The Association between Indoor Air Quality and Adult Blood Pressure Levels in a High-Income Setting
Abstract
:1. Introduction
2. Methods
2.1. Measurement of Indoor Air Quality
2.2. Measurement of Covariates
2.3. Assessment of Heart Rate and Blood Pressure
2.4. Statistical Analysis
3. Results
Association between Levels of Indoor Particulate Matter with Heart Rate and Blood Pressure
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bromfield, S.; Muntner, P. High Blood Pressure: The Leading Global Burden of Disease Risk Factor and the Need for Worldwide Prevention Programs. Curr. Hypertens. Rep. 2013, 15, 134–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forouzanfar, M.H.; Afshin, A.; Alexander, L.T.; Anderson, H.R.; Bhutta, Z.A.; Biryukov, S.; Brauer, M.; Burnett, R.; Cercy, K.; Charlson, F.J.; et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1659–1724. [Google Scholar] [CrossRef]
- World Health Organisation (WHO). World Health Statistics 2014. Available online: http://www.who.int/gho/publications/world_health_statistics/2014/en/ (accessed on 26 July 2018).
- Wallace, L. Indoor sources of ultrafine and accumulation mode particles: Size distributions, size-resolved concentrations and source strengths. Aerosol Sci. Technol. 2006, 40, 348–360. [Google Scholar] [CrossRef]
- Waring, M.S.; Siegel, J.A. An evaluation of the indoor air quality in bars before and after a smoking ban in Austin, Texas. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Schripp, T.; Markewitz, D.; Uhde, E.; Salthammer, T. Does e-cigarette consumption cause passive vaping? Indoor Air 2013, 23, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Waring, M. Secondary organic aerosol in residences: Predicting its fraction of fine particle mass and determinants of formation strength. Indoor Air 2014, 24, 376–389. [Google Scholar] [CrossRef] [PubMed]
- Morawska, L.; Ayokoa, G.A.; Baec, G.N.; Buonannoa, G.; Chaoe, C.Y.H.; Clifforda, C.; Fue, S.C.; Hännineng, O.; Hea, C.; Isaxon, C.; et al. Airborne particles in indoor environment of homes, schools, offices and aged care facilities: The main routes of exposure. Environ. Int. 2017, 108, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Brook, R.D.; Rajagopalan, S. Particulate matter air pollution and atherosclerosis. Curr. Atheroscler. Rep. 2010, 12, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A., 3rd; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [PubMed]
- Dockery, D.W.; Stone, P.H. Cardiovascular risks from fine particulate air pollution. N. Engl. J. Med. 2007, 356, 511–513. [Google Scholar] [CrossRef] [PubMed]
- Zeka, A.; Sullivan, J.R.; Vokonas, P.S.; Sparrow, D.; Schwartz, J. Inflammatory markers and particulate air pollution: Characterizing the pathway to disease. Int. J. Epidemiol. 2006, 35, 1347–1354. [Google Scholar] [CrossRef] [PubMed]
- Langrish, J.P.; Bosson, J.; Unosson, J.; Muala, A.; Newby, D.E.; Mills, N.L.; Blomberg, A.; Sandström, T. Cardiovascular effects of particulate air pollution exposure: Time course and underlying mechanisms. J. Intern. Med. 2012, 272, 224–239. [Google Scholar] [CrossRef] [PubMed]
- Nelin, T.D.; Joseph, A.M.; Gorr, M.W.; Wpld, L.E. Direct and indirect effects of PM on the cardiovascular system. Toxicol. Lett. 2012, 208, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Brasche, S.; Bischof, W. Daily time spent indoors in German homes–baseline data for the assessment of indoor exposure of German occupants. Int. J. Hyg. Environ. Health 2005, 208, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Leech, J.A.; Nelson, W.C.; Burnett, R.T.; Aaron, S.; Raizenne, M.E. It’s about time: A comparison of Canadian and American time–activity patterns. J. Expo. Anal. Environ. Epidemiol. 2002, 12, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Morawska, L.; Afshari, A.; Bae, G.N.; Buonanno, G.; Chao, C.Y.; Hänninen, O.; Hofmann, W.; Isaxon, C.; Jayaratne, E.R.; Pasanen, P.; et al. Indoor aerosols: From personal exposure to risk assessment. Indoor Air 2013, 23, 462–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The World Bank. World Bank Country and Lending Groups. 2018. Available online: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups (accessed on 26 July 2018).
- Baumgartner, J.; Schauer, J.J.; Ezzati, M.; Lu, L.; Cheng, C.; Patz, J.A.; Bautista, L.E. Indoor air pollution and blood pressure in adult women living in rural China. Environ. Health Perspect. 2011, 119, 1390–1395. [Google Scholar] [CrossRef] [PubMed]
- Butler, D.A.; Madhavan, G. Communicating the health effects of indoor exposure to particulate matter. Indoor Air 2017, 27, 503–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Thoracic Society (ATS). Recommended respiratory disease questionnaires for use with adults and children in epidemiological research. Epidemiology Standardised Project ATS, DLD-78. Am. Rev. Respir. Dis. 1978, 118, 10–23. [Google Scholar]
- Rumchev, K.B.; Spickett, J.T.; Bulsara, M.K.; Phillips, M.R.; Stick, S.M. Domestic exposure formaldehyde Significantly increases the risk of asthma in young children. Eur. Respir. J. 2002, 20, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Rumchev, K.B.; Spickett, J.T.; Bulsara, M.K.; Phillips, M.R.; Stick, S.M. Association of domestic exposure to volatile organic compounds with asthma in young children. Thorax 2004, 59, 746–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rumchev, K.; Win, T.; Bertolatti, D.; Satvinder, D. Prevalence of respiratory symptoms among women and children in rural Myanmar-disease burden assessment attributable to household biomass smoke. Indoor Built Environ. 2015, 25, 728–736. [Google Scholar] [CrossRef]
- Ping-Delfos, W.; Soares, M. Diet induced thermogenesis, fat oxidation and food intake following sequential meals: Influence of calcium and vitamin D. Clin. Nutr. 2011, 30, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Soares, M.J.; Kuriyan, R.; Kurpad, A.V. Calcium and vitamin D modulate postprandial vascular function: A pilot dose-response study. Diabetes Metab. Syndr. Clin. Res. Rev. 2010, 4, 128–131. [Google Scholar] [CrossRef]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L., Jr.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T., Jr.; et al. The seventh report of the Joint National Committee on prevention, detection, evaluation and treatment of high blood pressure: The JNC 7 report. JAMA 2003, 289, 2560–2572. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, R.W.; Carey, I.M.; Kent, A.J.; van Staa, T.P.; Anderson, H.R.; Cook, D.G. Long-term exposure to outdoor air pollution and incidence of cardiovascular diseases. Epidemiology 2013, 24, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Ying, Z.; Xu, X.; Bai, Y.; Zhong, J.; Chen, M.; Liang, Y.; Zhao, J.; Liu, D.; Morishita, M.; Sun, Q.; et al. Long-term exposure to concentrated ambient PM2.5 increases mouse blood pressure through abnormal activation of the sympathetic nervous system: A role for hypothalamic inflammation. Environ. Health Perspect. 2014, 122, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Sun, Z.; Ruan, Y.; Yan, J.; Mukherjee, B.; Yang, F.; Duan, F.; Sun, L.; Liang, R.; Lian, H.; et al. Personal black carbon exposure influences ambulatory blood pressure: Air pollution and cardiometabolic disease (AIRCMD-China) study. Hypertension 2014, 63, 871–877. [Google Scholar] [CrossRef] [PubMed]
- Palatini, P.; Graniero, G.R.; Mormino, P.; Nicolosi, L.; Mos, L.; Visentin, P.; Pessina, A.C. Relation between physical training and ambulatory blood pressure in stage I hypertensive subjects. Results of the HARVEST Trial. Hypertension and Ambulatory Recording Venetia Study. Circulation 1994, 90, 2870–2876. [Google Scholar] [CrossRef] [PubMed]
- Fox, K.; Ford, I.; Steg, P.G.; Tendera, M.; Robertson, M.; Ferrari, R. Relationship between ivabradine treatment and cardiovascular outcomes in patients with stable coronary artery disease and left ventricular systolic dysfunction with limiting angina: A subgroup analysis of the randomized, controlled BEAUTIFUL trial. Eur. Heart J. 2009, 30, 2337–2345. [Google Scholar] [CrossRef] [PubMed]
- Dianat, M.; Radmanesh, E.; Badavi, M.; Goudarzi, G.; Mard, S.A. The effects of PM10 on electrocardiogram parameters, blood pressure and oxidative stress in healthy rats: The protective effects of vanillic acid. Environ. Sci. Pollut. Res. Int. 2016, 23, 19551–19560. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Qian, J.; Zhao, H.; Wang, J.; Zhu, H.; Zhou, Y.; Wang, J.; Guo, J.; Gehendra, M.; Qiu, H.; et al. A study of the association between atmospheric particulate matter and blood pressure in the population. Blood Press 2016, 25, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Dvonch, J.T.; Kannan, S.; Schulz, A.J.; Keeler, G.J.; Mentz, G.; House, J.; Benjamin, A.; Max, P.; Bard, R.L.; Brook, R.D. Acute effects of ambient particulate matter on blood pressure: Differential effects across urban communities. Hypertension 2009, 53, 853–859. [Google Scholar] [CrossRef] [PubMed]
- McGrath, B.P. Ambulatory blood pressure monitoring. Med. J. Aust. 2002, 176, 588–592. [Google Scholar] [PubMed]
- Ohkubo, T.; Kikuya, M.; Asayama, K.; Metoki, H.; Hara, A.; Inoue, R.; Obara, T.; Hirose, T.; Hatanaka, R.; Hozawa, A.; et al. Incorporating self-blood pressure measurements at home in the guideline from the Ohasama study. Blood Press Monit. 2007, 12, 407–409. [Google Scholar] [CrossRef] [PubMed]
- Brook, R.D.; Weder, A.B.; Rajagopalan, S. “Environmental hypertensionology” the effects of environmental factors on blood pressure in clinical practice and research. J. Clin. Hypertens. 2011, 13, 836–842. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Niu, Y.; Chen, R.; Xu, W.; Li, H.; Liu, C. Fine particulate matter constituents and blood pressure in patients with chronic obstructive pulmonary disease: A panel study in Shanghai, China. Environ. Res. 2017, 18, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Ibald-Mulli, A.; Timonen, K.L.; Peters, A.; Heinrich, J.; Wölke, G.; Lanki, T.; Buzorius, G.; Kreyling, W.G.; de Hartog, J.; Hoek, G.; et al. Effects of particulate air pollution on blood pressure and heart rate in subjects with cardiovascular disease: A multicenter approach. Environ. Health Perspect. 2004, 112, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Madsen, C.; Nafstad, P. Associations between environmental exposure and blood pressure among participants in the Oslo Health Study (HUBRO). Eur. J. Epidemiol. 2006, 21, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Brook, R.D. You are what you breathe: Evidence linking air pollution and blood pressure. Curr. Hypertens. Rep. 2005, 7, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Lewington, S.; Clarke, R.; Qizilbash, N.; Peto, R.; Collins, R. Age-specific relevance of usual blood pressure to vascular mortality: A meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002, 360, 1903–1913. [Google Scholar] [PubMed]
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; Amann, M.; Anderson, H.R.; Andrews, K.G.; Aryee, M.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef]
- Zeger, S.L.; Thomas, D.; Dominici, F.; Samet, J.M.; Schwartz, J.; Dockery, D.; Cohen, A. Exposure measurement error in time-series studies of air pollution: Concepts and consequences. Environ. Health Perspect. 2000, 108, 419–426. [Google Scholar] [CrossRef] [PubMed]
Variables | Overall (n = 63) | Missing Cases n (%) | PM2.5 * (µg/m3) | ||
---|---|---|---|---|---|
<25 | ≥25 | p§ Value | |||
Age (years) | 61 (9.00) | 0 (0) | 61 (9.30) | 63 (9.50) | 0.306 |
BMI (kg/m2) | 28.71 ± 5.64 | 6 (9.52) | 28.36 ± 6.29 | 29.28 ± 4.51 | 0.569 |
Born in Australia | |||||
Yes | 34 (54.00) | 0 (0) | 20 (66.70) | 10 (33.30) | 0.849 |
No | 29 (46.00) | 18 (64.30) | 10 (35.70) | ||
Smokers in house | |||||
Yes | 4 (6.30) | 0 (0) | 3 (75.00) | 1 (25.00) | 1.000 |
No | 59 (93.7) | 35 (64.80) | 19 (35.20) | ||
Drinker | |||||
Yes | 8 (12.70) | 0 (0) | 6 (85.70) | 1 (14.30) | 0.403 |
No | 55 (87.30) | 32 (62.70) | 19 (37.30) | ||
Diabetes | |||||
Yes | 20 (31.70) | 0 (0) | 9 (50.00) | 9 (50.00) | 0.095 |
No | 43 (68.30) | 29 (72.50) | 11 (27.50) | ||
Hypertensive | |||||
Yes | 20 (32.70) | 2 (3.17) | 13 (68.40) | 6 (31.60) | 0.790 |
No | 41 (65.10) | 24 (64.90) | 13 (35.10) | ||
Prescription medicine | |||||
Yes | 31 (49.2) | 0 (0) | 19 (65.50) | 10 (34.50) | |
No | 32 (50.8) | 19 (65.50) | 10 (34.50) | 1.000 | |
HR (bpm) | 63.25 (12.63) | 11 (17.46) | 62.5 (12.38) | 65 (13.50) | 0.214 |
SBP (mmHg) | 130.25 ± 17.69 | 11 (17.46) | 128.00 ± 16.51 | 133.85 ± 19.32 | 0.250 |
DBP (mmHg) | 75.12 ± 9.98 | 11 (17.46) | 73.88 ± 10.20 | 77.10 ± 9.52 | 0.261 |
McAuley’s ISI | 8.40 ± 2.65 | 15 (23.81) | 8.27 ± 2.67 | 8.59 ± 2.69 | 0.694 |
Variable * | Mean | SD | Median | IQR | Min | Max |
---|---|---|---|---|---|---|
PM1 (µg/m3) | 17.62 | 20.23 | 6.00 | 32.00 | 0.00 | 62.00 |
PM2.5 (µg/m3) | 18.74 | 19.92 | 7.00 | 31.00 | 1.00 | 62.00 |
PM4 (µg/m3) | 21.91 | 21.83 | 8.00 | 31.50 | 2.00 | 71.00 |
PM10 (µg/m3) | 37.29 | 22.49 | 34.50 | 38.00 | 10.00 | 95.00 |
PMTotal (µg/m3) | 66.16 | 30.50 | 63.00 | 32.25 | 23.00 | 168.00 |
Temperature (°C) | 23.09 | 3.54 | 23.42 | 5.09 | 16.52 | 32.16 |
Relative humidity (%) | 53.24 | 13.13 | 54.84 | 15.87 | 0.64 | 84.70 |
Outcome Variable | n | Indoor Air Quality (µg/m3) | ||||
---|---|---|---|---|---|---|
PM1 (IQR = 32) | PM2.5 (IQR = 31) | PM4 (IQR = 31.5) | PM10 (IQR = 38) | Total PM (IQR = 32.25) | ||
HR (bpm) | ||||||
CModel | 52 | 2.93 (−0.89, 6.99) | 3.04 (−0.72, 7.02) | 3.80 * (0.34, 7.45) | 4.47 * (0.37, 8.83) | 3.00 * (0.49, 5.61) |
AModel | 45 | 4.56 * (0.45, 8.93) | 4.38 * (0.31, 8.71) | 3.13 (−1.31, 7.88) | 3.39 (−2.44, 9.78) | 0.91 (−3.46, 5.60) |
SBP (mmHg) | ||||||
CModel | 52 | 1.43 (−5.87, 8.73) | 1.65 (−5.53, 8.82) | 1.77 (−4.89, 8.44) | 3.38 (−4.43, 11.18) | 2.94 (−1.90, 7.78) |
AModel | 45 | 1.63 (−6.26, 9.53) | 1.75 (−6.05, 9.55) | −0.31 (−8.74, 8.11) | 3.86 (−7.11, 14.83) | 5.89 (−2.25, 14.04) |
DBP (mmHg) | ||||||
CModel | 52 | 0.32 (−3.78, 4.43) | 0.45 (−3.59, 4.49) | 1.83 (−1.88, 5.55) | 2.24 (−2.13, 6.62) | 2.01 (−0.69, 4.71) |
AModel | 45 | 2.04 (−2.11, 6.18) | 2.03 (−2.07, 6.13) | 1.96 (−2.46, 6.38) | 2.70 (−3.10, 8.50) | 1.57 (−2.85, 5.98) |
Outcome Variable | n | Indoor Air Quality (µg/m3) | ||||
---|---|---|---|---|---|---|
PM1 (IQR = 30.50) | PM2.5 (IQR = 30) | PM4 (IQR = 31) | PM10 (IQR = 33) | Total PM (IQR = 32.25) | ||
HR (beat/minute) | ||||||
CModel | 33 | 5.43 * (0.05, 11.26) | 5.67 * (0.35, 11.44) | 6.03 * (1.09, 11.35) | 6.05 * (1.11, 11.37) | 4.96 (1.66, 8.43) |
AModel | 30 | 6.15 * (1.32, 11.34) | 6.03 * (1.18, 11.24) | 4.55 (−0.87, 10.43) | 4.33 (−1.50, 11.81) | 4.17 (−1.90, 10.84) |
SBP (mmHg) | ||||||
CModel | 33 | 4.55 (−3.64, 12.73) | 4.80 (−3.31, 12.91) | 3.90 (−3.78, 11.56) | 7.16 ♌ (−0.19, 14.51) | 6.97 (2.16, 11.79) |
AModel | 30 | 6.32 (−2.44, 15.08) | 6.40 (−2.34, 15.15) | 3.65 (−6.06, 13.37) | 10.01 ♌ (−0.61, 20.63) | 13.44 (4.07, 22.81) |
DBP (mmHg) | ||||||
CModel | 33 | 2.92 (−1.79, 7.64) | 3.15 (−1.58, 7.85) | 4.13 ♌ (−0.13, 8.38) | 4.67 * (0.50, 8.85) | 3.69 * (0.84, 6.54) |
AModel | 30 | 3.58 (−1.58, 8.73) | 3.61 (−1.55, 8.76) | 3.64 (−1.93, 9.21) | 5.32 ♌ (−1.01, 11.64) | 4.64 (−1.48, 10.76) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rumchev, K.; Soares, M.; Zhao, Y.; Reid, C.; Huxley, R. The Association between Indoor Air Quality and Adult Blood Pressure Levels in a High-Income Setting. Int. J. Environ. Res. Public Health 2018, 15, 2026. https://doi.org/10.3390/ijerph15092026
Rumchev K, Soares M, Zhao Y, Reid C, Huxley R. The Association between Indoor Air Quality and Adult Blood Pressure Levels in a High-Income Setting. International Journal of Environmental Research and Public Health. 2018; 15(9):2026. https://doi.org/10.3390/ijerph15092026
Chicago/Turabian StyleRumchev, Krassi, Mario Soares, Yun Zhao, Christopher Reid, and Rachel Huxley. 2018. "The Association between Indoor Air Quality and Adult Blood Pressure Levels in a High-Income Setting" International Journal of Environmental Research and Public Health 15, no. 9: 2026. https://doi.org/10.3390/ijerph15092026
APA StyleRumchev, K., Soares, M., Zhao, Y., Reid, C., & Huxley, R. (2018). The Association between Indoor Air Quality and Adult Blood Pressure Levels in a High-Income Setting. International Journal of Environmental Research and Public Health, 15(9), 2026. https://doi.org/10.3390/ijerph15092026