Concentration of Selected Elements in the Infrapatellar Fat Pad of Patients with a History of Total Knee Arthroplasty
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characteristics of the Entire Cohort
3.2. Concentrations of Ca, Mg, F-, and Pb in the Infrapatellar Fat Pad in Relation to Selected Biological and Environmental Factors
3.3. Analysis of the Relationship between the Concentration Levels of Selected Elements in the Infrapatellar Fat Pad and Selected Biological and Environmental Factors
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Conflicts of Interest
References
- Dragoo, J.L.; Johnson, C.; McConnell, J. Evaluation and treatment of disorders of the infrapatellar fat pad. Sports Med. 2012, 42, 51–67. [Google Scholar] [CrossRef]
- Kontny, E.; Plebanczyk, M.; Lisowska, B.; Olszewska, M.; Maldyk, P.; Maslinski, W. Comparison of rheumatoid articular adipose and synovial tissue reactivity to proinflammatory stimuli: Contribution to adipocytokine network. Ann. Rheum. Dis. 2012, 71, 262–267. [Google Scholar] [CrossRef]
- Sudoł-Szopińska, I.; Kontny, E.; Zaniewicz-Kaniewska, E.; Prohorec-Sobieszek, M.; Saied, F.; Maśliń, W. Rola czynników zapalnych i tkanki tłuszczowej w patogenezie reumatoidalnego zapalenia stawów i choroby zwyrodnieniowej stawów. Część I: Reumatoidalna tkanka tłuszczowa. J. Ultrason. 2013, 13, 192–201. [Google Scholar]
- Belluzzi, E.; Stocco, E.; Pozzuoli, A.; Granzotto, M.; Porzionato, A.; Vettor, R.; De Caro, R.; Rugierri, P.; Ramonda, R.; Rossato, M.; et al. Contribution of Infrapatellar Fat Pad and Synovial Membrane to Knee Osteoarthritis Pain. Biomed. Res. Int. 2019, 2019. [Google Scholar] [CrossRef]
- Eymard, F.; Chevalier, X. Inflammation of the infrapatellar fat pad. Jt. Bone Spine 2016, 83, 389–393. [Google Scholar] [CrossRef]
- Leidi, M.; Dellera, F.; Mariotti, M.; Maier, J.A. High magnesium inhibits humanosteoblast differentiation in vitro. Magnes. Res. 2011, 24, 1–6. [Google Scholar]
- Bancerz, B.; Duś-Żuchowska, M.; Cichy, W.; Matusiewicz, H. Wpływ magnezu na zdrowie człowieka. Prz. Gastroenterol. 2012, 7, 359–366. [Google Scholar]
- Saris, N.E.; Mervaala, E.; Karppanen, H.; Khawaja, J.A.; Lewenstam, A. Magnesium: An update on physiological, clinical and analytical aspects. Clin. Chim. Acta 2000, 294, 1–26. [Google Scholar] [CrossRef]
- Inkielewicz, I.; Czarnowski, W.; Krechnia, J. Determination of fluoride in soft tissues. Fluoride 2003, 36, 16–20. [Google Scholar]
- Bijelic, R.; Milicevic, S.; Balaban, J. Risk factors for osteoporosis in postmenopausal women. Med. Arch. 2017, 71, 25–28. [Google Scholar] [CrossRef]
- Vahter, M.; Berglund, M.; Akesson, A.; Lidén, C. Metals and women’s health. Environ. Res. 2002, 88, 145–155. [Google Scholar] [CrossRef]
- Seńczuk, W. Toksykologia; Wydawnictwo Lekarskie PZWL: Warszawa, Poland, 2012. [Google Scholar]
- Krachler, M.; Domej, W.; Irgolic, K.J. Concentrations of trace elements in osteoarthritic knee-joint effusions. Biol. Trace Elem. Res. 2000, 75, 253–263. [Google Scholar] [CrossRef]
- Kot, K.; Ciosek, Ż.; Łanocha-Arendarczyk, N.; Kosik-Bogacka, D.; Ziętek, P.; Karaczun, M.; Baranowska-Bosiacka, I.; Gutowska, I.; Kalisińska, E.; Chlubek, D. Fluoride ion concentrations in cartilage, spongy bone, anterior cruciate ligament, meniscus, and infrapatellar fat pad of patients undergoing primary knee joint arthroplasty. Fluoride 2017, 50, 175–181. [Google Scholar]
- Kumai, T.; Hamada, G.; Takakura, Y.; Tohno, Y.; Benjamin, M. Trace elements in human tendons and ligaments. Biol. Trace Elem. Res. 2006, 114, 151–161. [Google Scholar] [CrossRef]
- Roczniak, W.; Brodziak-Dopierała, B.; Cipora, E.; Mitko, K.; Jakóbik-Kolon, A.; Konieczny, M.; Babuśka-Roczniak, M. The Content of Structural and Trace Elements in the Knee Joint Tissues. Int. J. Environ. Res. Public Health 2017, 14, 1441. [Google Scholar] [CrossRef] [PubMed]
- Łanocha-Arendarczyk, N.; Kosik-Bogacka, D.I.; Kalisinska, E.; Sokolowski, S.; Lebiotkowski, M.; Baranowska-Bosiacka, I.; Gutowska, I.; Chlubek, D. Bone fluoride content in patient after hip and knee joint surgery. Fluoride 2015, 48, 223–233. [Google Scholar]
- Gilbert, M.E.; Lasley, S.M. Developmental lead (Pb) exposure reduces the ability of the NMDA antagonist MK801 to suppress long-term potentiation (LTP) in the rat dentate gyrus, in vivo. Neurotoxicol. Teratol. 2007, 29, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Zaichick, S.; Zaichick, V. The effect of age and gender on 38 chemical element contents in human femoral neck investigated by instrumental neutron activation analysis. Biol. Trace Elem. Res. 2010, 137, 1–12. [Google Scholar] [CrossRef]
- Brodziak-Dopierała, B.; Kwapuliński, J.; Sonczyk, K.; Wiechuta, D. Disribution of magensium, calcium, sodium and potassium in tissues of the hip joint. Magnes. Res. 2013, 26, 125–131. [Google Scholar]
- Brodziak-Dopierała, B.; Kowol, J.; Kwapuliński, J.; Kusz, D.; Cieliński, Ł. Lead and Calcium Content in the Human Hip Joint. Biol. Trace Elem. Res. 2011, 144, 6–16. [Google Scholar] [CrossRef]
- Barbagallo, M.; Belvedere, M.; Dominguez, L. Magnesium homeostasis and aging. Magnes. Res. 2009, 22, 235–246. [Google Scholar] [PubMed]
- Barbagallo, M.; Gupta, R.K.; Dominguez, L.J.; Resnick, L.M. Cellular ionic alterations with age: Relation to hypertension and diabetes. J. Am. Geriatr. Soc. 2000, 48, 1111–1116. [Google Scholar] [CrossRef]
- Palczewska-Komsa, M.; Kalisińska, E.; Stogiera, A.; Szmidt, M. Fluorki w kościach człowieka—Wybrane zagadnienia. Pomeranian J. Life Sci. 2016, 62, 53–59. [Google Scholar] [CrossRef]
- Kuo, H.W.; Kuo, S.M.; Chou, C.H.; Lee, T.C. Determination of 14 elements in Taiwanese bones. Sci. Total Environ. 2000, 22, 45–54. [Google Scholar] [CrossRef]
- Jarosz, M.; Respondek, W. Rola Żywienia i Aktywności Fizycznej w Profilaktyce Otyłości i Przewlekłych Chorob Niezakaźnych; Gawęcki, J., Roszkowski, W., Eds.; Żywienie Człowieka a Zdrowie Publiczne: Warszawa, Poland, 2009; pp. 90–102. [Google Scholar]
- Brodziak-Dopierała, B.; Kwapuliński, J.; Kusz, D.; Gajda, Z.; Sobczyk, K. Interactions between concentrations of chemical elements in human femoral heads. Arch. Environ. Contam. Toxicol. 2009, 57, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Tohno, Y.; Moriwake, Y.; Takano, Y.; Minami, T.; Tohno, S.; Utsumi, M.; Yamada, M.-O.; Yamamoto, K.; Okazaki, Y.; Takakura, Y. Age-related changes of elements in human anterior crucial ligaments and ligamenta capitum femorum. Biol. Trace Elem. Res. 1999, 68, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Zioła-Frankowska, A.; Kubaszewski, Ł.; Dąbrowski, M.; Kowalski, A.; Rogala, P.; Strzyzewski, W.; Łabędź, W.; Uklejewski, R.; Novotny, K.; Kanicky, V.; et al. The content of the 14 metals in cancellous and cortical bone of the hip joint affected by osteoarth. BioMed Res. Int. 2015, 815648, 1–23. [Google Scholar] [CrossRef]
- Palczewska-Komsa, M.; Kalisińska, E.; Kosik-Bogacka, D.; Łanocha-Arendarczyk, N.; Budis, H.; Sokołowski, S.; Baranowska-Bosiacka, I.; Gutowska, I.; Chlubek, D. Fluoride in the compact bone after femoral head arthroplasty in patients from north-western Poland. Fluoride 2015, 48, 93–104. [Google Scholar]
- Brodziak-Dopierała, B.; Kosterska, E.; Kwapuliński, J. Metal content in horizontally and vertically cut profiles of femur heads of women and men. Ann. Acad. Med. Siles. 2006, 60, 511–515. [Google Scholar]
- Yoshinaga, J.; Suzuki, T.; Morita, M.; Hayakawa, M. Trace elements in ribs of elderly people and elemental variation in the presence of chronic diseases. Sci. Total Environ. 1995, 162, 239–252. [Google Scholar] [CrossRef]
- García, F.; Ortega, A.; Domingo, J.L.; Corbella, J. Accumulation of metals in autopsy tissues of subjects living in Tarragona County, Spain. J. Environ. Sci. Health 2001, 36, 1767–1786. [Google Scholar] [CrossRef]
- Loos, R.J.; Rankinen, T.; Leon, A.S.; Skinner, J.S.; Wilmore, J.H.; Rao, D.C.; Bouchard, C. Calcium intake is associated with adiposity in black and white men and white women of the HERITAGE Family Study. J. Nutr. 2004, 134, 1772–1778. [Google Scholar] [CrossRef] [PubMed]
- Kamyecheva, E.; Joakimsen, R.M.; Jorde, R. Intakes of Calcium and Vitamin D Predict Body Mass Index in the Population of Northen Norway. J. Nutr. 2003, 133, 103–106. [Google Scholar]
- Jose, B.; Jain, V.; Vikram, N.K.; Agarwala, A.; Saini, S. Serum magnesium in overweight children. Indian Pediatr. 2012, 49, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Lecube, A.; Baena-Fustegueras, J.Á.; Fort, J.M.; Pelegrí, D.; Hernández, C.; Simó, R. Diabetes is the main factor accounting for hypomagnesemia in obese subjects. PLoS ONE 2012, 7, e30599. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Li, T.Y.; van Dam, R.M.; Manson, J.E.; Hu, F.B. Magnesium intake and plasma concentrations of markers of systemic inflammation and endothelial dysfunction in women. Am. J. Clin. Nutr. 2007, 85, 1068–1074. [Google Scholar] [CrossRef]
- Guerrero-Romero, F.; Flores-García, A.; Saldaña-Guerrero, S.; Simental-Mendía, L.E.; Rodríguez-Morán, M. Obesity and hypomagnesemia. Eur. J. Intern. Med. 2016, 34, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Skalnaya, M.G.; Tinkov, A.A.; Demidov, V.A.; Serebryansky, E.P.; Nikonorov, A.A.; Skalny, A.V. Hair toxic element content in adult men and women in relation to body mass index. Biol. Trace Elem. Res. 2014, 161, 13–19. [Google Scholar] [CrossRef]
- World Health Organization (WHO). WHO Report on the Global Tobacco Epidemic, Monitoring Tobacco Use and Prevention Policies; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Bogunia, M.; Brodziak-Dopierała, B.; Kwapuliński, J.; Ahnert, B.; Kowol, J.; Nogaj, E. Występowanie ołowiu i kadmu w stawie biodrowym w aspekcie narażenia na dym tytoniowy. Prz. Lek. 2008, 65, 529–532. [Google Scholar]
- Szulc, P.; Garnero, P.; Claustrat, B.; Marchand, F.; Duboeuf, F.; Delmas, P.D. Increased bone resorption in moderate smokers with low body weight: The Minos study. J. Clin. Endocrinol. Metab. 2002, 87, 666–674. [Google Scholar] [CrossRef]
- Olofsson, H.; Byberg, L.; Mohsen, R.; Melhus, H.; Lithell, H.; Michaëlsson, K. Smoking and the risk of fracture in older men. J. Bone Min. Res. 2005, 20, 1208–2115. [Google Scholar] [CrossRef]
- Krall, E.A.; Dawson-Hughes, B. Smoking increases bone loss and decreases intestinal calcium absorption. J. Bone Min. Res. 1999, 14, 215–220. [Google Scholar] [CrossRef]
- Rapuri, P.B.; Gallagher, J.C.; Balhorn, K.E.; Ryschon, K.L. Smoking and bone metabolism in elderly women. Bone 2000, 27, 429–436. [Google Scholar] [CrossRef]
- Galażyn-Sidorczuk, M.; Brzózka, M.M.; Moniuszko-Jakoniuk, J. Estimation of Polish cigarettes contamination with cadmium and lead, and exposure to these metals via smoking. Environ. Monit. Assess. 2008, 137, 481–493. [Google Scholar] [CrossRef] [PubMed]
- Kuźmicka, P.; Karakiewicz, B.; Rotter, I. Wpływ palenia tytoniu na wybrane składniki mineralne: Wapń, magnez, żelazo, cynk i selen—Przegląd badań. Med. Og. Nauk. Zdr. 2012, 18, 409–415. [Google Scholar]
- Nechifor, M.; Chelarescu, D.; Mândreci, I.; Cartas, N. Magnesium influence on nicotine pharmacodependence and smoking. Magnes. Res. 2004, 17, 176–181. [Google Scholar] [PubMed]
- Niemela, J.E.; Cecco, S.A.; Rehak, N.N.; Elin, R.J. The effect of smoking on the serum ionized magnesium concentration is method-dependent. Arch. Pathol. Lab. Med. 1997, 121, 1087–1092. [Google Scholar] [PubMed]
Elements | AM | SD | Min | Max | Me |
---|---|---|---|---|---|
Ca | 1290.38 | 1720.01 | 129.90 | 8297.79 | 565.05 |
Mg | 46.57 | 35.69 | 12.81 | 188.43 | 33.25 |
F- | 89.17 | 49.28 | 20.49 | 186.95 | 83.34 |
Pb | 0.51 | 0.23 | 0.00 | 0.84 | 0.54 |
Gender | |||||||
M (n = 12) | F (n = 34) | p | |||||
AM ± SD | Me | Min–Max | AM ± SD | Me | Min–Max | ||
Ca | 1329.90 ± 2271.86 | 509.73 | 180.25–8297.79 | 1276.43 ± 1520.86 | 613.05 | 129.90–6705.32 | 0.851 |
Mg | 60.0 ± 55.83 | 34.7 | 12.81–188.43 | 41.83 ± 24.67 | 33.25 | 16.89–112.79 | 0.755 |
Pb | 0.46 ± 0.27 | 0.47 | 0.001–0.828 | 0.54 ± 0.21 | 0.61 | 0.09–0.84 | 0.402 |
F- | 104.54 ± 54.16 | 81.05 | 52.95–186.95 | 85.33 ± 48.45 | 83.34 | 20.49–182.35 | 0.337 |
Age | |||||||
HS1 (n = 26) | HS2 (n = 20) | p | |||||
AM ± SD | Me | Min–Max | AM ± SD | Me | Min–Max | ||
Ca | 1201.77 ± 1501.48 | 592.21 | 171–6705.32 | 1405.56 ± 2003.94 | 559.18 | 129.90–8297.79 | 0.991 |
Mg | 37.06 ± 27.69 | 28.52 | 12.81–136.69 | 58.94 ± 41.49 | 50.49 | 17.39–188.43 | 0.012 |
Pb | 0.54 ± 0,21 | 0.57 | 0.04–0.84 | 0.48 ± 0.25 | 0.51 | 0.001–0.83 | 0.445 |
F- | 100.27 ± 48.44 | 105.56 | 24.12–186.95 | 72.52 ± 47.66 | 60.3 | 20.49–182.35 | 0.112 |
Place of residence | |||||||
Under 100,000 (n = 11) | Over 100,000 (n = 35) | p | |||||
AM ± SD | Me | Min–Max | AM ± SD | Me | Min–Max | ||
Ca | 1523.87 ± 2339.66 | 736.15 | 186.75–8297.79 | 1216.99 ± 1510.76 | 544.21 | 129.90–6705.32 | 0.817 |
Mg | 70.61 ± 53.94 | 58.49 | 12.81–188.43 | 39.02 ± 24.17 | 30.39 | 16.89–112.79 | 0.047 |
Pb | 0.48 ± 0.28 | 0.61 | 0.001–0.83 | 0.52 ± 0.21 | 0.53 | 0.09–0.84 | 0.837 |
F- | 83.23 ± 48.12 | 68.01 | 37.64–175.81 | 91.33 ± 50.63 | 94.67 | 20.49–186.95 | 0.796 |
BMI | |||||||
<30 (n = 21) | ≥30 (n = 25) | p | |||||
AM ± SD | Me | Min-Max | AM ± SD | Me | Min–Max | ||
Ca | 934.63 ± 908.29 | 544.21 | 129.90–3755.05 | 1589.21 ± 2157.73 | 640.2 | 171.05–8297.79 | 0.708 |
Mg | 43.12 ± 29.76 | 32.19 | 12.81–136.69 | 49.47 ± 40.38 | 34.31 | 16.89–188.43 | 0.860 |
Pb | 0.51 ± 0.21 | 0.54 | 0.04–0.82 | 0.52 ± 0.24 | 0.53 | 0.001–0.84 | 0.724 |
F- | 68.23 ± 38.32 | 52.95 | 20.49–130.96 | 101.29 ± 51.71 | 98.24 | 24.12–186.95 | 0.121 |
Smoking | |||||||
NS (n = 39) | S (n = 7) | p | |||||
AM ± SD | Me | Min–Max | AM ± SD | Me | Min–Max | ||
Ca | 1392.69 ± 1835.57 | 585.89 | 129.90–8297.79 | 720.35 ± 634.14 | 326.94 | 171.05–1779.05 | 0.392 |
Mg | 50.39 ± 37.44 | 40.62 | 12.81–188.43 | 25.28 ± 7.20 | 23.38 | 17.63–37.98 | 0.038 |
Pb | 0.51 ± 0.24 | 0.54 | 0.001–0.84 | 0.52 ± 0.19 | 0.45 | 0.29–0.75 | 0.807 |
F- | 83.88 ± 49.54 | 69.81 | 20.49–186.95 | 123.52 ± 34.77 | 131.29 | 75.58–155.90 | 0.093 |
Ca | Mg | F | Pb | |||||
---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | |
Płeć | 0.030 | 0.844 | −0.048 | 0.749 | −0.183 | 0.333 | 0.127 | 0.401 |
Age | 0.065 | 0.668 | 0.378 | 0.010 | −0.342 | 0.065 | −0.154 | 0.306 |
Place of residence | −0.036 | 0.810 | −0.298 | 0.045 | 0.052 | 0.784 | 0.033 | 0.830 |
BMI | 0.006 | 0.969 | 0.010 | 0.946 | 0.218 | 0.247 | 0.056 | 0.711 |
Smoking | −0.130 | 0.389 | −0.312 | 0.035 | 0.317 | 0.088 | −0.039 | 0.798 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciosek, Ż.; Kosik-Bogacka, D.; Łanocha-Arendarczyk, N.; Kot, K.; Karaczun, M.; Ziętek, P.; Kupnicka, P.; Szylińska, A.; Rotter, I. Concentration of Selected Elements in the Infrapatellar Fat Pad of Patients with a History of Total Knee Arthroplasty. Int. J. Environ. Res. Public Health 2019, 16, 1734. https://doi.org/10.3390/ijerph16101734
Ciosek Ż, Kosik-Bogacka D, Łanocha-Arendarczyk N, Kot K, Karaczun M, Ziętek P, Kupnicka P, Szylińska A, Rotter I. Concentration of Selected Elements in the Infrapatellar Fat Pad of Patients with a History of Total Knee Arthroplasty. International Journal of Environmental Research and Public Health. 2019; 16(10):1734. https://doi.org/10.3390/ijerph16101734
Chicago/Turabian StyleCiosek, Żaneta, Danuta Kosik-Bogacka, Natalia Łanocha-Arendarczyk, Karolina Kot, Maciej Karaczun, Paweł Ziętek, Patrycja Kupnicka, Aleksandra Szylińska, and Iwona Rotter. 2019. "Concentration of Selected Elements in the Infrapatellar Fat Pad of Patients with a History of Total Knee Arthroplasty" International Journal of Environmental Research and Public Health 16, no. 10: 1734. https://doi.org/10.3390/ijerph16101734
APA StyleCiosek, Ż., Kosik-Bogacka, D., Łanocha-Arendarczyk, N., Kot, K., Karaczun, M., Ziętek, P., Kupnicka, P., Szylińska, A., & Rotter, I. (2019). Concentration of Selected Elements in the Infrapatellar Fat Pad of Patients with a History of Total Knee Arthroplasty. International Journal of Environmental Research and Public Health, 16(10), 1734. https://doi.org/10.3390/ijerph16101734