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Abstract: In order to cut the costs of third-party logistics companies and respond to the Chinese
government’s low-carbon economy plans, this paper studies the more practical and complex open
vehicle routing problem, which considers low-carbon trading policies. A low-carbon multi-depot
open vehicle routing problem with time windows (MDOVRPTW) model is constructed with
minimum total costs, which include the driver’s salary, penalty costs, fuel costs and carbon emissions
trading costs. Then, a two-phase algorithm is proposed to handle the model. In the first phase,
the initial local solution is obtained with particle swarm optimization (PSO); in the second phase,
we can obtain a global optimal solution through a further tabu search (TS). Experiments proved that
the proposed algorithm is more suitable for small-scale cases. Furthermore, a series of experiments
with different values of carbon prices and carbon quotas are conducted. The results of the study
indicate that, as carbon trading prices and carbon quotas change, total costs, carbon emission trading
costs and carbon emissions are affected accordingly. Based on these academic results, this paper
presents some effective proposals for the government’s carbon trading policy-making and also for
logistics companies to have better route planning under carbon emission constraints.

Keywords: open vehicle routing problem; particle swarm optimization algorithm; tabu search
algorithm; carbon trading prices; carbon quotas

1. Introduction

Rapid economic growth is accompanied by high energy consumption, resulting in large amounts
of carbon emissions [1]. This has accelerated the pace of global warming and has become a significant
choke point for sustainable development. As we all know, China is a large energy consumption country
which has plenty of carbon emissions and they are always trying to solve it. In 2005, the Chinese
government made a promise to reduce carbon dioxide emissions per unit of GDP by 40–45% by 2020 [2].
China is setting up a national carbon trading market in 2018. Carbon dioxide is the main source of
greenhouse gases [3], the emissions of which result from human activities, for example the fossil fuel
combustion in logistics. According to statistics, transportation accounted for 14% of global carbon
emissions and road transport represented almost three-quarters of these emissions [4,5]. Therefore,
the low-carbon logistics industry is important for achieving a low-carbon economy. Carbon trading is
an effective and important tool for reducing carbon emissions [6].

The open vehicle routing problem (OVRP) is that vehicles do not return to the depot [7]. In reality,
transportation problems include some constraints. The open vehicle routing problem with time
window (OVRPTW) adds the time window restrictions to meet the customer’s demand. Instead of the
single-depot problem, the multi-depot problem is proposed in the multi-depot open vehicle routing
problem (MDOVRP). In real-life routing applications, time window and multi-depot constraints
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usually exist in the OVRP at the same time, which is shown in Figure 1 and called the multi-depot open
vehicle routing problem time window (MDOVRPTW). Due to study from time and space, it is more
complicated than other kinds of transportation problems. The MDOVRPTW problem has important
application value in real life. For example, if the company owns multiple parking lots and the vehicle
does not need to come back to the original departure depot after accomplishing the task, it can save
the company’s overall transportation costs. The vehicle can both increase customer contentment and
reduce the penalty cost due to the early or late arrival of the vehicle if it can complete the distribution
task within the time window specified by the customer.
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This paper is organized as follows: a literature review of related work is presented in Section 2;
the problem and the model formulation are proposed in Section 3; a two-phase algorithm is described in
Section 4; Section 5 discusses the computational results; and finally, Section 6 presents the conclusions.

2. Literature Review

As the core thought of the current research is to obtain a better solution for MDOVRPTW,
considering carbon trading. We review the literature in two areas: algorithm of open vehicle routing
problem and objective function considering carbon emissions.

2.1. Algorithm of the Open Vehicle Routing Problem

OVRP was first addressed by Schrage [7] in 1981. Since then, there has emerged much research
into a variety of OVRPs and a number of studies have been conducted into its modeling and
solutions, such as the Branch-and-Cut-and-Price method [8], the ant colony optimization algorithm [9],
the particle swarm optimization algorithm [10], the variable neighborhood search algorithm [11],
the tailored Iterated Local Search algorithm [12], the tabu search heuristic algorithm [13], and so forth.

Repoussis et al. [14] first researched the OVRPTW. Brandão [15] proposed an iterated local search
algorithm for dealing with the OVRPTW, which was able to obtain a highly quality solution within a
reasonable computing time. Recently, Niu et al. [16] studied green OVRPTW, which was optimized
by a tabu search heuristic algorithm. The neighborhood search strategies were adopted to improve
this algorithm. MDOVRP was first presented by Tarantilis and Kiranoudis [17] to deal with the fresh
meat, which is a real-life distribution problem. In the study, a list-based threshold accepting algorithm
was used. For the MDOVRP, an effective meta-heuristic solution approach—termed the hybrid
genetic algorithm—was proposed by Liu et al. [18]. They presented a mixed integer programming
(MIP) mathematical formulation to handle this problem. Then, Lalla-Ruiz et al. [19] presented a new
mixed integer programming mathematical constitution, which outperformed the previous study of
Liu et al. [18]. Some new restrictions were introduced in this research. Soto et al. [20] developed a
multiple variable neighborhood search, hybridized with a tabu search (MNS-TS), to deal with the
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MDOVRP. In this article, authors compared MNS-TS with MIP and found that the average quality of
the solutions was different. In 2008, Duan [21] suggested a better tabu search algorithm, which was
improved by the new neighborhood transformation. The high-quality vehicle routing optimization
solution was quickly obtained through the example test which has strong and direct applicability to
the logistics distribution practice. In 2013, Liu and Ma [22] addressed the hybrid genetic algorithm,
which linked the Clarke and Wright saving algorithm with the scanning algorithm. Considering the
lack of business operation, vehicle leasing and sharing were added into the MDOVRPTW in the paper.
In 2017, Ling et al. [23] carried out the optimal solution using the new ant colony algorithm, which was
optimized by the 2-optimization algorithm. The proposed method was effective for the MDOVRPTW,
which was verified by the experimental results.

2.2. Objective Function Considering Carbon Emissions

Most of the research objectives of these vehicle routing problems outlined above were only
focused on economic efficiency. With more concern for environmental issues, many scholars began
to add energy and environmental protection costs to the objective function [24]. Zhang et al. [25]
presented the evolutionary local search algorithm to solve the special variant of the united loading and
routing problem. Rather than minimizing travel distances, the objective of the paper was to minimize
vehicle fuel consumption. Li et al. [26] revealed the new short-term tactical problem and proposed
the objective of minimizing carbon dioxide emissions per ton kilometer. Later, a further study about
the complex emission effected by many factors was presented by Naderipour and Alinaghian [27].
They used the MEET model, which was first introduced by Hickman [28]. The target of the paper
was to minimize costs, which include driver wages and emission costs. Similarly, Gao and Liu [29]
proposed the cost function including fuel costs and driver costs. But their research was about the
time-dependent pollution-routing problem which has the free airport service for pickup and delivery
of customers. Zhang et al. [30] built a low-carbon routing problem model. They put fuel consumption
costs, carbon emissions costs and vehicle usage costs into the conventional VRP problem as the new
objective function. Liao [31] proposed the minimizing costs related to economics and emissions for the
on-line vehicle routing problem. Then, Niu et al. [16] investigated the third-party logistics to minimize
the routing costs which include fuel costs, carbon dioxide emissions costs and driver costs. This study
is part of the green OVRPTW. Duan and He [32] studied the multiple depots incomplete OVRP with
soft windows considering carbon tax. This paper found that both profit and carbon emissions were
improved despite the carbon tax. Recently, Wang et al. [5] proposed a location routing problem model,
which is green and low-carbon. The objective function of this study is the minimum overall costs,
which considers carbon emissions. In order to analyze the influence of the carbon tax on the carbon
emissions and total costs, carbon tax policies are recommended in this paper.

In brief, based on the above analysis, there are many studies on the open vehicle routing problem’s
variants algorithm. Meanwhile, research on the objectives of vehicle routing problems considering
carbon emissions is abundant. Nevertheless, there is little literature that considers carbon emissions
with regard to the MDOVRPSTW. The above literature [32] is the only close-related one. In view
of this, we propose the algorithm and objective function of this paper as follows: (1) This paper
uses a two-phase algorithm to handle the MDOVRPSTW based on carbon trading. The PSO is used
to get the initial solution, which has high efficiency for OVRP [11,33]. The TS is used to get the
global optimal solution, which has the global solution for OVRP [10,13,34]. The high-quality vehicle
routing optimization solution is quickly obtained for the small-scale cases, which has strong and
direct applicability to the logistics distribution practice; and (2) This paper minimizes the overall costs
from the three perspectives: economical costs, energy-related costs and environmental protection
costs. The economic costs of the entire distribution network are penalty costs and drivers’ salary costs.
The energy costs are fuel consumption costs. The environmental protection costs are carbon emission
trading costs, which are related to the actual carbon emissions and total carbon emission limits of the
logistics network.
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3. Model Formulation

3.1. Problem Description

The government takes various measures to deal with the development of a low-carbon economy
and logistics. This topic attracts much research attention. There is currently a lot of literature available
on carbon emission trading. Against this background, this paper studies the MDOVRPTWCT based
on the perspective of third-party logistics companies. CO2 is considered the only greenhouse gas in
this study.

This problem can be described as follows: There are D (d = 1, 2, . . . , d) depots with vehicles
provided by third-party transportation service providers. The total number of vehicles provided is fixed
as H. Vehicles begin from the distribution center to service customers, then end at the last customer,
which means vehicles need not return to the depot. Each customer can be served only once by exactly
one vehicle. In fact, customers always have some request about the delivery time. The vehicle must
pay the penalty if it is earlier or later than the arrival time window. The vehicle capacity and customer
demand are foregone and the demand of customers on each route cannot overtake the capacity of
vehicle. What is more, the feasible route must satisfy the route length constraints, which means each
route has an upper limit for the total traveling time. The objective of this research is mainly to arrange
transport routes and to explore the effects of carbon trading on total costs and carbon emissions.

3.2. Symbols

Based on the demands of structuring the model, Table 1 shows the corresponding symbols
adopted in this paper.

Table 1. Description of symbols.

Symbols Description

C Set of customers (C = d + 1, d + 2, . . . , d + C).
H Set of vehicles (H = 1, 2, . . . , hd).
H′ Number of vehicles actually used.
Q Weight of vehicle itself.
Q0 Maximum load capacity of vehicle.
L Longest length of each route.
r‘ Fuel consumption rate in per unit distance while vehicle is at full load.
r Fuel consumption rate in per unit distance while vehicle is empty.
η Conversion factor value of fuel consumption and carbon dioxide.

Cv Driver salary costs of per unit vehicle.

Cp1
Waiting time costs of per unit time while vehicle reaches the customer ahead of
the required time.

Cp2
Punishing time costs of per unit time while vehicle is behind the required time
for the customer.

C f Costs of per unit fuel consumption.

Cctp
Carbon trading price, which can be the income price for the excess carbon emissions
quotas or the subsidy price for the inadequate carbon emissions quota.

si Service time of customer i.
cij Time or distance between node i and node j.
Th

i Actual time while vehicle reaches the customer i.
[ETi, LTi] Time window which the customer i requested to be satisfied.

qi Demand of customer i.
Q′i Weight of goods when vehicle visited customer i.

Ff uel Total amount of fuel consumption.
Tq Amount of carbon emissions quotas which are controlled by the government.
xdh

ij If the vehicle h of depot d visits customer j from customer i, xh
ij is 1. Otherwise, xh

ij is 0.
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3.3. Model Development

In this section, we first introduce the sub-cost of this optimization in detail, then present the
specific formulation of the MDOVRPTW based on carbon trading.

3.3.1. Objective Function Analysis

Drivers’ Salary Costs

When the vehicles of the third-party logistics company’s depot are not enough, other companies’
vehicles can be rented. In this article, each rental vehicle is equipped with a driver and it must pay a
fixed salary to the driver. When the number of vehicles actually used is less than all vehicles, there is
no need to rent vehicles. Hence, the drivers’ salary costs C1 are 0. Otherwise, it can be calculated with
the equation:

C1 = Cv

(
hd

∑
h=1

d

∑
i=1

d+c

∑
j=d+1

xdh
ij − H

)
(1)

Penalty Costs

In the actual distribution, due to the customer’s time requirements, the vehicle routing problem
with time window has been much researched. According to the strictness of time constraints, the time
window is usually divided into two categories: hard time window [35] and soft time window [36].
The time when vehicle h reaches the customer i can be expressed as:

Th
i = Th

i + si + cij. (2)

This paper studies the soft time window, proposing the penalty costs C2, which can be calculated
as:

C2 =
hd

∑
h=1

d+c

∑
i=d+1

(Cp1max
{

ETi − Th
i , 0
}
+ Cp2max

{
Th

i − LTi, 0
}
). (3)

Fuel Consumption Costs

In the current situation, to calculate the fuel consumption of a vehicle is complicated, because it is
affected by many factors such as: car characteristics, road traffic conditions, road gradient, driving level
and so forth, thus, it is too difficult and unnecessary to take all factors into consideration. Thus, we refer
to the literature [5] to calculate fuel consumption. The total fuel consumption costs C3 are expressed as
follow:

C3 =
hd

∑
h=1

d+c

∑
i=1

d+c

∑
j=1

Ce

(
r +

r′ − r
Q

Q′i

)
. (4)

Carbon Emission Trading Costs

The literature has shown that the carbon emissions of vehicles have a relationship with fuel
consumption. This paper uses the following Formula (5) to calculate the amount of carbon dioxide
emissions from fuel consumption. Table 2 presents some data related to carbon dioxide emissions.

TCO2 = ηFf uel . (5)
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Table 2. Coefficients related to carbon dioxide emissions [37].

Fuel Consumption Average Fuel

Basic data
Value of fuel heating 35.4 MJ/kg
Factor of conversion 1 TJ = 106 MJ

Emission factor
Coefficient of carbon emission 74,100 kg CO2/TJ

Type of fuel Diesel

Next, we need to introduce carbon quotas and carbon subsidies. When the actual carbon emissions
are lower than the total amount of carbon emissions, companies can sell carbon emission rights to gain
profit. If the carbon emissions are greater than the upper limit, the company must purchase additional
carbon subsidies [38]. It is assumed that the carbon emissions quotas are Tq and the carbon trading
price is Cctp. Therefore, the carbon emission trading costs C4 can be calculated as follows:

C4 = Cctp

(
ηFf uel − Tq

)
(6)

3.3.2. Model Setting

On the basis of the above analysis, the mathematical model built in this study is expressed as
follows:

minF = C1 +
hd
∑

h=1

d+c
∑

i=d+1
(Cp1max

{
ETi − Th

i , 0
}

+Cp2max
{

Th
i − LTi, 0

}
)

+
hd
∑

h=1

d+c
∑

i=1

d+c
∑

j=1
Ce

(
r + r′−r

Q Q′i
)
+ Cctp

(
ηFf uel − Tq

) (7)

Subject to:
hd

∑
h=1

d

∑
d=1

d+c

∑
i=1

xdh
ij = 1, j ∈ {d + 1, d + 2, . . . , d + c} (8)

d

∑
d=1

d+c

∑
i=d+1

d

∑
j=1

xdh
ij = 1, ∀h ∈

{
1, 2, . . . , H′

}
(9)

d

∑
d=1

d+c

∑
i=d+1

d+c

∑
j=d+1

xdh
ij = 1, ∀h ∈

{
1, 2, . . . , H′

}
(10)

d

∑
d=1

d

∑
i=1

d

∑
j=1

xdh
ij = 0, ∀h ∈

{
1, 2, . . . , H′

}
(11)

hd

∑
h=1

d

∑
d=1

d+c

∑
i=1

d+c

∑
j=d+1

qixdh
ij ≤ Q0, ∀h ∈

{
1, 2, . . . , H′

}
(12)

hd

∑
h=1

d

∑
d=1

d+c

∑
i=1

d+c

∑
j=d+1

(
cij + si

)
xdh

ij ≤ L, ∀h ∈
{

1, 2, . . . , H′
}

(13)

d

∑
d=1

∑
i∈G

∑
j∈G

xdh
ij ≤ |G| − 1, G ∈ C, 2 ≤ |G| ≤ c, ∀h ∈

{
1, 2, . . . , H′

}
(14)

The objective function (7) is to minimize the total costs of the third-party logistics system,
which includes four sub-costs: drivers’ salary costs, penalty costs, fuel consumption costs and carbon
emission costs. Constraint (8) shows that each customer must be serviced once by a vehicle. A vehicle
begins at the depot and ends at the last visited customer, which is imposed by Constraints (9) and (10).



Int. J. Environ. Res. Public Health 2018, 15, 2025 7 of 20

Constraint (11) defines that vehicles cannot go directly from the depot to the depot. Constraint (12)
represents that the needs of customers for each path do not pass the maximum load of the vehicle.
The total time for each path does not exceed the longest length of the route, which is provided by
Constraint (13). Constraint (14) illustrates the subtour elimination.

4. A Two-Phase Algorithm

OVRP is a typical NP-hard problem [13,39], which can be solved by various kinds of heuristics.
The PSO algorithm is simple and flexible [40] but it usually gets in local optimum. Tabu search
can avoid roundabout searching. Hence, in this paper, the improved particle swarm optimization
algorithm with tabu search is advanced to deal with the mathematical model above. The proposed
algorithm is composed of two phases [41]. First, a particle swarm algorithm is adopted to generate an
initial optimal solution. Second, a tabu search is used to optimize the initial optimal solution to make
it jump out of the local optimum.

The PSO algorithm originates in the parallel evolutionary computation technique, which was
developed by Kennedy and Eberhart [38], according to the social behavior metaphor. It is paid great
attention owing to its good performance on memory occupation and calculation speed. The PSO
algorithm is widely used in many fields, such as: combination optimization, fuzzy system control,
function optimization and so on, but this algorithm may turn out to be premature. Tabu search
is an intelligent heuristic global neighborhood search algorithm. It simulates the human search
feature with memory function. This paper mainly adopts the idea of jumping away from the local
optimum, using the medium-term and long-term memory methods to improve the particle swarm
optimization algorithm.

4.1. Encoding and Decoding

The particle swarm optimization algorithm has a main problem, which is how the position of
the particle corresponds to the solution of the model. And it is common to use the 3n-dimensional
vector for the multi-depot problem. This article constructs an indirect coding method for the particle,
according to the literature [42], which is based on parking lot and customer arrangements. It essentially
transforms multi-depot issues into a single depot. This encoding method has the following two
advantages: (1) The code length is fixed, which is equal to d + c − 1 (d is the number of depots and c is
the number of customers) and easy to compute; and (2) It does not pre-estimate the number of vehicles
used. The latitude X of the particle is the random numbers related to depot and customer information.

The first step is to allocate customers to different depots. Firstly, it needs to sort the latitude X of
the particle and find the serial number C of the corresponding location. Then, finding the positions
with the serial number greater than the number of customers; these represent the depot’s information
and the other represents the customer’s information. For example, supposing there are 10 customers
and 3 depots. The detailed information is shown in Figure 2.
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X 1.14 1.06 1.85 1.56 1.93 1.69 1.58 1.82 1.99 1.01 1.86 1.61 

C 3 2 9 4 11 7 5 8 12 1 10 6 
 

Depot
1 customers 

Depot
2 customers 

Depot
3 customers 

Figure 2. Allocation of depots and customers. Figure 2. Allocation of depots and customers.

The second step is to route the customers inside the depot. The routing division in each depot
is essentially a vehicle routing optimization problem in a single depot. The single-site vehicle
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routing encoding method is as follows: Each node is considered in sequence until the node demand,
during time and so forth, violates the constraint. At this time, the previously checked node is taken as
a routing and the remaining nodes are continuously checked until all the nodes in the site are divided.
For the above example, the maximum time of each path is 10 and the maximum load per vehicle is 30.
The start time is 0. Table 3 shows the customers’ demand, time information. The time here is the last
node to the customer’s time. Then the corresponding solution routing is shown in Figure 3.

Table 3. The information about the customers’ demand and time.

Customer 1 2 3 4 5 6 7 8 9 10

Demand 10 5 9 15 17 8 4 9 10 4
Time 3 4 3 5 1 4 4 3 2 2
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The encoding and decoding of this particle can ensure that each customer is served once and that
each customer can be limited to only one vehicle. What is more, the calculation of the solution process
can be reduced.

4.2. Fitness Function

Since the path has satisfied the vehicle capacity and vehicle time constraints in the course of
particle decoding, the fitness function of this paper can be expressed as: Fitness(Xi) = F.

4.3. Constructing Initial Optimal Solution Based on PSO Algorithm

In the first phase, we use the PSO algorithm to obtain a high-quality initial solution. When the
algorithm starts, each solution in the solution space is considered as a particle. In the shrinking
space, each particle has a position to determine its position and a speed to determine its distance
and direction.

4.3.1. Initialization

Parameter initialization, set the length of particle code VarSize, the number of population
nPop, maximum number of iterations MaxIt, inertia weight W, the number of R1, R2, acceleration
factor C1, C2 and the particle range [VarMin, VarMax] and velocity range [−0.1*(VarMax−VarMax),
0.1*(VarMax−VarMax)]. The solution vector is a 1-dimensional variable in this paper. When the
particles are initialized, the position and velocity of the ith population can be expressed as:

Xi = rand(VarSize). ∗ (VarMax−VarMin) + VarMin,
Vi = rand(VarSize). ∗ (VelMax−VelMin) + VarMin.

(15)
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4.3.2. Determining Optimal Solution

All particles have a fitness value that is determined by the fitness function. In each iteration,
each particle has an individual extremum and all particles share a global extremum. Particles follow
the individual extremes and global extremes to search in the solution space and find the optimal
solution. The individual extremum is expressed as Pbest and the common global extremum of all
particles is denoted as Gbest.

4.3.3. Particle Status Update

Each time the position and velocity are updated according to the following formulas:
Vi+1 = WVi + C1R1

(
Pbest − Xi

)
+ C2R2

(
Gbest − Xi

)
,

i f Vi+1 > Vmax, Vi+1 = Vmax,
i f Vi+1 < Vmin, Vi+1 = Vmin,

Xi+1 = Xi + Vi+1.

(16)

These formulas respectively reflect the memory of particle, the particle’s thinking and information
sharing and mutual cooperation between particles.

4.3.4. Terminating Condition

Finally, when the greatest population number nPop appears is the end of the condition. Otherwise,
it will continue to evolve.

4.4. Structuring Global Optimal Solution Based on TS

4.4.1. Initial Solution

In the second phase, the solution is further optimized by the tabu search. For the initial solution,
we adopt the optimal solution in the first phase. Initialize tabu list, determining the tabu length and
so on.

4.4.2. Neighborhood Structure Design

The tabu search algorithm is an algorithm of the neighborhood search technology and determining
the neighborhood operation is a major procedure in composing the algorithm. According to the
characteristics of path encoding and decoding in this paper, this paper selects three routes for the
neighborhood search algorithm: swap, reversion, insertion. In this study, we use the computer to
generate a random number which is between 1 and 3. Then one of three operators is adopted at the
same possibility according to the generated random number.

4.4.3. Tabu Objects and Tabu Table

The tabu search algorithm leads the algorithm to hunt for areas that have not been searched in
the problem space by means of tabu search solution improvement factors and retrieves previously
searched solutions. In this paper, the component vectors of tabu solutions are used as tabu objects.
This method can avoid repeated searches and save time. For three different search methods, three tabu
tables are created to store the corresponding tabu objects. The tabu tabulation element tabui (i = 1, 2,
3) marks the contraindication of the corresponding it need to adopt special rules to unlock the tabu
candidate solution.

4.4.4. Terminating Condition

To get the solution in a reasonable time, tabu search need the termination condition in the
iterations. In this paper, we take the maximum number of iterations as the termination criteria.
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4.5. Steps of PSO-TS Algorithm

The TS-PSO algorithm detailed flowchart for solving the MDOVPRPTWLC model is shown in
Figure 4.Int. J. Environ. Res. Public Health 2018, 15, x FOR PEER REVIEW  10 of 19 
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5. Computational Experiments

5.1. Test Cases

The benchmark data sets of Cordeau [43] are well-known in MDVRPTW. In this study, we choose
the narrow time window problem pro01–pro10 from the typical database. Then, they are applied to
the MDOVRPTW and used to test the two-phase algorithm. The distance in the test instances is the
Euclidean distance and supposing that between two nodes the travel time of the vehicle is equal to the
Euclidean distance. This article uses the literature [44] classification method to divide the test cases
into three categories according to the number of customers: small-scale study 1–100 (pro01, pro02
and pro07), medium-scale study 101–200 (pro03, pro04 and pro08), large-scale study 201–300(pro05,
pro06, pro09 and pro10). Table 4 shows part of information about the test instances, which includes the
number of customers C, depots D, vehicles H, maximum vehicle load Q0 and longest duration of each
route L. And we set the parameters of this model according to the former studies [16,45,46], which are
shown in Table 5. According the Table 2, η can be calculated as 2.623. We set the carbon trading price
Cctp as 25 CNY/t, which refers to the literature [37].
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Table 4. Data about the test instances.

Case C D H Q0 L

pro01 48 4 8 200 500
pro02 96 4 12 195 480
pro03 144 4 16 150 460
pro04 192 4 20 185 440
pro05 240 4 24 180 420
pro06 288 4 28 175 400
pro07 72 6 12 200 500
pro08 144 6 18 190 475
pro09 216 6 24 180 450
Pro10 288 6 30 170 425

Table 5. Parameters related to the objective function.

Parameter Value

Cv 800 CNY/day
Cp1 12 CNY /h
Cp2 120 CNY /h

r 0.165 L/km
r’ 0.377 L/km
Cf 7 CNY /L

5.2. Parameter Setting for PSO-TS

The parameter setting for the PSO-TS is very vital, which can affect the quality and efficiency of the
results. We can obtain a better solution though the appropriate parameter setting. Based on previous
studies [47,48] and a large number of experiments, the parameters are set in Table 6. The proposed
algorithm in this paper is coded using programming language on MATLAB R2017a (MathWorks,
Natick, Massachusetts, USA) and all the experiments are evaluated on a PC with Intel 2.3 GHz
processor and 8GB RAM.

Table 6. Parameters related to PSO-TS algorithm.

Parameter Value Parameter Value

C1 1.5 C2 1.5
VarMin 0 VarMax 1

W 0.7 nPop 20
R1, R2 Rand (VarSize) MaxIt 2000

5.3. Effectiveness of Two-Phase Algorithm

As we all know, the carbon quota is generally set by the government. Here, we initially assume
that the carbon quota is 0 and we set the carbon trading price as 0.025 CNY/kg. To investigate the
effectiveness of the algorithm, we propose the traditional particle swarm optimization to compare with
the proposed two-phase algorithm. For each of the following experiments, we perform them 20 times
and record the best value as the optimal result. Table 7 shows the detailed computational results of
PSO and PSO-TS, which include total costs, length of route, carbon emission and optimization rate of
total costs.
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Table 7. The computational process of the PSO and PSO-TS.

Case
PSO PSO-TS

Optimization
Rate (%)

Total
Costs

Length of
Route

Carbon
Emissions

Total
Costs

Length of
Route

Carbon
Emissions

pro01 3594.84 2123.20 1183.22 1762.68 1100.06 615.50 50.97%
pro02 8711.70 4280.86 2369.38 4462.85 2907.05 1411.18 48.77%
pro03 19,829.61 8151.34 4457.84 15,869.19 6748.95 3673.09 19.97%
pro04 26,828.33 10,415.19 5740.98 20,745.65 8801.75 4786.78 22.67%
pro05 29,219.09 11,477.84 6445.99 21,812.08 9318.71 5231.30 25.35%
pro06 43,105.48 15,244.03 8331.37 28,002.73 11,457.53 6262.51 35.04%
pro07 6264.59 3789.37 2091.83 3426.20 2166.45 1208.70 45.31%
pro08 14,701.26 7548.94 4276.92 9635.77 5695.13 3108.81 34.46%
pro09 28,203.35 12,064.30 28,203.35 17,729.27 9012.07 4902.94 37.14%
Pro10 42,958.36 16,618.96 42,958.36 29,053.09 9012.07 6928.65 32.37%

Average - - - - - - 35.21%

“-”: it is not necessary to calculate these averages.

We can easily see from Table 7, compared with PSO algorithm, total costs, length of route,
carbon emissions of the PSO-TS algorithm all have a great improvement in the quality of solution.
And the average optimization rate of total costs reaches to 35.21%.

In this paper, we propose three scale cases: small, medium and large and we calculate the ten cases
(pro01–pro10) with the PSO-TS algorithm. Table 8 shows the detailed calculation results, which include
vehicles’ number, drivers’ salary, penalty costs, fuel costs (fuel consumption costs), carbon costs (carbon
emission trading costs), total costs, carbon emissions and length of route.

Table 8. The computational results of pro01-pro10 with the PSO-TS.

Case Vehicles’
Number

Drivers’
Salary

Penalty
Costs

Fuel
Costs

Carbon
Costs

Total
Costs

Carbon
Emissions

Length
of Route

pro01 6 0 134.19 1613.35 15.39 1762.68 615.50 1100.06
pro02 12 0 209.04 3681.82 35.28 3926.14 1411.18 2607.05
pro03 23 5600 401.07 9776.30 91.82 15,869.19 3673.09 6748.95
pro04 29 7200 685.52 12,740.47 119.66 20,745.65 4786.78 8801.75
pro05 33 7200 557.70 13,923.6 130.78 21,812.08 5231.30 9318.71
pro06 41 10,400 777.87 16,668.30 156.56 28,002.73 6262.51 11,457.53
pro07 11 0 333.61 3056.96 30.22 3420.79 1208.70 2166.45
pro08 18 800 483.65 8274.40 77.72 9635.77 3108.81 5695.13
pro09 29 4000 557.04 13,049.66 122.57 17,729.27 4902.94 9012.07
pro10 42 9600 838.60 18,441.27 173.22 29,053.09 6928.65 9012.07

From the Table 8, we find the drivers’ salary of these cases (pro01, pro02 and pro07) are all zero
and those cases all belong to small scale. We propose an assumption that the two-phase algorithm is
more suitable for small-scale cases.

To verify the applicability of the PSO-TS algorithm, we calculate the average optimization rate
of objective function and the average running time of the three scales. The results are shown in the
Figure 5. The average running time demonstrates the computational complexity of the algorithm.
The average optimization rate of objective function illustrates the performance of the algorithm.
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It can be seen in Figure 5, with the increase in the size of cases, the PSO-TS algorithm needs to
spend more time to get the optimal result and the best average optimization rate of objective function
43.73% is of the small-scale case. Considering the speed of convergence and the quality of solution,
the proposed two-phase algorithm is more suitable for small-scale problems.

5.4. Experimental Results

In the carbon trading environment, carbon quotas and carbon trading prices have a direct bearing
on environmental protection costs (carbon emission trading costs) and they can indirectly change
the vehicle arrangements and route planning, which will further affect economic costs (penalty costs
and drivers’ salary costs) and energy costs (fuel consumption costs). In the following, we conduct a
detailed study on carbon trading prices and carbon quotas respectively.

In the following research, we only study the three cases (pro01, pro02 and pro07), because the
proposed algorithm is more applicable to small-scale cases. What is more, we perform 20 times for
each of the following experiments and record the best value as the optimal result. Then decoding the
optimal solution can obtain total costs, each sub-cost, carbon emissions and so on.

First, in order to study the impact of carbon trading price on the objective function and carbon
emission, we set up a comparative experiment for small-scale cases. Here, we just consider the carbon
trading price, thus the carbon quotas are 0. We set the carbon trading price to 0, calculate the values
associated with the objective function and compare it with the previous experiment results shown
in Table 8 when the carbon trading price is 0.025. Table 9 shows the detailed values of carbon costs,
fuel costs, total costs, carbon emissions when the carbon trading price is 0 and 0.025 respectively.

Table 9. The results of the comparative test when carbon trading price is 0 and 0.025.

Case Carbon Trading
Price (NCY/kg)

Carbon
Costs Fuel Costs Total Costs Carbon

Emissions (kg)

pro01 0 0 1681.92 1803.68 631.92
0.025 15.39 1613.35 1762.68 615.50

pro02 0 0 4085.03 4294.67 1534.80
0.025 35.28 3681.82 3926.14 1411.18

Pro07
0 0 3274.79 3482.00 1230.38

0.025 30.22 3056.96 3420.79 1208.70

According to the results in Table 9, the following findings can be observed. When carbon trading
prices are 0, the carbon costs are also 0. When carbon trading prices is 0.025, the carbon costs are bigger
than 0. That the carbon trading price is 0 means there is not a carbon prices constraint. Compared with
the case in which the carbon trading price is 0, the fuel costs and total costs of the three cases (pro01,
pro02 and pro07) are all lower when carbon trading price is 0.025. In addition, carbon emissions of
the three cases (pro01, pro02 and pro07) have also been effectively improved when carbon trading
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prices are 0.025. In conclusion, it shows that under the constraints of carbon trading prices, even if the
carbon costs increase, the total costs as the objective function and fuel costs can reduce and the carbon
emissions can also reduce.

Next, we study the effect of carbon quotas on the objective function and carbon emissions for
fixed carbon trading prices. Here, the fixed carbon trading prices are 0.025. The carbon emissions
quotas are difficult to estimate the exact value. In this study, for each case, we set 3 new carbon quotas
(T′q) around the carbon emissions (pro01:615.50, pro02:1411.18, pro07:1208.70), which can be obtained
from Table 8 when the carbon trading price is 0.025 and the carbon quota is 0. Aimed at the new
different carbon quotas, the values of total costs, carbon costs, carbon emissions and the difference
between T′q and carbon emissions (CE) can be calculated respectively, which are shown in Table 10.

Table 10. The results of the comparative test when carbon quotas are different.

Case T′q (kg) Total Costs Carbon Costs Carbon Emissions (CE) T′q −CE

pro01
600 1747.69 0.39 615.50 −15.5
650 1746.44 −0.86 615.50 34.5
700 1745.19 −2.11 615.50 84.5

pro02
1400 3927.14 0.28 1411.18 −11.18
1450 3925.89 −0.97 1411.18 38.82
1500 3924.64 −2.22 1411.18 88.82

pro07
1200 3390.79 0.22 1208.70 −8.7
1250 3389.54 −1.03 1208.70 41.3
1300 3388.29 −2.28 1208.70 91.3

According to the results in Table 10, the following findings can be observed. With the increase of
carbon quotas, for each case, the total costs and carbon costs also increase. Since the carbon quotas
are a small increase, the increase of total costs and carbon costs is slight. However, as the carbon
quotas increase, the carbon emissions are a fixed value for each case (pro01:615.50, pro02:1411.18,
pro07:1208.70). We know that the calculation of carbon costs is related to the difference between carbon
quotas and carbon emissions. The increase in carbon costs is due to the increase in the difference
between CE and T′q. For each case, the change of this difference (T′q−CE) can be seen from Table 10.

On the basis of the findings, when carbon quotas change, carbon emissions are the fixed value for
each case. We know that carbon emissions are related to the distribution paths. Therefore, we propose
an assumption that when the carbon quota changes, the distribution paths are unchanged. Then,
we use the case of pro01 to verify this hypothesis. According to Table 10, we set the carbon quotas (T′q)
as 600, 650 and 700. Then, the optimal distribution paths for pro01, which are obtained by solving the
model, are shown in Figures 6–8.

According to Figures 6–8, we can easily see that the optimal distribution paths for pro01 are same
when the carbon quotas are 600, 650 and 700. Therefore, the changed carbon quotas have no effect to
the optimal distribution paths, which supports our hypothesis.

At last, in order to further study the impact of carbon trading on the objective function and carbon
emission, we add two new carbon prices 0.015 and 0.035 based on the study of fixed carbon prices
0.025. Thus, a further study of changing carbon prices and carbon quotas is formed. The computational
results of the changing carbon prices and carbon quotas are shown in Table 11. Figure 9 shows the
changing trend of total costs under different carbon trading price and carbon quotas and Figure 10
shows the changing trend of carbon costs under different carbon trading price and carbon quotas.



Int. J. Environ. Res. Public Health 2018, 15, 2025 15 of 20

Int. J. Environ. Res. Public Health 2018, 15, x FOR PEER REVIEW  14 of 19 

 

are a small increase, the increase of total costs and carbon costs is slight. However, as the carbon 
quotas increase, the carbon emissions are a fixed value for each case (pro01:615.50, pro02:1411.18, 
pro07:1208.70). We know that the calculation of carbon costs is related to the difference between carbon 
quotas and carbon emissions. The increase in carbon costs is due to the increase in the difference 
between CE and 𝑇ᇱ. For each case, the change of this difference (𝑇ᇱ−CE) can be seen from Table 10. 

On the basis of the findings, when carbon quotas change, carbon emissions are the fixed value 
for each case. We know that carbon emissions are related to the distribution paths. Therefore, we 
propose an assumption that when the carbon quota changes, the distribution paths are unchanged. 
Then, we use the case of pro01 to verify this hypothesis. According to Table 10, we set the carbon 
quotas (𝑇ᇱ) as 600, 650 and 700. Then, the optimal distribution paths for pro01, which are obtained by 
solving the model, are shown in Figures 6–8. 

According to Figures 6–8, we can easily see that the optimal distribution paths for pro01 are 
same when the carbon quotas are 600, 650 and 700. Therefore, the changed carbon quotas have no 
effect to the optimal distribution paths, which supports our hypothesis. 

At last, in order to further study the impact of carbon trading on the objective function and 
carbon emission, we add two new carbon prices 0.015 and 0.035 based on the study of fixed carbon 
prices 0.025. Thus, a further study of changing carbon prices and carbon quotas is formed. The 
computational results of the changing carbon prices and carbon quotas are shown in Table 11. Figure 9 
shows the changing trend of total costs under different carbon trading price and carbon quotas and Figure 
10 shows the changing trend of carbon costs under different carbon trading price and carbon quotas. 

 

Figure 6. Distribution paths when 𝑇ᇱ are 600. 

 

Figure 7. Distribution paths when 𝑇ᇱ are 650. 

Figure 6. Distribution paths when T′q are 600.

Int. J. Environ. Res. Public Health 2018, 15, x FOR PEER REVIEW  14 of 19 

 

are a small increase, the increase of total costs and carbon costs is slight. However, as the carbon 
quotas increase, the carbon emissions are a fixed value for each case (pro01:615.50, pro02:1411.18, 
pro07:1208.70). We know that the calculation of carbon costs is related to the difference between carbon 
quotas and carbon emissions. The increase in carbon costs is due to the increase in the difference 
between CE and 𝑇ᇱ. For each case, the change of this difference (𝑇ᇱ−CE) can be seen from Table 10. 

On the basis of the findings, when carbon quotas change, carbon emissions are the fixed value 
for each case. We know that carbon emissions are related to the distribution paths. Therefore, we 
propose an assumption that when the carbon quota changes, the distribution paths are unchanged. 
Then, we use the case of pro01 to verify this hypothesis. According to Table 10, we set the carbon 
quotas (𝑇ᇱ) as 600, 650 and 700. Then, the optimal distribution paths for pro01, which are obtained by 
solving the model, are shown in Figures 6–8. 

According to Figures 6–8, we can easily see that the optimal distribution paths for pro01 are 
same when the carbon quotas are 600, 650 and 700. Therefore, the changed carbon quotas have no 
effect to the optimal distribution paths, which supports our hypothesis. 

At last, in order to further study the impact of carbon trading on the objective function and 
carbon emission, we add two new carbon prices 0.015 and 0.035 based on the study of fixed carbon 
prices 0.025. Thus, a further study of changing carbon prices and carbon quotas is formed. The 
computational results of the changing carbon prices and carbon quotas are shown in Table 11. Figure 9 
shows the changing trend of total costs under different carbon trading price and carbon quotas and Figure 
10 shows the changing trend of carbon costs under different carbon trading price and carbon quotas. 

 

Figure 6. Distribution paths when 𝑇ᇱ are 600. 

 

Figure 7. Distribution paths when 𝑇ᇱ are 650. Figure 7. Distribution paths when T′q are 650.
Int. J. Environ. Res. Public Health 2018, 15, x FOR PEER REVIEW  15 of 19 

 

 

Figure 8. Distribution paths when 𝑇ᇱ are 700. 

 
Figure 9. The total costs under different carbon trading price and carbon quotas. 

 
Figure 10. The carbon costs under different carbon trading price and carbon quotas. 

  

600

650

700

1500

1600

1700

1800

1900

0.15 0.025 0.035

1868.95

1747.69
1685.03

1868.2

1746.44
1683.28

1867.45

1745.19
1681.53

C
ar

bo
n 

qu
ot

as
 (k

g)

To
ta

l c
os

ts
 (C

N
Y)

Carbon trading price (NCY/kg)

-4

-3

-2

-1

0

1

2

0 . 0 1 5 0 . 0 3  0 . 0 3 5

C
ar

bo
n 

co
st

s (
C

N
Y)

Carbon trading price (CNY/kg)

Carbon quotas: 600 Carbon quotas: 650 Carbon quotas: 700

Figure 8. Distribution paths when T′q are 700.



Int. J. Environ. Res. Public Health 2018, 15, 2025 16 of 20

Table 11. The results of the changing carbon prices and carbon quotas.

Carbon Trading Price (CNY/kg) T′q (kg) Total Costs Carbon Costs Carbon Emissions

0.015
600 1868.95 0.92 661.27
650 1868.20 0.17 661.27
700 1867.45 −0.58 661.27

0.025
600 1747.69 0.39 615.50
650 1746.44 −0.86 615.50
700 1745.19 −2.11 615.50

0.035
600 1685.03 −0.16 595.42
650 1683.28 −1.91 595.42
700 1681.53 −3.66 595.42
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From the results in Table 11, Figures 9 and 10, we can obtain the following the findings:

(1) When the carbon trading prices are 0.015, 0.025 and 0.035, the corresponding carbon emissions
are also fixed at 661.27, 615.50 and 595.42, respectively. This further validates that for a fixed
carbon trading price, carbon emissions and optimal distribution paths will not change when the
carbon quota changes. As the carbon trading prices increase, the carbon emission decrease. It also
further validates that carbon trading prices directly affect carbon emissions.

(2) When the carbon trading prices and carbon quotas increase within a certain range, the total costs
and carbon costs have the downward trend. When the carbon trading price is 0.035 and the
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carbon quotas are 700, the total costs have the lowest value 1681.53 and the carbon costs have the
lowest value −3.66.

5.5. Discussion and Analysis

In this study, the proposed PSO-TS algorithm is proven to be more applicable to small-scale
problems (pro01, pro02 and pro07), which can get the better solution quickly by this method. For the
small-scale MDOVRPTW, we study the impact of carbon trading on total costs, carbon costs and
carbon emissions from both carbon trading prices and carbon quotas. The main summings-up are
listed as follows:

(1) When the carbon trading prices exist, the carbon costs, fuel costs and total costs are all lower and
the carbon emissions are also effectively improved compared with the trading prices as zero.

(2) When the carbon quota is increasing and the carbon trading price is fixed, the total cost and
carbon costs also increase but the carbon emissions fixed on a certain value. We propose and
prove that the changed carbon quotas don’t affect the optimal distribution paths, which also
validates that carbon trading prices directly affect carbon emissions.

(3) When the carbon trading prices and carbon quotas both increase within a certain range, the total
costs and carbon costs are both decreasing. For the fixed carbon quotas, when the carbon trading
prices increase, the carbon emissions will decrease. For the fixed carbon trading prices, when the
carbon quotas increase, the carbon emissions will be a fixed value.

Based on these results, some advice to third-party logistics enterprises and the government
is forthcoming.

For logistics enterprises, they use the technological means and path optimization methods
to reduce carbon emissions to create low-carbon logistics. Technological means can develop new
energy or use energy-saving cars. However, these require a huge investment compared to path
optimization. Therefore, this research is very necessary for logistics companies. It can quickly
optimize the distribution route for government-specific carbon trading policies. According to this
study, the logistics enterprises can also take some optimization measures to balance economic costs,
energy costs and environmental costs. First, they should have the awareness of environmental
protection and introduce the carbon emissions into the distribution path optimization. Secondly,
from the operation and management level, it can reduce business operating costs and establish a good
corporate image when the carbon emissions are taken into consideration. Thirdly, logistics enterprises
should respond positively to the carbon trading policies, which are proposed by the government. They
can choose low-carbon strategies to reduce total costs.

For the government, in order to promote low-carbon development, they can use carbon trading
policies to reach the goal of fewer carbon emissions. Firstly, the government should encourage the
enterprises to save energy and reduce carbon emissions. Secondly, from the management insight,
they should form a relatively complete carbon trading policies and strengthen the regulation of carbon
emissions. Research shows that the government can increase carbon prices in a certain range to reduce
carbon emissions. The government can give logistics companies corresponding carbon quotas as much
as possible to save the company’s costs without increasing carbon emissions. It can encourage the
companies to respond to the carbon trading policies.

6. Conclusions

Due to high energy consumption and serious environmental pollution, the global climate has
become warmer and warmer. The world has placed a high value on the low-carbon economy.
MDOVRPTW is a complex combinatorial optimization vehicle route problem. There has been much
research into its algorithm. Many scholars have published articles on low-carbon. However, there are a
few articles that combine MDOVRPTW with low-carbon. We know that carbon trading is an effective
means to achieve carbon reduction goals. In this paper, we study the MDOVRPTW based on carbon
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trading and propose the two-phase algorithm to handle this problem. Taking into account the quality
and calculation time of the solution, the PSO-TS algorithm is more suitable for the small-scale cases.
This paper examines the influence of carbon trading on total costs, carbon emissions costs and carbon
emissions from carbon trading prices and carbon quotas.

The main results of this article are as follows: the cost of distribution companies under carbon
trading is less; changes in carbon quotas cannot cause changes in carbon emissions but can cause
changes in total costs and carbon emission trading costs; when carbon prices increase within a
certain range, the total costs and carbon emissions of logistics and distribution companies will
decrease. These findings are expected to provide decision support for managers, especially for specific
third-party logistics enterprises and to formulate transportation strategies for logistics management
under the government’s carbon emission restriction policy in consideration of corporate profits and
new circumstances. It also provides a valuable reference and suggestions for the government’s
macro-control of environmental protection and has strong practical significance. What is more,
for society, fewer carbon emissions can slow down the greenhouse effect and provide a better
living environment.

In this study, we proposed the effect of carbon emissions prices and carbon quotas on total costs,
carbon emission trading costs and carbon emissions. But the specific optimal carbon emissions price
and carbon quota need to be further researched in the future. What is more, the study in this paper
only considers the single vehicle type and the decision of a single distribution company and uses the
standard test library as experimental data. The parameters of this study are uncertain in the actual
distribution environment. All these make some conclusions a certain gap from practical application.
In future research, the MDOVPRTW based on carbon trading can consider multiple vehicle types and
cooperative games among multiple logistics companies. In addition, real data can be used to get some
more real and reliable conclusions.
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