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Abstract: Analyzing the association between fine particulate matter (PM2.5) pollution and
socio-economic factors has become a major concern in public health. Since traditional analysis
methods (such as correlation analysis and geographically weighted regression) cannot provide a
full assessment of this relationship, the quantile regression method was applied to overcome such
a limitation at different spatial scales in this study. The results indicated that merely 3% of the
population and 2% of the Gross Domestic Product (GDP) occurred under an annually mean value
of 35 µg/m3 in mainland China, and the highest population exposure to PM2.5 was located in a
lesser-known city named Dazhou in 2014. The analysis results at three spatial scales (grid-level,
county-level, and city-level) demonstrated that the grid-level was the optimal spatial scale for analysis
of socio-economic effects on exposure due to its tiny uncertainty, and the population exposure to PM2.5

was positively related to GDP. An apparent upward trend of population exposure to PM2.5 emerged at
the 80th percentile GDP. For a 10 thousand yuan rise in GDP, population exposure to PM2.5 increases
by 1.05 person/km2 at the 80th percentile, and 1.88 person/km2 at the 95th percentile, respectively.

Keywords: spatial heterogeneity; population exposure; economic effects; quantitative analysis

1. Introduction

Fine particulate matter (PM2.5) has become the primary pollutant of air pollution in China [1].
Evidence has shown that long-term exposure to PM2.5, even at concentrations common to US urban
areas, leads to increased risk of mortality [2,3] and cardiovascular disease [4,5]. In addition, PM2.5 also
impacts atmospheric visibility [6] and regional climate [7]. So, public opinion has been paying more
and more attention to PM2.5 pollution. As a result, many researches were performed to analyze the
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characteristics, sources, and chemical compositions of PM2.5 based on site monitoring. For example,
many mega-cities and heavily polluted regions (e.g., Beijing [8–10], Shanghai [11], Nanjing [12])
and urban agglomerations (e.g., the Jing-Jin-Ji region [13,14], Yangtze River delta [15], Pearl River
delta [16], and Chang-Zhu-Tan region [17]) in China have been investigated. Other studies explored
the spatiotemporal characteristics of PM2.5 in the whole of China based on remote sensing data [18,19],
indicating that the spatial distribution of annual mean PM2.5 concentration coincides with China’s
three gradient terrains. Besides, there are several studies based on specific surveys [20,21], a spatially
aggregated level on specific regions [22,23]. Lin et al. [24] studied the spatiotemporal variation
of PM2.5 and its relationship with geographic and socioeconomic factors in China based on PM2.5

concentration dataset released by the Center for International Earth Science Information Network
(CIESIN)/Columbia University [25]. The results showed that high PM2.5 concentrations are mostly
found in regions with high populations and rapid urban expansion in China for years of 2001–2010 [24].

Population exposure is often used to quantify the adverse health impacts of regional environment
pollution. The variations of population exposure to PM2.5 across mega-cities [26], typical urban
agglomerations [27], and mainland China [28] have been analyzed with gridded satellite retrievals or
interpolated PM2.5 data. Shen and Yao [27] compared the correlation coefficient between population
exposure to PM2.5 on the grid-level and the city-level, indicating the existence of the spatial
heterogeneity of the relationship. So, the spatial scale seems to be a fundamental factor which
cannot be ignored in creating and analyzing the relationship between environmental exposure and
socio-economic factors [29].

The geographically weighted regression (GWR) model is commonly used to detect the spatial
relationships between environmental and socioeconomic factors (or other ones) [24,30]. The GWR
model is developed to explore the spatial heterogeneity, producing a set of local estimates of the
parameters which demonstrate the spatial inhomogeneity of the relationship. This method cannot give
the quantitative assessment of the relationship, although it can determine whether the relationship is
positive or negative.

The objective of this study is to determine the appropriate spatial scale for analysis and then to
conduct quantitative evaluation of the connection between population exposure to PM2.5 pollution
and socio-economic factors. Three kinds of gridded data with 1 km spatial resolution were used, which
are annual average PM2.5 concentration, population, and Gross Domestic Product (GDP) in mainland
China for 2014. Three different methods were implemented for analysis, which are spatial correlation
analysis, cumulative percent distribution, and quantile regression. The above approach is more likely
to deeply understand the quantitative impact of socio-economic factors on population exposure to
PM2.5. It is hoped that these analyses can provide a meaningful reference for decision making in the
process of urbanization.

The remainder of this paper is organized as follows: a brief description of the data sources and
methodologies is given in Section 2. Then in Section 3.1 the spatial distributions of population exposure
and economic effects on PM2.5 over mainland China in 2014 are demonstrated. Section 3.2 discusses
the spatial correlation between population exposure to socio-economic factors, and the optimal spatial
scale and a further quantitative assessment is given in Section 3.3. Finally, the conclusions are drawn
in Section 4.

2. Data and Methods

2.1. Datasets

The China National Environmental Monitoring Center (CNEMC) has been providing hourly
PM2.5 observations in China since 1 January 2013 [31]. The systematic air quality monitoring
network was composed of approximately 1497 monitoring sites by the end of 2014 [27]. In this
study, the annual mean PM2.5 concentration was calculated at each site by averaging the hourly
observations from 1 January to 31 December in 2014 (with the absence rate less than 1%). Furthermore,
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a co-krigin method was introduced to estimate grid-level PM2.5 concentration (1 × 1 km) based on site
observations and digital elevation model (DEM) data. The gridded DEM data with a spatial resolution
of approximately 90 m was extracted from the Shuttle Radar Topography Mission (SRTM) digital
elevation product released by the National Aeronautics and Space Administration (NASA). Figure 1
shows the spatial distribution of annual PM2.5 concentration in 2014. It can be seen that mid-eastern
China suffers more serious PM2.5 pollution than other areas (over 90 µg/m3), especially in the southern
area of Hebei province, and this pattern has persisted for several years [18].
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Figure 1. The spatial distribution of PM2.5 (suspended particles with aerodynamic diameter less that
2.5 µm) concentration in China in 2014.

Gridded population and GDP data were provided by the National Earth System Science Data
Sharing Infrastructure. They were transformed from census data with a spatial resolution of 1 km,
considering the relationship among demographical, GDP, and land use types, and were adjusted
with nighttime lights data derived from National Oceanic and Atmospheric Administration NOAA’s
National Center for Environmental Information (NCEI) [24]. It can be seen from Figure 2 that the
population distribution in mainland China in 2014 was divided into two parts by the “Heihe-Tengchong
Line” (also known internationally as the Hu line), which is a geo-demographic demarcation line
proposed by Hu [32]. Most of the Chinese people live in the eastern region marked by this line.
Figure 3 shows the GDP distribution in mainland China in 2014. Each provincial capital contributed
much more GDP than other cities in all provinces.

In this study, population data were applied to calculate the population exposure of PM2.5, while
GDP data were used to characterize the economic development level of China. Because of the lack of
population and GDP data from Hongkong, Macau, and Taiwai, the following analyses were carried
out only in mainland China. Then, the population exposure and its relationship with socio-economic
factors were analyzed at three spatial scales, which were grid level, county level, and city level.
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2.2. Population Exposure Calculation

Population exposure (PE) is often used as an indicator of exposure assessment. If there is no
population, there is no exposure [33]. In this paper, the population exposure to PM2.5 was illustrated at
three different spatial scales, which were grid-level, county-level, and city-level. Grid-level population
exposure to PM2.5 can be calculated as,

PEi = PiCi (1)

where i stands for each grid cell; PEi represents the population exposure at gird i; Pi is the population
density; and Ci is the PM2.5 concentration.

County-level and city-level population exposure to PM2.5 are calculated with the zonal statistics
method based on grid-level PE. These statistics were performed using the software environment
ArcGIS and the Zonal Toolset (version 10.2; http://resources.arcgis.com/en/help/main/10.2/).

2.3. Spatial Correlation Analysis

On the basis of grid-level PM2.5 concentration and socio-economic data, the band collection
statistics method was introduced to acquire the general correlation between PM2.5 concentration and
socio-economic factors. The relationships can be depicted with a correlation matrix, which is a measure
of dependency between the factors.

First, the covariance between bands i and j can be determined by the following formula,

Covij =
∑N

k=1(Zik − µi)
(

Zjk − µj

)
N − 1

(2)

where Covij represents covariance between bands i and j; Z is the value of a given grid cell; i, j are
bands of a stack (e.g., GDP and PE); µ stands for the mean value of a band; N is the number of grid
cells; k denotes a particular grid cell.

Then, the equation to calculate the correlation is as follows,

Corrij =
Covij√

Vari
√

Varj
(3)

where Covij represents covariance between bands i and j;
√

Vari and
√

Varj are standard deviations of
the given bands. The calculated correlation ranges from −1 to +1, indicating whether the correlation is
positive or negative. The magnitudes of the covariance matrix are dependent on units, while the ones
of the correlation matrix are not.

2.4. Quantile Regression Method

In this research, the quantile regression method was applied to the further analysis of economic
effects on PM2.5. Unlike ordinary linear regression, quantile regression essentially transforms a
conditional distribution function into a conditional quantile function of the response variable by
slicing it into segments [34], and is not based on parametric assumptions regarding specificities of
the underlying data distributions. In ordinary linear regression, the conditional mean of a response
random variable Y is modelled as linearly related to a random variable X, which is,

E[Y|X] = βX + γ = f((β,γ))(X) (4)

where β denotes the slope and γ is the intercept. They are estimated by minimizing the sum of the
squared residuals for a realization (x, y) of (X, Y).

(β, γ) = argmin
(

β′, γ′
)
∑

i
(yi − f(β′ ,γ′)(xi))

2 (5)

http://resources.arcgis.com/en/help/main/10.2/
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In the case of quantile regression, E[Y|X] is instead by a quantile of the response variable
Y conditional on X, Qτ [Y|X]. For each quantile τ ∈ [0, 1], the linear quantile regression can be
described as,

Qτ [Y|X] = f((βτ ,γτ))(X) (6)

for a (x, y) the slope βτ and intercept γτ are obtained by minimizing the sum of the asymmetrically
weighted absolute residuals,

(βτ , γτ) = argmin
(

βτ
′, γτ

′)∑
i

ρτ

(
yi − f(βτ

′ ,γτ
′)(xi)

)
(7)

with ρτ denoting the tilted absolute value function, which gives differing weights to residuals ri
depending on the quantile under consideration [35], that is,

ρτ(ri) =

{
τri ri ≥ 0
(τ − 1)ri ri < 0

(8)

3. Results and Discussion

3.1. Population Exposure and Economic Effects on PM2.5

The annual average concentrations of PM2.5 was 49.6 µg/m3 over mainland China, which is
approximately 5 times the air quality guidelines (AQG) set by The World Health Organization (WHO)
of 10 µg/m3. The total population of mainland China in 2014 was about 1.368 billion. Figure 4 showed
the spatial distribution of population exposure to PM2.5 in mainland China for 2014. It can be obviously
seen that mega-cities often suffered higher population exposure, and the two mega-cities of Pearl
River Delta (Guangzhou and Shenzhen) enjoyed much lower population exposure to PM2.5 than other
provincial capitals.
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However, it is found that the highest population exposure to PM2.5 appeared in a lesser-known
city, Dazhou city, located in Sichuan province, rather than any other mega-cities or second-tier cities.
This phenomenon was imputed to two factors. One reason was that industry pollution (e.g., steel,
mining, fossil-fuel power, cement) was really heavy here in 2014, the other reason was the unfavorable
topographic factor in this region. As a highly built-up and densely populated city surrounded by
mountains on three sides, Dazhou city depends on strong winds to disperse air pollution. In recent
years, as a result of drastic measures of environmental protection taken by the local government,
the percentage of days with air quality indexes (AQIs) reaching defined standards in Dazhou city
achieved 83.6% in 2017.

The cumulative percentage of the population and GDP (0–100%) in mainland China was calculated
based on the grid-level data to express the frequency distribution of annual mean PM2.5 concentration
(Figure 5). The results demonstrated that the WHO AQG (10 µg/m3) for PM2.5 was exceeded for
100% of the population in mainland China. An existing research indicated that there were about 70%
population of East Asia living above the WHO Interim Target-1 of 35 µg/m3 [36]. It should be noted
that the proportion of the population of mainland China living above this level was exceeded by
97%. There were even 58% of the population of mainland China living in a PM2.5 concentration of
60 µg/m3, while all populations in the three major urban agglomerations (Jing-Jin-Ji, the Yangtze River
delta, and Sichuan-Chongqing region) lived under the WHO Interim Target-1 (35 µg/m3). Figure 5
also showed that only 2% of the GDP was produced in mainland China with annual mean PM2.5

concentration under the WHO Interim Target-1, while all GDP exceeded the WHO AQG of 10 µg/m3.
There were more than half of the total GDP of mainland China generating within a PM2.5 concentration
of 60 µg/m3, and 14% of the GDP producing above 80 µg/m3.
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3.2. Spatial Correlation between PM2.5 and Socio-Economic Factors

In this section, the correlation between PM2.5 and socio-economic factors was examined with the
band collection statistics method based on grid-level data. Table 1 showed the statistical results. All of
the associations among the involved variables present a positive relation. The formula of population
exposure can explicitly explain the weak relation with PM2.5 and the strong relation with population,
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considering the different orders of magnitude between PM2.5 concentration and population. The
correlation coefficient between GDP and population (R = 0.74) indicates that people gather in the areas
with high GDP in mainland China.

Table 1. The correlation matrix of the band collection statistics.

Variable PM2.5 Population GDP Population Exposure

PM2.5 - 0.07 * 0.18 * 0.3 *
Population 0.07 * - 0.73 * 0.66 *

GDP 0.19 * 0.74 * - 0.88 *
Population
Exposure 0.3 * 0.66 * 0.88 * -

Notes: * p < 0.05. All results have statistical significance.

A previous study hypothesized that higher populations and GDP may cause higher PM2.5

concentrations [20]. However, as can be seen from Table 1, the correlation coefficients for population,
GDP, and population exposure to PM2.5 are 0.07, 0.19, and 0.3, respectively, which indicates that they
have a weak correlation with PM2.5 in mainland China for 2014. In contrast, an obviously positive
correlation between GDP and population exposure to PM2.5 with a correlation coefficient of 0.88 is
observed, which is statistically significant. Another study revealed the similar results in the four
typical urban agglomerations of China [22]. However, the magnitude of correlation coefficients cannot
quantify the influence among variables directly [14], but just provides a valuable hint for the following
quantile regression analysis between GDP and population exposure to PM2.5.

3.3. Quantile Regression Analysis of Economic Effects on PM2.5 Exposure

To quantify how population exposure to PM2.5 is affected by GDP, Figure 6 showed the respective
quantile regression slopes. A quantile is a point taken from the inverse cumulative distribution function
of the set of GDP so that, for example, the 0.8 quantile is the value such that 80% of the GDP samples
are below this value (80th percentile). The value of GDP over the entire dataset corresponding to the
selected quantiles are also displayed in Figure 6. For the observations, the 95% confidence intervals of
the estimated slopes are also shown as shading, under the assumption that the errors are independent
and identically distributed. Significant slopes (5% significance level, two-tailed test) are highlighted
with bold dots. For comparison, the solid red lines are from a least-squares regression of GDP as a
function of population exposure and the dashed red lines delineate the 95% point-wise confidence
band about this trend. These analyses are shown at three spatial scales (based on the gridded data,
county-level, and city-level data).

As in Figure 6a,b, trends significantly above zero are seen for all quantiles. Gradually increasing
positive slopes for increasing GDP and population exposure to PM2.5 quantiles are identified from the
datasets. The strong relation of upper quantiles of GDP with population exposure to PM2.5 is found
to be a robust feature on both grid-level (Figure 6a) and county-level (Figure 6b) spatial scales. The
upward trends are similar for the grid-level and county-level, the trend raised from 0.13 to 2.15 on
the county-level, while the trend rose from 0.07 to 1.88 on the grid-level. However, the confidence
intervals showed that the inferred slopes were slightly more pronounced and significant for the
grid-level. The best estimates on both the grid-level and the county-level indicated that the highest
population exposure to PM2.5 were getting higher with increasing GDP, but the ranges of uncertainty
were relatively large on the county-level.
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Figure 6. (a) Quantile regression slopes of the 0.1–0.95 quantiles of GDP in relation to population
exposure to PM2.5 on the grid-level spatial scale. (b) Quantile regression slopes of the 0.1–0.95 quantiles
of GDP in relation to population exposure to PM2.5 on the county-level spatial scales. (c) Quantile
regression slopes of the 0.1–0.95 quantiles of GDP in relation to population exposure to PM2.5 on the
city-level spatial scale. Upper quantiles are displayed with smaller step length (such as 0.85, 0.9, 0.95).

In contrast, a weak relationship between GDP and population exposure to PM2.5 quantiles is
identified, which is generally insignificant at the city-level spatial scale (Figure 6c). At this scale,
the relations of the quantiles of GDP with population exposure to PM2.5 do not exhibit a clear tendency
with increasing quantiles (p > 0.1 for almost all quantiles). It illustrated that the spatial variation of
population exposure and GDP was ignored to some extent at the larger scale, and the width of the
confidence intervals provided an evidence that analysis on the grid-level seemed to be the optimal
spatial scale while investigating the economic effects. Thus, the spatial scale effect indeed seems critical
for explaining the identified relationship between GDP and population exposure to PM2.5 in mainland
China. Moreover, the results indicated that the quality of the gridded population and GDP data used in
this research, which were adjusted with the nighttime lights data, can meet the precision requirements
for data analysis.

For further analysis, trends, associated standard errors and p values for upper-quantile
(≥85th-percentile) GDP as a function of population exposure to PM2.5 are displayed in Table 2. Sample
size (number of samples) is given in parentheses next to the spatial scale level. Values are shown for
selected upper quantiles (0.80, 0.85, 0.90, and 0.95). For each quantile, Trend denotes the inferred slopes
at all spatial scales in the analysis. We noted significant (p < 0.01) trend increases for all quantile levels,
and upward trends at all spatial scales for the highest quantile considered (95th percentile), although
not all trends at this extreme quantile are statistically significant (insignificant on the city-level). For a
10 thousand yuan rise in GDP, the results showed an increase of 1.05, 1.33 person/km2 in the value of
the 80th percentile and 1.88, 2.15 person/km2 in the value of the 95th percentile, respectively, on the
grid-level and the county-level. This means that the economic growth in areas with high GDP in China
is at the cost of the heavier population exposure, which is typical of the extensive economic growth.
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Table 2. Summary statistics results of upper-quantile (≥80th-percentile) GDP (including trends,
standard errors, and p values) as a function of population exposure to PM2.5.

Statistic
Quantile

80% 85% 90% 95%

Grid (2,759,981 samples)

GDP (10 thousand yuan) 585.89 906.79 1678.91 5246.21
Trend (person km−2 10 thousand yuan−1) 0.87 * 1.05 * 1.31 * 1.88 *

Std. Error 0.005 0.0076 0.009 0.018
p <0.001 <0.001 <0.001 <0.001

County (2375 samples)

GDP (10 thousand yuan) 3,356,513.64 4,397,744.36 6,241,262.98 9,844,463.44
Trend (person km−2 10 thousand yuan−1) 1.16 * 1.33 * 1.47 * 2.15 *

Std. Error 0.125 0.173 0.22 0.71
p <0.001 <0.001 <0.001 0.003

City (349 samples)

GDP (10 thousand yuan) 26,716,747.01 32,623,702.94 46,608,724.75 69,396,042.94
Trend (person km−2 10 thousand yuan−1) 0.022 0.012 0.001 0.124

Std. Error 0.018 0.017 0.12 0.275
p 0.225 0.48 0.99 0.65

Notes: * p < 0.05. Trend without * is not significant.

4. Conclusions

In this study, spatial characteristics in mainland China for 2014 were evaluated based on the
gridded PM2.5 concentration, population, and GDP data with 1 km spatial resolution. The economic
effects on PM2.5 were investigated by cumulative percent distribution, as well as spatial correlation
coefficients, and economic effects on population exposure to PM2.5 were estimated with the quantile
regression method at three spatial scales. The main findings were as follows:

(1) Quantile regression demonstrated that the highest population exposure to PM2.5 was rising
with increasing GDP in mainland China for 2014. The tiny uncertainty on the grid-level suggested the
optimal spatial scale for socio-economic effects analysis.

(2) A violent upward trend of population exposure to PM2.5 appeared at the 80th percentile GDP.
For a 10 thousand yuan rise in GDP, an increase in population exposure to PM2.5 of 1.05 person/km2,
1.88 person/km2 in the value of the 80th percentile and the extreme value (95th percentile) GDP,
respectively, on the grid-level spatial scale.

(3) Population exposure to PM2.5 was commonly higher in mega-cities in mainland China.
However, a lesser known city named Dazhou suffered the highest population exposure to PM2.5

for 2014, as a result of its pollution from industry and unfavorable terrain.
This study presents the quantitative assessment of the relationship between GDP and population

exposure to PM2.5 from a new perspective. In future research, a time series analysis will be performed
to acquire a deeper understanding of the complex effects between air quality, socio-economic effects,
and public health.
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