimester | Crude | 3961 | 0.96 (0.66, 1.40) |
Adjusted | 3961 | 1.01 (0.72, 1.41) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almberg, K.S.; Turyk, M.E.; Jones, R.M.; Rankin, K.; Freels, S.; Stayner, L.T. Atrazine Contamination of Drinking Water and Adverse Birth Outcomes in Community Water Systems with Elevated Atrazine in Ohio, 2006–2008. Int. J. Environ. Res. Public Health 2018, 15, 1889. https://doi.org/10.3390/ijerph15091889
Almberg KS, Turyk ME, Jones RM, Rankin K, Freels S, Stayner LT. Atrazine Contamination of Drinking Water and Adverse Birth Outcomes in Community Water Systems with Elevated Atrazine in Ohio, 2006–2008. International Journal of Environmental Research and Public Health. 2018; 15(9):1889. https://doi.org/10.3390/ijerph15091889
Chicago/Turabian StyleAlmberg, Kirsten S., Mary E. Turyk, Rachael M. Jones, Kristin Rankin, Sally Freels, and Leslie T. Stayner. 2018. "Atrazine Contamination of Drinking Water and Adverse Birth Outcomes in Community Water Systems with Elevated Atrazine in Ohio, 2006–2008" International Journal of Environmental Research and Public Health 15, no. 9: 1889. https://doi.org/10.3390/ijerph15091889
APA StyleAlmberg, K. S., Turyk, M. E., Jones, R. M., Rankin, K., Freels, S., & Stayner, L. T. (2018). Atrazine Contamination of Drinking Water and Adverse Birth Outcomes in Community Water Systems with Elevated Atrazine in Ohio, 2006–2008. International Journal of Environmental Research and Public Health, 15(9), 1889. https://doi.org/10.3390/ijerph15091889