The Driving Forces of Carbon Dioxide Equivalent Emissions Have Spatial Spillover Effects in Inner Mongolia
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Method
2.2.1. Eco-Spatial Weighting Matrix
2.2.2. Types of Models
2.2.3. The Robustness Test
3. Results
3.1. The Spatiotemporal Distribution of County-Level CO2eq Emissions
3.2. The Spatial Econometrics of the Driving Forces of County-Level CO2eq Emissions
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Le Quéré, C.; Andrew, R.M.; Friedlingstein, P.; Sitch, S.; Hauck, J.; Pongratz, J.; Pickers, P.A.; Korsbakken, J.I.; Peters, G.P.; Canadell, J.G.; et al. Global Carbon Budget 2018. Earth Syst. Sci. Data 2018, 10, 2141–2194. [Google Scholar] [CrossRef]
- Li, M.; Mi, Z.; Coffman, D. Assessing the policy impacts on non-ferrous metals industry’s CO2 reduction: Evidence from China. J. Clean. Prod. 2018, 192, 252–261. [Google Scholar] [CrossRef]
- Zeng, S.; Nan, X.; Chen, J.; Liu, C. The response of the Beijing carbon emissions allowance price (BJC) to macroeconomic and energy price indices. Energy Policy 2017, 106, 111–121. [Google Scholar] [CrossRef]
- Zeng, S.; Jiang, C.; Ma, C.; Su, B. Investment efficiency of the new energy industry in China. Energy Econ. 2018, 70, 536–544. [Google Scholar] [CrossRef]
- Wang, S.; Fang, C.; Wang, Y.; Huang, Y.; Ma, H. Quantifying the relationship between urban development intensity and carbon dioxide emissions using a panel data analysis. Ecol. Indic. 2015, 49, 121–131. [Google Scholar] [CrossRef]
- Liu, Z.; Guan, D.; Crawford-Brown, D.; Zhang, Q.; He, K.; Liu, J. Energy policy: A low-carbon road map for China. Nature 2013, 500, 143–145. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y.; Wu, W. Assessing the impact of population, income and technology on energy consumption and industrial pollutant emissions in China. Appl. Energy 2015, 155, 904–917. [Google Scholar] [CrossRef] [Green Version]
- Geng, Y. Eco-indicators: Improve China’s sustainability targets. Nature 2011, 477, 162. [Google Scholar]
- Yang, Y.; Zhou, Y.; Poon, J.; He, Z. China’s carbon dioxide emission and driving factors: A spatial analysis. J. Clean. Prod. 2019, 211, 640–651. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, K.; Chevallier, J.; Wang, P.; Wei, Y.-M. Can China achieve its carbon intensity target by 2020 while sustaining economic growth? Ecol. Econ. 2015, 119, 209–216. [Google Scholar] [CrossRef]
- Guan, D.; Liu, Z.; Geng, Y.; Lindner, S.; Hubacek, K. The gigatonne gap in China’s carbon dioxide inventories. Nat. Clim. Chang. 2012, 2, 672–675. [Google Scholar] [CrossRef]
- Rodrigues, J.F.D.; Moran, D.; Wood, R.; Behrens, P. Uncertainty of Consumption-Based Carbon Accounts. Environ. Sci. Technol. 2018, 52, 7577–7586. [Google Scholar] [CrossRef]
- Shan, Y.; Guan, D.; Liu, J.; Mi, Z.; Liu, Z.; Liu, J.; Schroeder, H.; Cai, B.; Chen, Y.; Shao, S.; et al. Methodology and applications of city level CO 2 emission accounts in China. J. Clean. Prod. 2017, 161, 1215–1225. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Li, Y.; Cai, H.; Wang, B. Comparative analysis of regional carbon emissions accounting methods in China: Production-based versus consumption-based principles. J. Clean. Prod. 2018, 194, 12–22. [Google Scholar] [CrossRef]
- Al-Mulali, U.; Sab, C.N.; Fereidouni, H.G. Exploring the bi-directional long run relationship between urbanization, energy consumption, and carbon dioxide emission. Energy 2012, 46, 156–167. [Google Scholar] [CrossRef]
- Bano, S.; Zhao, Y.; Ahmad, A.; Wang, S.; Liu, Y. Identifying the impacts of human capital on carbon emissions in Pakistan. J. Clean. Prod. 2018, 183, 1082–1092. [Google Scholar] [CrossRef]
- Feng, K.; Davis, S.J.; Sun, L.; Hubacek, K. Drivers of the US CO2 emissions 1997–2013. Nat. Commun. 2015, 6, 7714. [Google Scholar] [CrossRef] [PubMed]
- Jorgenson, A.K.; Clark, B. Assessing the temporal stability of the population/environment relationship in comparative perspective: A cross-national panel study of carbon dioxide emissions, 1960–2005. J. Popul. Behav. Soc. Environ. Issues 2010, 32, 27–41. [Google Scholar] [CrossRef]
- Salahuddin, M.; Gow, J. Economic growth, energy consumption and CO2 emissions in Gulf Cooperation Council countries. Energy 2014, 73, 44–58. [Google Scholar] [CrossRef]
- Shuai, C.; Shen, L.; Jiao, L.; Wu, Y.; Tan, Y. Identifying key impact factors on carbon emission: Evidences from panel and time-series data of 125 countries from 1990 to 2011. Appl. Energy 2017, 187, 310–325. [Google Scholar] [CrossRef]
- Niu, S.; Liu, Y.; Ding, Y.; Qu, W. China׳s energy systems transformation and emissions peak. Renew. Sustain. Energy Rev. 2016, 58, 782–795. [Google Scholar] [CrossRef]
- Liu, D.; Xiao, B. Can China achieve its carbon emission peaking? A scenario analysis based on STIRPAT and system dynamics model. Ecol. Indic. 2018, 93, 647–657. [Google Scholar] [CrossRef]
- Liu, J.-P.; Zhang, X.-B.; Song, X.-H. Regional carbon emission evolution mechanism and its prediction approach driven by carbon trading—A case study of Beijing. J. Clean. Prod. 2018, 172, 2793–2810. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, H.; Xiao, Y.; Liu, Y.; Cao, Y.; Zhang, Z.; Wang, S.; Zhang, Y.; Ahmad, A. Scenario analysis of the carbon pricing policy in China’s power sector through 2050: Based on an improved CGE model. Ecol. Indic. 2018, 85, 352–366. [Google Scholar] [CrossRef]
- Zhou, N.; Fridley, D.; Khanna, N.Z.; Ke, J.; McNeil, M.; Levine, M. China’s energy and emissions outlook to 2050: Perspectives from bottom-up energy end-use model. Energy Policy 2013, 53, 51–62. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, T. Impacts of energy-related CO2 emissions: Evidence from under developed, developing and highly developed regions in China. Ecol. Indic. 2015, 50, 186–195. [Google Scholar] [CrossRef]
- Huang, J.; Liu, Q.; Cai, X.; Hao, Y.; Lei, H. The effect of technological factors on China’s carbon intensity: New evidence from a panel threshold model. Energy Policy 2018, 115, 32–42. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Da, Y.-B. The decomposition of energy-related carbon emission and its decoupling with economic growth in China. Renew. Sustain. Energy Rev. 2015, 41, 1255–1266. [Google Scholar] [CrossRef]
- De Freitas, L.C.; Kaneko, S. Decomposing the decoupling of CO2 emissions and economic growth in Brazil. Ecol. Econ. 2011, 70, 1459–1469. [Google Scholar] [CrossRef]
- Jung, S.; An, K.-J.; Dodbiba, G.; Fujita, T. Regional energy-related carbon emission characteristics and potential mitigation in eco-industrial parks in South Korea: Logarithmic mean Divisia index analysis based on the Kaya identity. Energy 2012, 46, 231–241. [Google Scholar] [CrossRef]
- Li, A.; Zhang, A.; Zhou, Y.; Yao, X. Decomposition analysis of factors affecting carbon dioxide emissions across provinces in China. J. Clean. Prod. 2017, 141, 1428–1444. [Google Scholar] [CrossRef]
- Le Quéré, C.; Korsbakken, J.I.; Wilson, C.; Tosun, J.; Andrew, R.; Andres, R.J.; Canadell, J.G.; Jordan, A.; Peters, G.P.; Van Vuuren, D.P. Drivers of declining CO2 emissions in 18 developed economies. Nat. Clim. Chang. 2019, 9, 213–217. [Google Scholar] [CrossRef]
- Al-Mulali, U.; Sab, C.N. The impact of energy consumption and CO2 emission on the economic growth and financial development in the Sub Saharan African countries. Energy 2012, 39, 180–186. [Google Scholar] [CrossRef]
- Saboori, B.; Sulaiman, J. CO2 emissions, energy consumption and economic growth in Association of Southeast Asian Nations (ASEAN) countries: A cointegration approach. Energy 2013, 55, 813–822. [Google Scholar] [CrossRef]
- Burnett, J.W.; Bergstrom, J.C.; Dorfman, J.H. A spatial panel data approach to estimating U.S. state-level energy emissions. Energy Econ. 2013, 40, 396–404. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, B.; Liu, T. Empirical analysis on the factors influencing national and regional carbon intensity in China. Renew. Sustain. Energy Rev. 2016, 55, 34–42. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, H. Effects of land urbanization and land finance on carbon emissions: A panel data analysis for Chinese provinces. Land Use Policy 2017, 63, 493–500. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y. Does population have a larger impact on carbon dioxide emissions than income? Evidence from a cross-regional panel analysis in China. Appl. Energy 2016, 180, 800–809. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Mu, H.; Zhang, M.; Li, N. Analysis on influence factors of China’s CO2 emissions based on Path–STIRPAT model. Energy Policy 2011, 39, 6906–6911. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, W. Panel estimation for income inequality and CO2 emissions: A regional analysis in China. Appl. Energy 2014, 136, 382–392. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Hao, J.-F.; Song, J. The CO2 emission efficiency, reduction potential and spatial clustering in China’s industry: Evidence from the regional level. Appl. Energy 2016, 174, 213–223. [Google Scholar] [CrossRef]
- Apergis, N.; Gupta, R.; Lau, C.K.M.; Mukherjee, Z.U.S. state-level carbon dioxide emissions: Does it affect health care expenditure? Renew. Sustain. Energy Rev. 2018, 91, 521–530. [Google Scholar] [CrossRef]
- Jorgenson, A.; Schor, J.; Huang, X. Income Inequality and Carbon Emissions in the United States: A State-level Analysis, 1997–2012. Ecol. Econ. 2017, 134, 40–48. [Google Scholar] [CrossRef]
- Shan, Y.; Guan, D.; Zheng, H.; Ou, J.; Li, Y.; Meng, J.; Mi, Z.; Liu, Z.; Zhang, Q. China CO2 emission accounts 1997–2015. Sci. Data 2018, 5, 170201. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Kang, L.; Shao, C.; Wang, P.; Ju, M. Measuring county-level heterogeneity of CO 2 emissions attributed to energy consumption: A case study in Ningxia Hui Autonomous Region, China. J. Clean. Prod. 2017, 142, 3471–3481. [Google Scholar] [CrossRef]
- Hu, Q.; Pan, F.; Pan, X.; Zhang, D.; Li, Q.; Pan, Z.; Wei, Y. Spatial analysis of climate change in Inner Mongolia during 1961–2012, China. Appl. Geogr. 2015, 60, 254–260. [Google Scholar] [CrossRef]
- Wong, D.W.S.; Lee, J. Statistical Analysis of Geographic Information with ArcView GIS and ArcGIS; Wiely: New York, NY, USA, 2005. [Google Scholar]
- Cheng, Y.; Wang, Z.; Ye, X.; Wei, Y.D. Spatiotemporal dynamics of carbon intensity from energy consumption in China. J. Geogr. Sci. 2014, 24, 631–650. [Google Scholar] [CrossRef]
- Anselin, L. Spatial Econometrics: Methods and Models. Reg. Econ. Policy 1988, 4, 160–162. [Google Scholar]
- Bureau, I.M. Inner Mongolia Almanac 2007–2013; China Statistics Press: Beijing, China, 2007–2013.
- Bureau, I.M. Inner Mongolia Statistical Yearbook 2007–2013; China Statistics Press: Beijing, China, 2007–2013.
- Chen, D.H.; Zhang, J. An Empirical Study of the Environmental Kuznets Curve for China’s Carbon Emissions: Based on Spatial Panel Model. In Proceedings of the 2012 3rd International Conference on E-Business and E-Government, Washington, DC, USA, 11–13 May 2012. [Google Scholar]
- Amara, M.; El Lahga, A. Tunisian constituent assembly elections: How does spatial proximity matter? Qual. Quant. 2016, 50, 65–88. [Google Scholar] [CrossRef]
- Lesage, J.; Pace, R.K. Introduction to Spatial Econometrics; CRC press: London, UK, 2009. [Google Scholar]
- Al-Mulali, U.; Saboori, B.; Ozturk, I. Investigating the environmental Kuznets curve hypothesis in Vietnam. Energy Policy 2015, 76, 123–131. [Google Scholar] [CrossRef]
- Apergis, N.; Ozturk, I. Testing Environmental Kuznets Curve hypothesis in Asian countries. Ecol. Indic. 2015, 52, 16–22. [Google Scholar] [CrossRef]
- Jalil, A.; Mahmud, S.F. Environment Kuznets curve for CO2 emissions: A cointegration analysis for China. Energy Policy 2009, 37, 5167–5172. [Google Scholar] [CrossRef]
- Nasir, M.; Rehman, F.U. Environmental Kuznets Curve for carbon emissions in Pakistan: An empirical investigation. Energy Policy 2011, 39, 1857–1864. [Google Scholar] [CrossRef]
- Saboori, B.; Sulaiman, J.; Mohd, S. Economic growth and CO2 emissions in Malaysia: A cointegration analysis of the Environmental Kuznets Curve. Energy Policy 2012, 51, 184–191. [Google Scholar] [CrossRef]
- Zhang, C.; Lin, Y. Panel estimation for urbanization, energy consumption and CO2 emissions: A regional analysis in China. Energy Policy 2012, 49, 488–498. [Google Scholar] [CrossRef]
- Zhu, Q.; Peng, X. The impacts of population change on carbon emissions in China during 1978–2008. Environ. Energy Assess. 2012, 36, 1–8. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, W. Decouple indicators on the CO2 emission-economic growth linkage: The Jiangsu Province case. Ecol. Indic. 2013, 32, 239–244. [Google Scholar] [CrossRef]
- Xu, B.; Lin, B. How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models. Energy Econ. 2015, 48, 188–202. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y.; Wu, W.; Li, Y. Effects of rural–urban development transformation on energy consumption and CO2 emissions: A regional analysis in China. Renew. Sustain. Energy Rev. 2015, 52, 863–875. [Google Scholar] [CrossRef]
- Li, G.-Z.; Li, Z.-Z. Regional difference and influence factors of China’s carbon dioxide emissions. China Popul. Resour. Environ. 2010, 20, 22–27. [Google Scholar]
- Du, L.; Wei, C.; Cai, S. Economic development and carbon dioxide emissions in China: Provincial panel data analysis. China Econ. Rev. 2012, 23, 371–384. [Google Scholar] [CrossRef]
- Wang, Z.; Yin, F.; Zhang, Y.; Zhang, X. An empirical research on the influencing factors of regional CO2 emissions: Evidence from Beijing city, China. Appl. Energy 2012, 100, 277–284. [Google Scholar] [CrossRef]
- Wang, M.; Feng, C. Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors. Appl. Energy 2017, 190, 772–787. [Google Scholar] [CrossRef]
- Yang, L.; Li, Z. Technology advance and the carbon dioxide emission in China – Empirical research based on the rebound effect. Energy Policy 2017, 101, 150–161. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, T.; Wang, J.; Guo, F.; Kan, X.; Yuan, R. Spatial analysis on carbon emission abatement capacity at provincial level in China from 1997 to 2014: An empirical study based on SDM model. Atmos. Pollut. Res. 2018, 10, 97–104. [Google Scholar] [CrossRef]
- Chen, H.; Jia, B.; Lau, S. Sustainable urban form for Chinese compact cities: Challenges of a rapid urbanized economy. Energy Int. 2008, 32, 28–40. [Google Scholar] [CrossRef]
- Liddle, B. Demographic Dynamics and Per Capita Environmental Impact: Using Panel Regressions and Household Decompositions to Examine Population and Transport. J. Popul. Behav. Soc. Environ. Issues 2004, 26, 23–39. [Google Scholar] [CrossRef]
- Cole, M.A.; Neumayer, E. Examining the Impact of Demographic Factors on Air Pollution. J. Popul. Behav. Soc. Environ. Issues 2004, 26, 5–21. [Google Scholar] [CrossRef] [Green Version]
- York, R. Demographic trends and energy consumption in European Union Nations, 1960–2025. Soc. Sci. 2007, 36, 855–872. [Google Scholar] [CrossRef]
- Braun, M.; Altan, H.; Beck, S. Using regression analysis to predict the future energy consumption of a supermarket in the UK. Appl. Energy 2014, 130, 305–313. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Fang, C.; Guan, X.; Pang, B.; Ma, H. Urbanisation, energy consumption, and carbon dioxide emissions in China: A panel data analysis of China’s provinces. Appl. Energy 2014, 136, 738–749. [Google Scholar] [CrossRef]
- Poumanyvong, P.; Kaneko, S. Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis. Ecol. Econ. 2010, 70, 434–444. [Google Scholar] [CrossRef]
- Zhuang, G. Low Carbon Economy: The Path of China’s Development under the Background of Climate Change; China Meteorological Press: Beijing, China, 2007.
Variables | Description | Definition | Unit | Mean * | Std. Dev. * | Min * | Max * |
---|---|---|---|---|---|---|---|
CE | CO2eq emissions | Carbon dioxide equivalent emissions produced by the industrial sector | 104 tons | 396.51 | 216.74 | 9.17 × 10−3 | 7.22 × 103 |
IS | Industrial structure | The ratio of industry sector values | % | 50.52 | 17.60 | 0.01 | 91.85 |
Urban | Urbanization rate | The proportion of the urban population to the total population | % | 48.32 | 26.91 | 5.45 | 99.70 |
PGDP | GDP per capita | Gross domestic product divided by the population | 104 CNY/per capita | 5.88 | 6.13 | 6.42 | 3.94 |
VC | Output value of the construction industry | Output value of the construction industry | billion CNY | 1.21 | 2.92 | 2.13 × 10−3 | 30.10 |
TP | Technical progress | GDP output per unit of energy consumption | 104 CNY/ton standard coal | 0.86 | 1.43 | 1.65 × 10−4 | 10.70 |
Eco-spatial Weighting Matrix | Geographical Weighting Matrix | |||||||
---|---|---|---|---|---|---|---|---|
Pooled OLS | Spatial FE | Temporal FE | Both FEs | Pooled OLS | Spatial FE | Temporal FE | Both FEs | |
R2 | 0.944 | 0.958 | 0.946 | 0.969 | 0.944 | 0.998 | 0.946 | 0.999 |
σ2 | 0.225 | 0.007 | 0.2202 | 0.003 | 0.225 | 0.007 | 0.220 | 0.003 |
Lmlag | 26.158 *** | 132.955 *** | 23.016 *** | 0.400 | 32.469 *** | 119.769 *** | 33.358 *** | 0.025 |
R_Lmlag | 9.109 *** | 110.550 *** | 8.148 *** | 5.827 ** | 14.627 *** | 98.031 *** | 15.833 *** | 7.265 *** |
Lmerror | 60.471 *** | 25.907 *** | 60.459 *** | 21.342 *** | 58.490 *** | 24.037 *** | 55.346 *** | 13.816 *** |
R_Lmerror | 43.422 *** | 3.502 * | 45.592 *** | 26.769 *** | 40.647 *** | 2.299 | 37.821 *** | 21.056 *** |
LR spatially fixed joint significance (2569.947, 101, 0.000) | LR spatially fixed joint significance (2569.948, 101, 0.000) | |||||||
LR temporally fixed joint significance (472.306, 6, 0.000) | LR temporally fixed joint significance (472.306, 6, 0.000) | |||||||
Wald_spatial_lag = 34.449 *** | Wald_spatial_lag = 29.280 ** | |||||||
LR_spatial_lag = 33.909 *** | LR_spatial_lag = 29.750 *** | |||||||
Wald_spatial_error = 12.714 ** | Wald_spatial_error = 14.166 ** | |||||||
LR_spatial_error = 14.744 *** | LR_spatial_error = 17.229 *** |
Eco−Spatial Weighting Matrix | Geospatial Weighting Matrix | |||||||
---|---|---|---|---|---|---|---|---|
Coefficient | Direct | Indirect | Total | Coefficient | Direct | Indirect | Total | |
LnUrban | −0.144 *** | −0.141 *** | 0.032 | −0.109 *** | −0.145 *** | −0.143 *** | 0.021 | −0.122 *** |
LnPGDP | 0.360 *** | 0.361 *** | 0.046 | 0.407 *** | 0.365 *** | 0.366 *** | 0.063 | 0.429 *** |
LnTP | −0.812 *** | −0.807 *** | 0.083 * | −0.724 *** | −0.813 *** | −0.807 *** | 0.100 ** | −0.708 *** |
LnIS | 0.012 ** | 0.012 ** | 0.002 | 0.014 * | 0.013 ** | 0.012 ** | −0.019 | −0.007 * |
LnVC | −0.005 | −0.005 | 0.007 | 0.002 | −0.004 | −0.005 | −0.003 | −0.008 |
W * LnUrban | 0.059 * | R2 = 0.969 correct R2 = 0.799 σ2 = 0.004 | 0.047 * | R2= 0.999 correct R2=0.800 σ2 = 0.004 | ||||
W * LnPGDP | 0.044 | 0.019 | ||||||
W * LnTP | 0.247 *** | 0.239 *** | ||||||
W * LnIS | −0.001 | −0.018 | ||||||
W * LnVC | 0.006 | −0.002 | ||||||
W * CE | 0.221 *** | 0.191 *** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Huang, J.; Huang, M.; Lin, Y. The Driving Forces of Carbon Dioxide Equivalent Emissions Have Spatial Spillover Effects in Inner Mongolia. Int. J. Environ. Res. Public Health 2019, 16, 1735. https://doi.org/10.3390/ijerph16101735
Zhou Y, Huang J, Huang M, Lin Y. The Driving Forces of Carbon Dioxide Equivalent Emissions Have Spatial Spillover Effects in Inner Mongolia. International Journal of Environmental Research and Public Health. 2019; 16(10):1735. https://doi.org/10.3390/ijerph16101735
Chicago/Turabian StyleZhou, Yannan, Jixia Huang, Mingxiang Huang, and Yicheng Lin. 2019. "The Driving Forces of Carbon Dioxide Equivalent Emissions Have Spatial Spillover Effects in Inner Mongolia" International Journal of Environmental Research and Public Health 16, no. 10: 1735. https://doi.org/10.3390/ijerph16101735
APA StyleZhou, Y., Huang, J., Huang, M., & Lin, Y. (2019). The Driving Forces of Carbon Dioxide Equivalent Emissions Have Spatial Spillover Effects in Inner Mongolia. International Journal of Environmental Research and Public Health, 16(10), 1735. https://doi.org/10.3390/ijerph16101735