Is Sleep Duration Associated with Biological Age (BA)?: Analysis of (2010–2015) South Korean NHANES Dataset South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Variables
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Knutson, K.L.; Ryden, A.M.; Mander, B.A.; Van Cauter, E. Role of sleep duration and quality in the risk and severity of type 2 diabetes mellitus. Arch. Intern. Med. 2006, 166, 1768–1774. [Google Scholar] [CrossRef] [PubMed]
- Baron, K.G.; Reid, K.J.; Kern, A.S.; Zee, P.C. Role of sleep timing in caloric intake and BMI. Obesity 2011, 19, 1374–1381. [Google Scholar] [CrossRef] [PubMed]
- Hermida, R.C.; Ayala, D.E.; Mojón, A.; Fernández, J.R. Sleep-time blood pressure as a therapeutic target for cardiovascular risk reduction in type 2 diabetes. Am. J. Hypertens. 2012, 25, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, C.L. Sleep and stroke. Semin. Neurol. 2005, 25, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.R.; Hu, F.B. Short sleep duration and weight gain: A systematic review. Obesity 2008, 16, 643–653. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S. Thirty years of national health insurance in South Korea: Lessons for achieving universal health care coverage. Health Policy Plan. 2008, 24, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Organization for Economic Co-operation and Development (OECD). Society at a Glance 2009: OECD Social Indicators; OECD: Paris, France, 2009. [Google Scholar]
- Health Insurance Review and Assessment Service. Disease Statistics. Available online: http://opendata.hira.or.kr/home.do (accessed on 15 July 2018).
- Korea Herald. Cafes Tap into the Growing Demand for Resting and Healing Places in Crowded Cities. The Korea Herald. Available online: http://www.koreaherald.com/view.php?ud=20170427001154 (accessed on 10 July 2018).
- Buxton, O.M.; Marcelli, E. Short and long sleep are positively associated with obesity, diabetes, hypertension, and cardiovascular disease among adults in the United States. Soc. Sci. Med. 2010, 71, 1027–1036. [Google Scholar] [CrossRef] [PubMed]
- Heslop, P.; Smith, G.D.; Metcalfe, C.; Macleod, J.; Hart, C. Sleep duration and mortality: The effect of short or long sleep duration on cardiovascular and all-cause mortality in working men and women. Sleep Med. 2002, 3, 305–314. [Google Scholar] [CrossRef]
- Han, K.-T.; Kim, W.; Kim, S.J.; Jang, S.-Y.; Ju, Y.J.; Chun, S.Y.; Lee, S.G.; Park, E.-C. Sleep disorders and risk of hospitalization in patients with mood disorders: Analysis of the National Sample Cohort over 10 years. Psychiatry Res. 2016, 245, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Ingram, D.K.; Nakamura, E.; Smucny, D.; Roth, G.S.; Lane, M.A. Strategy for identifying biomarkers of aging in long-lived species. Exp. Gerontol. 2001, 36, 1025–1034. [Google Scholar] [CrossRef]
- Finkel, D.; Whitfield, K.; McGue, M. Genetic and environmental influences on functional age: A twin study. J. Gerontol. Ser. B 1995, 50, P104–P113. [Google Scholar] [CrossRef]
- Mitnitski, A.B.; Graham, J.E.; Mogilner, A.J.; Rockwood, K. Frailty, fitness and late-life mortality in relation to chronological and biological age. BMC Geriatr. 2002, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Fishman, L.S. Chronological versus skeletal age, an evaluation of craniofacial growth. Angle Orthod. 1979, 49, 181–189. [Google Scholar] [PubMed]
- Twisk, J.; Kemper, H.; van Mechelen, W. The relationship between physical fitness and physical activity during adolescence and cardiovascular disease risk factors at adult age. The Amsterdam Growth and Health Longitudinal Study. Int. J. Sports Med. 2002, 23, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Bae, C.-Y.; Kang, Y.G.; Kim, S.; Cho, C.; Kang, H.C.; Yu, B.Y.; Lee, S.-W.; Cho, K.H.; Lee, D.C.; Lee, K.; et al. Development of models for predicting biological age (BA) with physical, biochemical, and hormonal parameters. Arch. Gerontol. Geriatr. 2008, 47, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.G.; Suh, E.; Chun, H.; Kim, S.-H.; Kim, D.K.; Bae, C.-Y. Models for estimating the metabolic syndrome biological age as the new index for evaluation and management of metabolic syndrome. Clin. Interv. Aging 2017, 12, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Zhang, W.; Jia, R.; Zhang, H.; Chen, X. Construction formula of biological age using the principal component analysis. BioMed Res. Int. 2016, 2016, 8. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.G.; Suh, E.; Lee, J.-W.; Kim, D.W.; Cho, K.H.; Bae, C.-Y. Biological age as a health index for mortality and major age-related disease incidence in Koreans: National health Insurance service–health screening 11-year follow-up study. Clin. Interv. Aging 2018, 13, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Chichlowska, K.L.; Rose, K.M.; Diez-Roux, A.V.; Golden, S.H.; McNeill, A.M.; Heiss, G. Individual and Neighborhood Socioeconomic Status Characteristics and Prevalence of Metabolic Syndrome. The Atherosclerosis Risk in Communities (ARIC) Study. Psychosom. Med. 2008, 70, 986–992. [Google Scholar] [CrossRef] [PubMed]
- Ervin, R.B. Prevalence of metabolic syndrome among adults 20 years of age and over, by sex, age, race and ethnicity, and body mass index: United States. Natl. Health Stat. Rep. 2009, 13, 1–8. [Google Scholar]
- Anuurad, E.; Shiwaku, K.; Nogi, A.; Kitajima, K.; Enkhmaa, B.; Shimono, K.; Yamane, Y. The new BMI criteria for asians by the regional office for the western pacific region of WHO are suitable for screening of overweight to prevent metabolic syndrome in elder Japanese workers. J. Occup. Health 2003, 45, 335–343. [Google Scholar] [CrossRef] [PubMed]
- WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157–163. [Google Scholar] [CrossRef]
- Healy, G.N.; Wijndaele, K.; Dunstan, D.W.; Shaw, J.E.; Salmon, J.; Zimmet, P.Z.; Owen, N. Objectively Measured Sedentary Time, Physical Activity, and Metabolic Risk: The Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Diabetes Care 2008, 31, 369–371. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.-W.; Zhu, S.; Palaniappan, L.; Heshka, S.; Carnethon, M.R.; Heymsfield, S.B. The metabolic syndrome: Prevalence and associated risk factor findings in the US population from the Third National Health and Nutrition Examination Survey, 1988–1994. Arch. Intern. Med. 2003, 163, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Chandola, T.; Brunner, E.; Marmot, M. Chronic stress at work and the metabolic syndrome: Prospective study. BMJ 2006, 332, 521–525. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.M.; Zimmet, P.; Shaw, J. The metabolic syndrome—A new worldwide definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef]
- Jike, M.; Itani, O.; Watanabe, N.; Buysse, D.J.; Kaneita, Y. Long sleep duration and health outcomes: A systematic review, meta-analysis and meta-regression. Sleep Med. Rev. 2017, 39, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Lippman, S.; Gardener, H.; Rundek, T.; Seixas, A.; Santiago, M.; Elkind, M.; Sacco, R.; Wright, C.; Ramos, A. Sleep Duration is Associated with Depression in the Northern Manhattan Study (P1. 150). Neurology 2016, 86, 1–150. [Google Scholar]
- Benito-León, J.; Louis, E.D.; Villarejo-Galende, A.; Romero, J.P.; Bermejo-Pareja, F. Long sleep duration in elders without dementia increases risk of dementia mortality (NEDICES). Neurology 2014, 83, 1530–1537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kripke, D.F.; Garfinkel, L.; Wingard, D.L.; Klauber, M.R.; Marler, M.R. Mortality associated with sleep duration and insomnia. Arch. Gen. Psychiatry 2002, 59, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Grandner, M.A.; Drummond, S.P.A. Who are the long sleepers? Towards an understanding of the mortality relationship. Sleep Med. Rev. 2007, 11, 341–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | N | % |
---|---|---|
Sleep duration | ||
<6 | 4652 | 14.22 |
6~8 | 22,602 | 78.68 |
>8 | 2055 | 7.10 |
Sex | ||
Male | 12,529 | 49.44 |
Female | 16,780 | 50.56 |
Age (years) | ||
<30 | 3120 | 17.40 |
30~39 | 5209 | 20.31 |
40~49 | 5534 | 22.41 |
50~59 | 6028 | 20.03 |
60≤ | 9418 | 19.86 |
Educational level | ||
Under high school graduation | 18,158 | 55.65 |
Bachelor’s degree | 9899 | 39.83 |
Master’s degree or above | 1252 | 4.52 |
Marital status | ||
Married | 22,027 | 70.62 |
Marriage problems | 3599 | 9.61 |
Single | 3683 | 19.78 |
Economic activity | ||
Unemployed | 11,644 | 34.89 |
Employed | 17,665 | 65.11 |
Household income | ||
Low | 5307 | 14.41 |
Mid-low | 7524 | 26.04 |
Mid-high | 8126 | 29.80 |
High | 8352 | 29.75 |
BMI | ||
<23 | 12,807 | 44.21 |
23–25 | 6984 | 23.27 |
>25 | 9518 | 32.52 |
Aerobic exercise habits | ||
Yes | 8304 | 31.40 |
No | 21,005 | 68.60 |
Smoking status | ||
Smoker | 5722 | 24.42 |
Ex-smoker | 6000 | 20.18 |
Non-smoker | 17,587 | 55.40 |
Alcohol intake | ||
Less than twice a week | 26,273 | 86.94 |
More than twice a week | 3036 | 13.06 |
Stress awareness | ||
Low | 21,916 | 73.32 |
High | 7393 | 26.68 |
Hypertension | ||
Diagnosed | 6558 | 16.80 |
None | 22,751 | 83.20 |
Dyslipidemia | ||
Diagnosed | 3720 | 9.92 |
None | 25,589 | 90.08 |
Diabetes Mellitus | ||
Diagnosed | 2447 | 6.36 |
None | 26,862 | 93.64 |
Survey year | ||
2010 | 4921 | 13.92 |
2011 | 5568 | 18.01 |
2012 | 5162 | 17.75 |
2013 | 4751 | 17.02 |
2014 | 4352 | 16.24 |
2015 | 4555 | 17.06 |
Total | 29,309 | 100.00 |
Variables | BA | Difference (BA-CA) | ||||
---|---|---|---|---|---|---|
Mean | SD | p-Value | Mean | SD | p-Value | |
Sleep duration | ||||||
<6 | 61.53 | 21.12 | <0.0001 | 4.29 | 14.88 | <0.0001 |
6~8 | 52.94 | 21.23 | 3.75 | 14.14 | ||
>8 | 54.62 | 24.74 | 4.62 | 14.63 | ||
Sex | ||||||
Male | 54.52 | 21.32 | <0.0001 | 3.62 | 14.68 | <0.0001 |
Female | 54.35 | 21.98 | 4.10 | 14.00 | ||
Age (years) | ||||||
~30 | 24.60 | 12.59 | <0.0001 | 0.34 | 11.80 | <0.0001 |
30~39 | 38.19 | 14.04 | 3.24 | 13.70 | ||
40~49 | 49.21 | 15.48 | 4.86 | 15.12 | ||
50~59 | 60.47 | 15.20 | 6.08 | 14.95 | <0.0001 | |
60+ | 72.47 | 14.50 | 3.47 | 14.16 | ||
Educational level | ||||||
Under high school graduation | 62.04 | 19.51 | <0.0001 | 4.92 | 14.91 | <0.0001 |
Bachelor’s degree | 41.28 | 19.15 | 2.12 | 13.04 | ||
Master’s degree or above | 47.87 | 18.86 | 3.05 | 13.23 | ||
Marital status | ||||||
Married | 56.23 | 19.22 | <0.0001 | 4.24 | 14.20 | 0.0159 |
Marriage problems | 69.68 | 19.00 | 5.06 | 15.73 | ||
Single | 28.68 | 16.62 | 0.69 | 12.88 | ||
Economic activity | ||||||
Unemployed | 58.16 | 23.09 | <0.0001 | 3.78 | 14.01 | 0.5913 |
Employed | 51.96 | 20.37 | 3.97 | 14.48 | ||
Household income | ||||||
Low | 67.76 | 19.80 | <0.0001 | 4.32 | 15.00 | 0.0051 |
Mid-low | 55.26 | 22.14 | 4.47 | 15.07 | ||
Mid-high | 50.28 | 20.48 | 3.91 | 13.75 | ||
High | 49.23 | 19.93 | 3.09 | 13.60 | ||
BMI | ||||||
<23 | 44.65 | 20.08 | <0.0001 | −3.28 | 11.04 | <0.0001 |
23–25 | 57.30 | 19.49 | 4.46 | 12.30 | ||
>25 | 65.45 | 19.32 | 13.14 | 14.11 | ||
Aerobic exercise habits | ||||||
Yes | 51.39 | 21.47 | <0.0001 | 3.06 | 14.06 | <0.0001 |
No | 55.62 | 21.68 | 4.22 | 14.37 | ||
Smoking status | ||||||
Smoker | 51.85 | 21.38 | <0.0001 | 5.21 | 15.85 | <0.0001 |
Ex-smoker | 58.51 | 20.23 | 3.51 | 13.97 | ||
Non-smoker | 53.86 | 22.10 | 3.60 | 13.84 | ||
Alcohol intake | ||||||
Less than twice a week | 54.61 | 21.59 | <0.0001 | 3.41 | 13.82 | <0.0001 |
More than twice a week | 52.82 | 22.61 | 8.05 | 17.33 | ||
Stress awareness | ||||||
Low | 55.24 | 21.49 | 0.0827 | 3.63 | 13.97 | 0.0044 |
High | 52.00 | 22.15 | 4.67 | 15.20 | ||
Hypertension | ||||||
Diagnosed | 72.75 | 15.80 | <0.0001 | 8.47 | 14.82 | <0.0001 |
None | 49.14 | 20.25 | 2.58 | 13.86 | ||
Dyslipidemia | ||||||
Diagnosed | 69.89 | 17.03 | 0.073 | 8.80 | 15.93 | <0.0001 |
None | 52.17 | 21.39 | 3.18 | 13.90 | ||
Diabetes Mellitus | ||||||
Diagnosed | 80.33 | 18.51 | <0.0001 | 16.45 | 18.62 | <0.0001 |
None | 52.06 | 20.40 | 2.75 | 13.26 | ||
Survey year | ||||||
2010 | 57.28 | 20.04 | <0.0001 | 5.01 | 14.01 | <0.0001 |
2011 | 54.01 | 22.27 | 3.47 | 14.59 | ||
2012 | 54.42 | 21.90 | 3.61 | 14.27 | ||
2013 | 52.16 | 21.74 | 3.57 | 14.22 | ||
2014 | 53.15 | 21.45 | 3.23 | 14.05 | ||
2015 | 55.41 | 22.32 | 4.50 | 14.50 | ||
Total | 49.75 | 0.22 | 4.00 | 0.12 |
Variables | Differences | ||
---|---|---|---|
β | SE | p-Value | |
Sleep duration | |||
<6 | −0.376 | 0.239 | 0.1158 |
6~8 | Ref | - | - |
>8 | 1.308 | 0.343 | 0.0001 |
Sex | |||
Male | −3.521 | 0.234 | <0.0001 |
Female | Ref | - | - |
Age (years) | |||
~30 | 4.039 | 0.453 | <0.0001 |
30~39 | 4.989 | 0.324 | <0.0001 |
40~49 | 5.462 | 0.312 | <0.0001 |
50~59 | 4.522 | 0.272 | <0.0001 |
60+ | Ref | - | - |
Educational level | |||
Under high school graduation | 0.440 | 0.384 | 0.2528 |
Bachelor’s degree | −0.393 | 0.370 | 0.2881 |
Master’s degree or above | Ref | - | - |
Marital status | |||
Married | Ref | - | - |
Marriage problems | −0.137 | 0.349 | 0.6958 |
Single | −0.383 | 0.373 | 0.3054 |
Economic activity | |||
Unemployed | Ref | - | - |
Employed | −0.319 | 0.179 | 0.0745 |
Household income | |||
Low | 0.363 | 0.319 | 0.2555 |
Mid-low | 0.528 | 0.257 | 0.0401 |
Mid-high | 0.421 | 0.223 | 0.0600 |
High | Ref | - | - |
BMI | |||
<23 | Ref | - | - |
23–25 | 7.794 | 0.215 | <0.0001 |
>25 | 16.539 | 0.217 | <0.0001 |
Aerobic exercise habits | |||
Yes | −1.363 | 0.194 | <0.0001 |
No | Ref | - | - |
Smoking status | |||
Smoker | Ref | - | - |
Ex-smoker | −1.620 | 0.276 | <0.0001 |
Non-smoker | −2.122 | 0.280 | <0.0001 |
Alcohol intake | |||
Less than twice a week | Ref | - | - |
More than twice a week | 3.257 | 0.403 | <0.0001 |
Stress awareness | |||
Low | Ref | - | - |
High | 0.738 | 0.213 | 0.0006 |
Hypertension | |||
Diagnosed | 2.470 | 0.274 | <0.0001 |
None | Ref | - | - |
Dyslipidemia | |||
Diagnosed | 1.464 | 0.330 | <0.0001 |
None | Ref | - | - |
Diabetes Mellitus | |||
Diagnosed | 12.879 | 0.476 | <0.0001 |
None | Ref | - | - |
Survey year | |||
2010 | −0.077 | 0.321 | 0.8091 |
2011 | −1.208 | 0.314 | 00.0001 |
2012 | −0.962 | 0.347 | 0.0057 |
2013 | −1.281 | 0.318 | <0.0001 |
2014 | −0.438 | 0.306 | 0.1527 |
2015 | Ref | - | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, K.-T.; Kim, D.W.; Kim, S.J. Is Sleep Duration Associated with Biological Age (BA)?: Analysis of (2010–2015) South Korean NHANES Dataset South Korea. Int. J. Environ. Res. Public Health 2018, 15, 2009. https://doi.org/10.3390/ijerph15092009
Han K-T, Kim DW, Kim SJ. Is Sleep Duration Associated with Biological Age (BA)?: Analysis of (2010–2015) South Korean NHANES Dataset South Korea. International Journal of Environmental Research and Public Health. 2018; 15(9):2009. https://doi.org/10.3390/ijerph15092009
Chicago/Turabian StyleHan, Kyu-Tae, Dong Wook Kim, and Sun Jung Kim. 2018. "Is Sleep Duration Associated with Biological Age (BA)?: Analysis of (2010–2015) South Korean NHANES Dataset South Korea" International Journal of Environmental Research and Public Health 15, no. 9: 2009. https://doi.org/10.3390/ijerph15092009
APA StyleHan, K. -T., Kim, D. W., & Kim, S. J. (2018). Is Sleep Duration Associated with Biological Age (BA)?: Analysis of (2010–2015) South Korean NHANES Dataset South Korea. International Journal of Environmental Research and Public Health, 15(9), 2009. https://doi.org/10.3390/ijerph15092009