Adsorption Performance of Activated-Carbon-Loaded Nonwoven Filters Used in Filtering Facepiece Respirators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Activated-Carbon-Loaded Nonwoven Filters
2.2. Morphology of Activated-Carbon-Loaded Nonwoven Filters
2.3. Textural Properties of Activated-Carbon-Loaded Nonwoven Filters
2.4. Adsorption Characteristics of Activated-Carbon-Loaded Nonwoven Filters
2.5. Statistical Analysis
3. Results and Discussion
3.1. Morphology of Activated-Carbon-Loaded Nonwoven Filters
3.2. Textural Properties of Activated-Carbon-Loaded Nonwoven Filters
3.3. Adsorption Characteristics of Activated-Carbon-Loaded Nonwoven Filters
3.3.1. Influence of Challenge Concentration
3.3.2. Influence of Humidity
3.3.3. Influence of Flow Rate
3.3.4. Influence of Flow Pattern
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Doty, R.; Cometto-Muñiz, J.E.; Dalton, P. Assessment of upper respiratory tract and ocular irritative effects of volatile chemicals in humans. Crit. Rev. Toxicol. 2004, 34, 85–142. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, S.S.; Williams, C.M. Science of odor as a potential health issue. J. Environ. Qual. 2005, 34, 129–138. [Google Scholar] [PubMed]
- Jaén, C.; Dalton, P. Asthma and odors: The role of risk perception in asthma exacerbation. J. Psychosom. Res. 2014, 77, 302–308. [Google Scholar] [CrossRef]
- Blanes-Vidal, V.; Bælum, J.; Schwartz, J.; Løfstrøm, P.; Christensen, L.P. Respiratory and sensory irritation symptoms among residents exposed to low-to-moderate air pollution from biodegradable wastes. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Blanes-Vidal, V.; Bælum, J.; Nadimi, E.S.; Løfstrøm, P.; Christensen, L.P. Chronic exposure to odorous chemicals in residential areas and effects on human psychosocial health: Dose-response relationships. Sci. Total Environ. 2014, 490, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Nicell, J.A. Assessment and regulation of odour impacts. Atmos Environ. 2009, 43, 196–206. [Google Scholar] [CrossRef]
- Burgess, J.E.; Parsons, S.A.; Stuetz, R.M. Developments in odour control and waste gas treatment biotechnology: A review. Biotechnol. Adv. 2001, 19, 35–63. [Google Scholar] [CrossRef]
- Apgar, D.; Witherspoon, J.; Easter, C. Gas phase odor treatment. In Minimization of Odors and Corrosion in Collection Systems; The Water Environment Research Foundation: Alexandria, VA, USA, 2007. [Google Scholar]
- Bandosz, T.J. Activated Carbon Surfaces in Environmental Remediation; Academic Press: New York, NY, USA, 2006. [Google Scholar]
- Frechen, F. State of the art of odour measurement. Int Symp Odor Meas 2003, 3, 149–155. [Google Scholar]
- Capelli, L.; Sironi, S.; Del Rosso, R. Odor sampling: Techniques and strategies for the estimation of odor emission rates from different source types. Sensors 2013, 13, 938–955. [Google Scholar] [CrossRef]
- Amid, H.; Maze, B.; Flickinger, M.; Pourdeyhimi, B. Dynamic adsorption of ammonia: Apparatus, testing conditions, and adsorption capacities. Meas. Sci. Technol. 2017, 28, 1–7. [Google Scholar] [CrossRef]
- Directive 89/656/EEC of 30 November 1989 on the Minimum Health and Safety Requirements for the Use by Workers of Personal Protective Equipment at the Workplace. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31989L0656&from=en (accessed on 17 March 2019).
- Bansal, R.C.; Goyal, M. Activated Carbon Adsorption; CRC Press: Boca Raton, FL, USA.
- Ruthven, D.M.M. Principles of Adsorption and Adsorption Processes; Wiley: New York, NY, USA.
- European Standard EN 14387:2004+A1:2008. Respiratory Protective Devices–Gas Filters and Combined Filters–Requirements, Testing, Marking; European Committee for Standardization: Bruxelles, Belgium, 2008. [Google Scholar]
- Rozzi, T.; Snyder, J.; Novak, D. Pilot study of aromatic hydrocarbon adsorption characteristics of disposable filtering facepiece respirators that contain activated carbon. J. Occup. Environ. Hyg. 2012, 9, 624–629. [Google Scholar] [CrossRef] [PubMed]
- Nelson, G.O.; Correia, A.N.; Harder, C.A. Respirator cartridge efficiency studies: VII. Effect of relative humidity and temperature. Am. Ind. Hyg. Assoc. J. 1976, 37, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Nelson, G.O.; Correia, A.N. Respiratory cartridge efficiency studies: VIII. Summary and conclusions. Am. Ind. Hyg. Assoc. J. 1976, 37, 514–525. [Google Scholar] [CrossRef] [PubMed]
- Lodewyckx, P.; Vansant, E.F. Influence of humidity on adsorption capacity from the Wheeler-Jonas model for prediction of breakthrough times of water immiscible organic vapors on activated carbon beds. Am. Ind. Hyg. Assoc. J. 1999, 60, 612–617. [Google Scholar] [CrossRef]
- Werner, M.D. The effects of relative humidity on the vapor phase adsorption of trichloroethylene by activated carbon. Am. Ind. Hyg. Assoc. J. 1985, 46, 585–590. [Google Scholar] [CrossRef]
- Majchrzycka, K.; Okrasa, M.; Skóra, J.; Gutarowska, B. Evaluation of the survivability of microorganisms deposited on filtering respiratory protective devices under varying conditions of humidity. Int. J. Environ. Res. Public Health 2016, 13, 98. [Google Scholar] [CrossRef]
- Raynor, P.C.; Leith, D. The influence of accumulated liquid on fibrous filter performance. J. Aerosol. Sci. 2000, 31, 19–34. [Google Scholar] [CrossRef]
- Nelson, G.O.; Harder, C.A. Respirator cartridge efficiency studies: V. Effect of solvent vapor. Am. Ind. Hyg. Assoc. J. 1974, 35, 391–410. [Google Scholar] [CrossRef]
- Yoon, Y.H.; Nelson, J.H. Application of gas adsorption kinetics — II. A theoretical model for respirator cartridge service life and its practical applications. Am. Ind. Hyg. Assoc. J. 1984, 45, 517–524. [Google Scholar] [CrossRef]
- Yoon, Y.H.; Nelson, J.H. Application of gas adsorption kinetics I. A theoretical model for respirator cartridge service life. Am. Ind. Hyg. Assoc. J. 1984, 45, 509–516. [Google Scholar] [CrossRef]
- Lodewyckx, P.; Wood, G.O.; Ryu, S.K. The Wheeler-Jonas equation: A versatile tool for the prediction of carbon bed breakthrough times. Carbon 2004, 42, 1351–1355. [Google Scholar] [CrossRef]
- Lodewyckx, P.; Verhoeven, L. Using the modified Wheeler-Jonas equation to describe the adsorption of inorganic molecules: Chlorine. Carbon 2003, 41, 1215–1219. [Google Scholar] [CrossRef]
- Wood, G.O. Reviews of Models for Adsorption of Single Vapors, Mixtures of Vapors, and Vapors at High Humidities on Activated Carbon for Applications Including Predicting Service Life of Organic Vapor Respirator Cartridges. 2000. Available online: http://gerryowood.com/uploads/3/4/3/1/3431344/modelallreviews.pdf (accessed on 17 March 2019).
- Yoon, Y.H.; Nelson, J.H.; Lara, J. Respirator cartridge service-life: Exposure to mixtures. Am. Ind. Hyg. Assoc. J. 1996, 57, 809–819. [Google Scholar] [CrossRef] [PubMed]
- Nelson, G.O.; Harder, C.A. Respirator cartridge efficiency studies. IV. Effects of steady-state and pulsating flow. Am. Ind. Hyg. Assoc. J. 1972, 33, 797–805. [Google Scholar] [CrossRef]
- Linders, M.J.G.; Mallens, E.P.J.; Van Bokhoven, J.J.G.M.; Kapteijn, F.; Moulijn, J.A. Breakthrough of shallow activated carbon beds under constant and pulsating flow. Am. Ind. Hyg. Assoc. J. 2003, 64, 173–180. [Google Scholar] [CrossRef]
- European Standard EN 29073-1:1992. Methods of Test for Nonwovens. Methods of Test for Nonwovens. Determination of Mass per Unit Area; European Committee for Standardization: Bruxelles, Belgium, 1992. [Google Scholar]
- International Standard ISO 9073-2:1995. Textiles. Test Methods for Nonwovens. Part 2: Determination of Thickness; International Organization for Standardization: Geneva, Switzerland, 1995. [Google Scholar]
- European Standard EN 13274-3:2001. Respiratory Protective Devices. Methods of Test. Part 3: Determination of Breathing Resistance; European Committee for Standardization: Bruxelles, Belgium, 2001. [Google Scholar]
- Amirnasr, E.; Shim, E.; Yeom, B.-Y.; Pourdeyhimi, B. Basis weight uniformity analysis in nonwovens. J. Text. Inst. 2014, 105, 444–453. [Google Scholar] [CrossRef]
- Klobes, P.; Meyer, K.; Munro, R.G. Porosity and Specific Surface Area Measurements for Solid Materials. NIST Recommended Practice Guide. Available online: https://ws680.nist.gov/publication/get_pdf.cfm?pub_id=854263 (accessed on 17 March 2019).
- Amid, H.; Mazé, B.; Flickinger, M.C.; Pourdeyhimi, B. Hybrid adsorbent nonwoven structures: A review of current technologies. J. Mater. Sci. 2016, 51, 4173–4200. [Google Scholar] [CrossRef]
- European Standard EN 149:2001+A1:2009. Respiratory Protective Devices. Filtering Half Masks to Protect against Particles. Requirements, Testing, Marking; European Committee for Standardization: Bruxelles, Belgium, 2009. [Google Scholar]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Sotomayor, F.J.; Cychosz, K.A.; Thommes, M. Characterization of micro/mesoporous materials by physisorption: Concepts and case studies. Acc. Mater. Surf. Res. 2018, 3, 34–50. [Google Scholar]
- Nelson, G.O.; Harder, C.A. Respirator cartridge efficiency studies: VI. Effect of concentration. Am. Ind. Hyg. Assoc. J. 1976, 37, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Van Osdell, D.W.; Owen, M.K.; Jaffe, L.B.; Sparks, L.E. VOC Removal at low contaminant concentrations using granular activated carbon. J. Air Waste Manag. Assoc. 1996, 46, 883–890. [Google Scholar] [CrossRef]
- Wood, G.O. Estimating service lives of organic vapor cartridges. Am. Ind. Hyg. Assoc. J. 1994, 55, 11–15. [Google Scholar] [CrossRef]
- Švábová, M.; Weishauptová, Z.; Přibyl, O. Water vapour adsorption on coal. Fuel 2011, 90, 1892–1899. [Google Scholar] [CrossRef]
- Sullivan, P.D.; Stone, B.R.; Hashisho, Z.; Rood, M.J. Water adsorption with hysteresis effect onto microporous activated carbon fabrics. Adsorption 2007, 13, 173–189. [Google Scholar] [CrossRef]
- Gauden, P.A.; Terzyk, A.P.; Rychlicki, G.; Furmaniak, S.; Wesołowski, R.P.; Wiśniewski, M.; Kowalczyk, P. Mechanisms of water adsorption on carbons. In Water Encyclopedia; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Tanaka, S.; Tsuda, Y.; Kitamura, S.; Shimada, M.; Arito, H.; Seki, Y. A simple method for detecting breakthroughs in used chemical cartridges. Am. Ind. Hyg. Assoc. J. 2010, 62, 168–171. [Google Scholar] [CrossRef]
Variable | Range of the Variable | Test Conditions |
---|---|---|
Challenge concentration Cin [ppm] | {20, 40, 80, 100, 120} | Challenge flow rate (steady-state): V = 30 L/min Temperature: T = 22 ± 3 °C Relative humidity: RH = 70 ± 3% |
Relative humidity RH [%] | {2, 10, 20, 35, 55, 70} | Challenge concentration: Cin = 81 ± 3 ppm Challenge flow rate (steady-state): V = 30 L/min Temperature: T = 22 ± 3 °C |
Challenge flow rate (steady-state) V [L/min] | {20, 25, 30, 35, 40, 45, 50, 55} | Challenge concentration: Cin = 81 ± 3 ppm Temperature: T = 22 ± 3 °C Relative humidity: RH = 70 ± 3% |
Challenge flow pattern F | {steady-state, pulsating} | Challenge concentration: Cin = 81 ± 3 ppm Temperature: T = 22 ± 3 °C Relative humidity: RH = 70 ± 3% |
Parameter | Basis Weight, g/m2 | Thickness, mm | Pressure Drop, Pa | Fibre Diameter, µm | Optical Density, % | |
---|---|---|---|---|---|---|
at 30 L/min | at 95 L/min | |||||
N | 76 | 61 | 21 | 21 | 96 | 66 |
Mean value | 275.64 | 2.35 | 1.43 | 5.48 | 22.75 | 81.82 |
Standard deviation | 17.55 | 0.11 | 0.13 | 0.32 | 4.63 | 9.09 |
Coefficient of variance | 6% | 4% | 9% | 6% | 20% | 11% |
Index of dispersion | 1.12 | 0.00 | 0.01 | 0.02 | 0.94 | 1.01 |
Calculation Method | Parameter | AC | AC-NW |
---|---|---|---|
BET | Surface area, m2/g | 419.4 | 153.2 |
QSDFT | Fitting error, % | 0.15 | 0.16 |
Pore width, nm | 0.85 | 0.85 | |
Average pore volume, cm3/g | 0.22 | 0.09 | |
Surface area, m2/g | 418.9 | 144.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okrasa, M.; Hitz, J.; Nowak, A.; Brochocka, A.; Thelen, C.; Walczak, Z. Adsorption Performance of Activated-Carbon-Loaded Nonwoven Filters Used in Filtering Facepiece Respirators. Int. J. Environ. Res. Public Health 2019, 16, 1973. https://doi.org/10.3390/ijerph16111973
Okrasa M, Hitz J, Nowak A, Brochocka A, Thelen C, Walczak Z. Adsorption Performance of Activated-Carbon-Loaded Nonwoven Filters Used in Filtering Facepiece Respirators. International Journal of Environmental Research and Public Health. 2019; 16(11):1973. https://doi.org/10.3390/ijerph16111973
Chicago/Turabian StyleOkrasa, Małgorzata, Jörn Hitz, Aleksandra Nowak, Agnieszka Brochocka, Christoph Thelen, and Zbigniew Walczak. 2019. "Adsorption Performance of Activated-Carbon-Loaded Nonwoven Filters Used in Filtering Facepiece Respirators" International Journal of Environmental Research and Public Health 16, no. 11: 1973. https://doi.org/10.3390/ijerph16111973
APA StyleOkrasa, M., Hitz, J., Nowak, A., Brochocka, A., Thelen, C., & Walczak, Z. (2019). Adsorption Performance of Activated-Carbon-Loaded Nonwoven Filters Used in Filtering Facepiece Respirators. International Journal of Environmental Research and Public Health, 16(11), 1973. https://doi.org/10.3390/ijerph16111973