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Abstract: Recent studies have considered the connections between malaria incidence and climate
variables using mathematical and statistical models. Some of the statistical models focused on time
series approach based on Box–Jenkins methodology or on dynamic model. The latter approach
allows for covariates different from its original lagged values, while the Box–Jenkins does not. In real
situations, malaria incidence counts may turn up with many zero terms in the time series. Fitting
time series model based on the Box–Jenkins approach and ARIMA may be spurious. In this study,
a zero-inflated negative binomial regression model was formulated for fitting malaria incidence in
Mopani and Vhembe—two of the epidemic district municipalities in Limpopo, South Africa. In
particular, a zero-inflated negative binomial regression model was formulated for daily malaria
counts as a function of some climate variables, with the aim of identifying the model that best predicts
reported malaria cases. Results from this study show that daily rainfall amount and the average
temperature at various lags have a significant influence on malaria incidence in the study areas.
The significance of zero inflation on the malaria count was examined using the Vuong test and the
result shows that zero-inflated negative binomial regression model fits the data better. A dynamical
climate-based model was further used to investigate the population dynamics of mosquitoes over the
two regions. Findings highlight the significant roles of Anopheles arabiensis on malaria transmission
over the regions and suggest that vector control activities should be intense to eradicate malaria in
Mopani and Vhembe districts. Although An. arabiensis has been identified as the major vector over
these regions, our findings further suggest the presence of additional vectors transmitting malaria in
the study regions. The findings from this study offer insight into climate-malaria incidence linkages
over Limpopo province of South Africa.
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1. Introduction

Malaria is a life-threatening disease that continues to claim a significant number of lives globally.
In 2016 alone, malaria claimed roughly 445,000 lives across the globe from 216 million cases in 91
countries [1]. Despite various ongoing malaria control programmes, Africa continues to bear 90% of
malaria cases and 91% of malaria deaths worldwide [1]. South Africa recently witnessed a significant
increase in malaria cases across its epidemic regions, which are Limpopo, KwaZulu-Natal, and
Mpumalanga province [2,3]. The sudden increase has been linked to climate and environmental
factors [4], and reduction in indoor residual spraying [2]. In addition, the resurgence is more significant
over Limpopo province. For instance, over 27,500 cases were reported in the province in 2017 as
Mopani and Vhembe district municipalities presented the highest number of cases in the province [4,5].
Anopheles arabiensis has been identified as the major vector transmitting Plasmodium falciparum over the
study regions [4,5].

Both malaria parasite and mosquito species are very sensitive to climatic conditions. Several
studies [6–12] have investigated the impact of climate variables on the transmission of malaria and
mosquito abundance. For instance, Craig et al. [13] developed a climate-based distribution model to
investigate the impact of climate change on An. gambiae and malaria transmission over Sub-Saharan
Africa. Hoshen and Morse [14] also developed a mathematical–biological model, comprising both
the climate-dependent within-vector (An. gambiae s.l.) stages and the climate-independent within
host stages to simulate malaria incidence in Zimbabwe. More recently, Abiodun et al. [12] developed
mathematical models to investigate the impact of temperature and rainfall on the population dynamics
of An. arabiensis malaria transmission over Nkomazi local municipality in KwaZulu-Natal province,
South Africa. However, limited investigations have been made over Mopani and Vhembe districts; the
regions in Limpopo province that are most prominent with respect to the malaria epidemic.

Recent studies have considered some statistical models for the transmission of malaria over
some regions. For instance, various studies have presented various time series models based on
the Box–Jenkins methodology [15–17]. Arab et al. [18] presented hierarchical Bayesian modelling of
malaria in ten West African countries. Using Spearman correlation analysis, Adeola et al. [4] explored
the roles of climate variables on malaria transmission in Mutale local municipality of Limpopo, South
Africa. The analysis showed that monthly total rainfall, mean minimum temperature, mean maximum
temperature, mean average temperature, and mean relative humidity were significantly and positively
correlated with monthly malaria cases over the study areas. The monthly total rainfall and monthly
mean minimum temperature came up as most significant. Malaria transmission is complex and
involves a range of climatic, biological, and environmental factors. However, the high degree of
non-linearity in these factors makes it difficult to predict and intervene against malaria [19]. Most
statistical models are centred on time series approach grounded on the Box–Jenkins methodology [20].
The Box–Jenkins methodology has two approaches. These include the traditional autoregressive
integrated moving average models and its seasonal extensions which do not allow for covariates
different from lagged values of response variables. The other approach is the dynamic model (also
referred to as ARIMAX), which allows for covariates different from its lagged values of the response
variable [16]. Moreover, Briët et al. [21] formulated generalized seasonal autoregressive integrated
moving average models for fitting monthly malaria case time series in a district in Sri Lanka, where
malaria has decreased dramatically in recent years. In a real situation, malaria incidence counts may
be inflated with many zeros. Fitting time series model based on the Box–Jenkins approach and ARIMA
on malaria count data may give a spurious result. A zero-inflated model is designed to accommodate
the extra zeros in the data.
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Using a zero-inflated model for analysing malaria count data with an excessive number of zero, the
present study investigates the impact of two climate variables on malaria incidence over Mopani and
Vhembe. The malaria incidence is recorded in terms of the number of admission (number of inpatients)
in all public health care stations in both regions. The zero-inflated negative binomial regression model
was further developed to establish the links between climate variables and malaria cases over the
study regions. In addition, the study simulates the population dynamics of An. arabiensis over both
Mopani and Vhembe using climate-based mosquito model presented in the study of Abiodun et al. [8].
This is in order to investigate the impact of An. arabiensis abundance (in addition to climate) on malaria
transmission over the epidemic regions.

2. Materials and Methods

2.1. Study Area

Vhembe and Mopani district municipalities are two of the five administrative district municipalities
of Limpopo province, located in the north-eastern part of South Africa. The five district municipalities
are further sub-divided into 25 local municipalities (Figure 1). According to the 2011 census, Limpopo
province accommodates about 10% (5,404,868) of the total South African (51,770,560) population with
44.2% of the province’s population residing in Vhembe (24%) and Mopani (20.2%) districts [22]. These
two districts account for about 96.3% of total malaria cases recorded within the province from 1998 to
2017, with 63.2% in Vhembe and 33.1% in Mopani. A large part of the study area is a remote area with
pockets of commercial farms. The major malaria vector control strategies include the use of indoor
residual spraying with Dichlorodiphenyltrichloroethane (DDT), larviciding of identified breeding
habitats and insecticide-impregnated bed nets. Additionally, about 51% of the Kruger National Park,
which records high malaria transmission is located within the study area [5]. The average annual
temperature in both districts is 21.9 ◦C. In Vhembe an average of about 350 mm of rainfall is received
while about 600 mm of rainfall is received in Mopani district.

2.2. Data

The malaria data reported in this study have been sourced from the provincial Integrated Malaria
Information System (IMIS) of Malaria Control Programme in the Limpopo Provincial Department of
Health and were obtained from the South African Weather Service (SAWS) through its collaborative
research with the University of Pretoria Institute for Sustainable Malaria Control (UP ISMC), with
ethical approval number MP_2014RP39_978. The data includes both active and passive surveillance
malaria case patients, diagnosis date, sex, age, district and local council where the patient resides,
source country or province in South Africa where the patient presumably contracted malaria and
reported malaria deaths. The daily observation climatic data (total rainfall, maximum, minimum and
mean temperatures) were also obtained from SAWS. The locations of the weather stations are shown in
Figure 1. Both climate and malaria data span a period of 20 years (1 January 1998 to 31 December 2017).

2.3. Dealing with Missing Values

The malaria data denoted by M, consist of daily malaria incidence counts of Mopani and Vhembe
District Municipalities from 1 January 1998 to 31 December 2017. The data were characterised by
a large number of zeroes and some missing values. Predictor variables are the climate variables
of the two districts: daily minimum temperature (Tmin

t ), daily maximum temperature (Tmax
t ) and

daily total rainfall amount (Rt). For Mopani district, the proportions of the original data values
that were missing are 0.00014, 0.00424 and 0.00424 for malaria count, daily minimum temperature
and daily maximum temperature, respectively. For Vhembe district, the proportion of the original
data values that were missing is 0.00096 for daily minimum temperature. In this study, multivariate
imputation by chained equations (MICE) based on random forest was implemented for estimating a
missing daily malaria count and missing values of some climate variables. Multivariate imputation by
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Figure 1. Location of study area, showing (A) the malaria risk classification of South Africa and Kruger
National Park; (B) the location of weather stations, the local municipalities and Mopani and Vhembe
district municipalities, Limpopo province, South Africa.

2.4. The Zero-Inflated Negative Binomial Regression Model

The effect of zero inflation on the malaria incidence is that the relationship may not be well-informed
in terms of the significance of the correlation between malaria and some climate variables. For instance,
the estimates of Spearman’s rank correlation coefficients between malaria and daily total rainfall of
Mopani and Vhembe districts are 0.1342 (p-value < 2.2 × 10−16) and 0.1977 (p-value < 2.2 × 10−16)
respectively. The measure of correlation between malaria and daily average temperature at lag 0 is
0.3001 (p-value < 2.2 × 10−16) for Mopani and 0.3754 (p-value < 2.2 × 10−16) for Vhembe. Similarly,
measure of correlation between malaria and daily mosquito population at lag 0 is 0.0835 (p-value =

9.515 × 10−13) for Mopani and 0.1655 (p-value < 2.2 × 10−16) for Vhembe. The correlation values are
very small but significant and show that daily rainfall, average temperature, and mosquito population
do have a major influence on malaria prevalence in the two district municipalities of Limpopo, South
Africa. The measure of the correlation between malaria count and each of the climate variables at lag 0
is significant but not significant in models for the district municipalities as shown in Tables 1 and 2.
The negative binomial distribution, also known as Poisson–Gamma mixture distribution is defined by
its probability mass function as

P(yi
∣∣∣µi, θ) =

Γ
(
yi + θ−1

)
Γ(yi + 1)Γ(θ−1)

(
1

1 + θµi

)θ−1(
θµi

1 + θµi

)yi
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where µi = tiµ and µ is the mean incidence rate of y per unit time ti. Suppose a random variable
Yi follows the negative binomial distribution. Then its conditional expected value is E(Yi|Xi) =

E

 p∑
j=1

β jX ji

 and the variance is var(Yi|Xi) = µi + θµ2
i , where θ is the over-dispersion parameter and

X1, X2, . . . , Xp are predictor variables.
Negative binomial regression is used to model count data with the condition that the variance

of the data is much greater than its mean. As a result, it is very good for over-dispersed count data.
Negative binomial regression model for count data expresses µ in terms of explanatory variables. It is
assumed in this study that the dispersion parameter θ takes the same value at all predictor values,
following [25].

Suppose that events y1, y2, . . . , yn are identically distributed. Then the probability distribution
of the zero-inflated negative binomial random variable can be expressed as

yi ∼

{
0 with probability pi
NB(µi,θ) with probability 1− pi

so that

yi =


0 with probability pi + (1− pi)

[
1

1+θµi

]θ−1

y with probability (1− pi)

 Γ(y+θ−1)
(

1
1+θµi

)θ−1 (
θµi

1+θµi

)y

Γ(θ−1)y!

.
A zero-inflated negative binomial (ZINB) regression model of the form:

log(E(Mt|xi)) = β0 +
K∑

k=9

β1kRt−k +
K∑

k=9

β2kTave
t−k +

K∑
k=9

β3 jmt− j

is formulated for malaria counts of Mopani and Vhembe districts, where Mt denotes daily malaria
count, Rt−k denotes daily rain amount at lag k, Tave

t−k denotes daily average temperature at lag k and mt−k
denotes simulated daily mosquito population at lag k. This model considers daily rain amount and its
first K lagged values, average temperature and its first K lagged values and simulated daily mosquito
population and its first K lagged values. It is assumed that patients are infected by mosquitoes before
the day on which climate variables would be correlated with. It is noted that the incubation period of
malaria within mosquito is 8–15 days depending on the daily temperature [26–28]. As a result, the
value of K is taken to be 20.

It is observed that the time series structure makes malaria incidence counts dependent on each
other. Ljung–Box test [29], a statistical test for determining whether any of a group of autocorrelations
of a time series is different from zero, is employed to test if the residuals (ηt) of the zero-inflated
negative binomial model (Mt = E(Mt|xi) + ηt) are correlated. As a remedial measure, we suggest
fitting a time series model based on autoregressive integrated moving average (ARIMA(p, d, q)) model
to the residuals (ηt) of the fitted ZINB models following [30]. The ARIMA(p, d, q) on ηt is defined as

∆dηt = φ1∆dηt−1 + φ2∆dηt−2 + . . .+ φp∆dηt−p + εt + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q

where p, d and q are orders of autoregressive, integrated and moving average parts respectively.
Residuals, εt, of the fitted ARIMA model on ηt are uncorrelated. The choice of optimal values of p and
q are based on the ARIMA(p, d, q) model with the least Akaike information criterion and root mean
square of error. The parameters of ARIMA model are estimated by minimising sum of square of εt

using maximum likelihood estimation.
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Table 1. Estimates of zero-inflated negative binomial regression model for Mopani district municipality.

Count Model Coefficients (Negbin with Log Link):

Estimate Std. Error z Value Pr (>|z|) Confidence Interval

Intercept 3.169 0.1849 17.136 <2 × 10−16 *** (2.8066, 3.5314)
Daily average temperature at lag 18 −0.0261 0.0085 −3.074 0.0021 ** (−0.0428, −0.0094)

Log(theta) −0.8459 0.0254 −33.296 <2 × 10−16 *** (−0.8957, −0.7961)

Zero-Inflation Model Coefficients (Binomial with Logit Link):

Estimate Std. Error z value Pr (>|z|) Confidence Interval

Intercept 11.2884 0.7138 15.814 <2 × 10−16 *** (9.8894, 12.6874)
Daily rain amount at lag 9 −0.0614 0.0297 −2.072 0.0383 * (−0.1196, −0.0032)
Daily rain amount at lag 16 −0.0688 0.0325 −2.118 0.0342 * (−0.1325, −0.0051)

Daily average temperature at lag 9 −0.1648 0.0428 −3.852 0.000117 *** (−0.2487, −0.0809)
Daily average temperature at lag 10 −0.1197 0.0464 −2.578 0.0099 ** (−0.2106, −0.0288)
Daily average temperature at lag 12 −0.1430 0.0328 −4.356 1.32 × 10−5 *** (−0.2073, −0.0787)
Daily average temperature at lag 15 −0.0788 0.0301 −2.623 0.0087 ** (−0.1378, −0.0198)
Daily average temperature at lag 18 −0.1359 0.033 −4.124 3.73 × 10−5 *** (−0.2006, −0.0712)

Simulated daily mosquito population at lag 9 −0.056 0.0091 −6.188 6.10 × 10−10 *** (−0.0738, −0.0382)
Simulated daily mosquito population at lag 10 0.0359 0.0067 5.385 7.26 × 10−8 *** (0.0228, 0.0490)
Simulated daily mosquito population at lag 20 0.0193 0.0048 4.032 5.53 × 10−5 *** (0.0099, 0.0287)

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1; Theta 0.4292; Number of iterations in BFGS optimization: 1; Log-likelihood: −1.575 × 104 on 23 Df.
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Table 2. Estimates of zero-inflated negative binomial regression model for Vhembe district municipality.

Count Model Coefficients (Negbin with Log Link):

Estimate Std. Error z Value Pr (>|z|) Confidence Interval

Intercept 0.8355 0.1406 5.941 2.84 ×10−9 *** (0.5599, 1.1112)
Daily average temperature at lag 9 0.0244 0.0083 2.924 0.00346 ** (0.0080, 0.0407)
Daily average temperature at lag 12 0.0187 0.0072 2.598 0.00939 ** (0.0046, 0.0328)
Daily average temperature at lag 14 0.0150 0.0067 2.248 0.02460 * (0.0019, 0.0281)

Simulated daily mosquito population at lag 20 −0.0021 0.0009 −2.361 0.01820 * (−0.0039, −0.0004)
Log(theta) −0.4689 0.0217 −21.616 <2 × 10−16 *** (−0.5115, −0.4264)

Zero-Inflation Model Coefficients (Binomial with Logit Link):

Estimate Std. Error z value Pr (>|z|) Confidence Interval

Intercept 9.6683 0.7061 13.692 <2 × 10−16 *** (8.2843, 11.0523)
Daily average temperature at lag 10 −0.2275 0.05441 −4.186 2.85 × 10−5 *** (−0.3340, −0.1210)
Daily average temperature at lag 12 −0.1224 0.04241 −2.886 0.003896 ** (−0.2055, −0.0393)
Daily average temperature at lag 14 −0.1787 0.0417 −4.282 1.85 × 10−5 *** (−0.2606, −0.0969)

Simulated daily mosquito population at lag 9 −0.0470 0.0124 −3.784 0.000154 *** (−0.0713, −0.0226)
Simulated daily mosquito population at lag 15 0.0292 0.0059 4.986 6.16 × 10−7 *** (0.0177, 0.0407)

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1; Theta 0.6257; Number of iterations in BFGS optimization: 1; Log-likelihood: −2.11 × 104 on 17 Df.
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2.5. The Dynamical Mosquito Model

The importance of long-term data series in the analysis of climate impact on both mosquito
abundance and malaria transmission have been highlighted in some studies [8,31,32]. However,
long-term mosquito data are not easily accessible. For this reason, several studies [6–8,12] have used
a deterministic model to simulate mosquito abundance over some regions. Similarly, due to the
unavailability of mosquito data over the study regions, the present study used the dynamical model
presented in the study of Abiodun et al. [8] to simulate abundance of An. arabiensis over Mopani and
Vhembe. The climate-based model was developed to analyse how temperature and the availability of
water affect mosquito population size. The model was validated over a town in eastern Sudan and was
further used to investigate the influence of ambient temperature on the development and the mortality
rate of An. arabiensis over Dondotha town in KwaZulu-Natal Province, South Africa. In particular, the
model was used to examine the impact of climatic factors on the gonotrophic cycle and the dynamics
of mosquito population over the study region. For details on the formulation of the mosquito model,
we refer to Abiodun et al. [8].

The dynamical mosquito model was coded in MATLAB R2013b (MathWorks, Natick, MA, USA),
while that of the regression model was handled by R programming language to implement methods
in this paper. An R package pscl is used to implement zero-inflated negative binomial model, an
R package forecast is used to implement autoregressive integrated moving average model and an R
package tseries is used to implement Ljung–Box test and make plots of autocorrelation functions and
partial autocorrelation functions.

3. Results and Discussion

3.1. Climate and Malaria Cases of Mopani and Vhembe

Focussing on the study period (1 January 1998 to December 2017), results show that the daily
maximum (black line) and minimum (pink line) temperature of Mopani fluctuates between 20–40 ◦C
and 4–24 ◦C respectively, except for one day in January 2011 which is slightly above 40 ◦C (Figure 2a).
Vhembe maximum and minimum temperature mainly fall between 20–40 ◦C and 3–24 ◦C respectively,
except few days in January 2009, 2010 and 2011 which went above 40 ◦C for maximum and below
3 ◦C in June 2012 for minimum temperature (Figure 2b). The daily average temperature of Mopani
falls within 15–30 ◦C with some variations of this range. For instance, the average temperature as
high as 33 ◦C is observed around January of 2004, 2007, and 2016, and as low as 13 ◦C around July of
2007, 2010, 2011, 2012, 2014 and 2015 (Figure 3a). The daily average temperature of Vhembe fluctuates
between 10 and 32 ◦C. Mopani rainfall is generally below 150 mm per day except in January of 2012
and 2013, which went up to roughly 420 mm and 400 mm per day respectively (Figure 3b). The
rainfall pattern of Vhembe has decreased with time (Figure 3b). It was higher around 1999–2002 and
lower from 2011–2017 except for some days in January 2013, which went as far as 300 mm/day from
<100 mm/day on other days. New reported malaria cases over Mopani were normally below 100
per day but exceptionally high in 2017 (Figure 3c). The maximum cases of about 367 were recorded
on the 4th of May 2017 as the early days of the month maintains 100 cases above. Malaria cases in
Vhembe were also found below 100 cases/day except in 2017 that went far above this limit in April–May
(Figure 3c) as the maximum cases hit 243 on the 26th of April 2017. The Mann–Kendall test can be
employed to statistically assess if there is an upward or downward trend of average temperature and
rain amount in the two districts over time. Using Mann–Kendall test, rainfall shows a statistically
significant decreasing trends (p-value < 2.22 × 10−16) in both Mopani and Vhembe districts while daily
temperature shows a significant decreasing trends (p-value < 2.22 × 10−16) in Mopani district and a
non-significant decreasing trends (p-value = 0.92016) in Vhembe district over the study period.
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Figure 2. Time series of daily temperatures over calibration period showing the (a) daily maximum and
minimum temperature of Mopani district municipality, (b) daily maximum and minimum temperature
of Vhembe district municipality Limpopo province, South Africa from January 1998 to December 2017.

Comparing the two study regions, Vhembe (in most days) seems hotter during the summer
(December, January and February) months and cooler during the winter (June, July and August)
months than Mopani although not statistically significant (p-value = 0.132). For instance, the black
line (indicating Vhembe daily average temperature) is seen overlapping the green line (indicating
Mopani daily average temperature) in most of the days (Figure 3a). However, the summer of Mopani
was hotter than that of Vhembe in 2003 (p-value = 0.0033). The rainfall pattern shows that Vhembe
generally experiences more rainfall than Mopani especially between 1998 and 2010 (p-value = 2.766
× 10−6) (Figure 3b). However, more rainfall is observed in Mopani than Vhembe between 2010 and
2014 (p-value = 3.614 × 10−11). Although similar patterns of malaria cases are observed over the two
regions, the cases are more noticeable over Vhembe than Mopani (Figure 3c). One reason traceable
to this could be that the climate variables of Vhembe are more conducive for malaria transmission
than that of Mopani [4]. Malaria cases in both regions are also higher throughout 2017 compared
to previous years, but the cases are slightly higher in Mopani than Vhembe in May 2017. The total
malaria cases over the study period in Mopani and Vhembe are about 28,811 and 55,037 respectively.
Following the 2011 census [33,34], the incident rate per 100,000 people in Mopani is calculated to be
approximately 2637.15, while that of Vhembe is 4250.87. The Wilcoxon rank sum test with continuity
correction is applied to test if daily rain amount, as well as daily average temperature and simulated
daily mosquito abundance, of Mopani and Vhembe districts, is significantly different. The daily
rain amount of Mopani and Vhembe districts are not statistically significantly different (p-value =

0.8803) over the study period. The daily average temperature of Mopani and Vhembe districts are
not statistically significantly different (p-value = 0.6754) over the study period. The simulated daily
mosquito abundance of Vhembe district is statistically higher than that of Mopani district (p-value =

0.0002) over the study period.
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Findings from the zero-inflated negative binomial regression model show that Mopani and
Vhembe malaria incidence data are over-dispersed (Figure 4). This is because Mopani malaria count
data has its variance (206.0995) greater than mean (4.0464). Similarly, Vhembe malaria count data has
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variance (201.0317) greater than mean (7.5342). Moreover, zero over-inflation of the malaria counts in
both locations is evident in the figure as the number of days with no malaria count exceed the number
of days with positive malaria count in each of the districts.
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3.2. Analysis over Mopani District Municipality

A stepwise model selection procedure based on Akaike information criterion (AIC) was applied
to drop models with highest AIC values in the fitted zero-inflated negative binomial model. The root
mean square error (RMSE) of the full model for Mopani district, which is a measure of the deviation of
observed malaria count from the fitted value, is 13.9049 while RMSE of the reduced model is 13.9137.
The AIC value for the full model is 31,597.14, while the AIC value for the reduced model is 31,542.55.
As a result, the reduced model is preferred for Mopani district.

The first block in Table 1 contains the count model coefficient and their standard error, z-score and
p-value for each of the variables. The second block corresponds to the inflation model. The inflation
model contains logit coefficients for predicting excess zeroes and the corresponding standard errors,
z-scores and p-values for the coefficients. Table 1 presents the estimates of the zero-inflated negative
binomial model (reduced model) for Mopani district. The coefficient of daily average temperature at
lag 18 in the negative binomial regression part predicting the malaria count is statistically significant
at 5% level of significance. The coefficients of daily rain amount at lag 9 and lag 16, daily average
temperature at lag 9, lag 10, lag 12, lag 15 and lag 18, simulated daily mosquito population at lag
9, lag 10 and lag 20 in the logit model part predicting excessive zeroes are statistically significant.
Other predictor variables are not statistically significant and are, therefore, excluded in the model. It is
desirable to know whether zero-inflated negative binomial regression model fits the data statistically
better than usual negative binomial regression model. The Vuong test [35] is employed to determine
whether the formulated model (zero-inflated negative binomial regression model) fits the data better
than the usual negative binomial regression model. The Vuong test is the likelihood-ratio-based
test for model selection using the Kullback–Leibler information criterion. The test suggests that the
zero-inflated negative binomial model is a significant improvement over a standard negative binomial
model. The Vuong statistic tests the null hypothesis that the formulated zero-inflated negative binomial
model and the negative binomial model are equally close to the true data generating process, against
the alternative that the formulated zero-inflated negative binomial model is closer. The Vuong test is
asymptotically distributed as a standard normal distribution (that is, N (0,1)) under the null hypothesis
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that the models are equivalent. The test rejects the null hypothesis at 5% level of significance (p-value
< 2.22 × 10−16) and suggests that zero-inflated negative binomial model with lagged predictors fits the
data better than the usual negative binomial regression model.

The number of malaria cases decreases by a factor of 0.9742 for a one-unit increase in daily average
temperature at lag 18 when other variables are held constant. This implies that it is much likely to
have any malaria cases as the daily average temperature at lag 9, lag 12 and lag 14 increase. The odds
of being an excessive zero would decrease by 0.9404, 0.9335, 0.8481, 0.8872, 0.8668, 0.9242, 0.8729 and
0.9455 for every one-unit increase in daily rain amount at lag 9 and lag 16, daily average temperature
at lag 9, lag 10, lag 12, lag 15 and lag 18, and simulated daily mosquito at lag 9 respectively. Increase in
the odds of being an excessive zero means that it is less likely that there will be malaria cases. This
implies that the likelihood that daily malaria count would be zero in Mopani district municipality
decreases with an increase in daily rain amount at lag 9 and lag 16, daily average temperature at lag 9,
lag 10, lag 12, lag 15 and lag 18, and simulated daily mosquito at lag 9. Moreover, the log odds of being
an excessive zero would increase by 1.0366 and 1.0195 for every one-unit increase in the simulated
daily mosquito at lag 10 and lag 20, respectively.

3.3. Analysis over Vhembe District Municipality

A stepwise model selection procedure based on Akaike information criterion (AIC) was applied to
drop models with highest AIC values in the fitted zero-inflated negative binomial model for Vhembe
district. The RMSE of the full model for Vhembe district is 13.7776 while RMSE of the reduced model
is 13.79789. The AIC value for the full model is 42,218.47, while the AIC value for the reduced model is
42,232.6. As a result, the reduced model is preferred for Vhembe district.

Table 2 presents the estimates of the zero-inflated negative binomial model (reduced model) for
Vhembe district. The coefficients of daily average temperature at lag 9, lag 12 and lag 14, simulated
daily mosquito population at lag 20 in the count model predicting daily malaria count are statistically
significant at 5% level of significance. The coefficients of daily average temperature at lag 10, lag
12 and lag 14, and simulated daily mosquito population at lag 9 and lag 15 in the logit model part
predicting excessive zeroes are statistically significant. Other predictors are not statistically significant
and are therefore excluded from the model. The Vuong test is also employed to determine whether
a negative binomial regression model fits the Vhembe district malaria data statistically better than
the formulated zero-inflated negative binomial regression model. The test rejects the null hypothesis
at 5% level of significance (p-value < 2.22 × 10−16) and suggests that zero-inflated negative binomial
regression model fits the data better than the negative binomial regression model.

The number of malaria cases increases by 1.0247, 1.0189 and 1.0151 for a one-unit increase in daily
average temperature at lag 9, lag 12 and lag 14, respectively, when other variables are held constant.
This implies that it is more likely to have any malaria cases as the daily average temperature at lag 9,
lag 12 and lag 14 increase. The number of malaria cases decreases by a factor of 0.9979 for a one-unit
increase in simulated daily mosquito population at lag 20 when other variables are held constant. This
implies that it is less likely to have any malaria cases as the daily average temperature at lag 18 increase.
The odds of being an excessive zero would decrease by 0.7965, 0.8848, 0.8364 and 0.9541 for every
one-unit increase in daily average temperature at lag 10, daily average temperature at lag 12, daily
average temperature at lag 14 and simulated daily mosquito population at lag 9 respectively. This
implies that the likelihood that daily malaria count would be zero in Vhembe district municipality
decreases with an increase in daily average temperature at lag 10, daily average temperature at lag 12,
daily average temperature at lag 14 and simulated daily mosquito population at lag 9. Moreover, the
odds of being an excessive zero would increase by a factor of 1.0296 for every one-unit increase in the
simulated daily mosquito population at lag 15.

The dispersion parameter θ in Tables 1 and 2 gives an indication if zero-inflated negative binomial
model is fit for the data. If θ approaches infinity, then variance equals mean and as a result, zero-inflated
Poisson model will fit the data better. Additionally, θ is finite implies that the variance is greater than
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mean. As θ approaches 0, the farther the variance is from the mean. Exponentiating log(θ) in Tables 1
and 2, the values of θ are 0.4292 and 0.6257 for Mopani and Vhembe districts. Hence, the zero-inflated
negative binomial model is appropriate for the model and confirm the result in Section 3.1.

This complements the findings of previous studies. It was argued in [36] that a moderate
transmission intensity climate is crucial to malaria transmission. Based on the findings of [37,38]
concluded that climate predictor variables generate a better predictive power when modelling malaria
incidence in areas with unstable transmission compared to areas with stable endemicity. However, [36]
shows that the development of clinical immunity buffers any effect of climate under high endemicity. In
addition, [18] showed that there is a statistically significant correspondence between malaria rates and
the climate variables, mostly air temperature and precipitation. This is confirmed in the fitted models
for malaria incidence in Mopani and Vhembe districts. An increase in daily average temperature
and its lagged values significantly raise the chance of malaria transmission and thereby leads to an
increase in malaria incidence in Vhembe district. Furthermore, an increase in rainfall amount at lags 9
and 16 increases the probability of malaria cases occurring in the Mopani district. This is in line with
several other studies that have highlighted the importance of rainfall on malaria transmission and
other infectious diseases in western Kenya [39], Tanzania [40], East Africa [41] and Ghana [42].

Ljung–Box test [29] is employed to test if the residuals (ηt) of the zero-inflated negative binomial
model (Mt = E(Mt|xi) + ηt) are correlated. The Ljung–Box test shows that residuals of a fitted
model for each of Mopani district (p-value < 2.2 × 10−16) and Vhembe district (p-value < 2.2 ×
10−16) are autocorrelated. This confirms the result of plots of the autocorrelation function and partial
autocorrelation function in Figure 5. The ηt achieves stationarity at d = 1. The optimal models for ηt

are ARIMA(5,1,4) and ARIMA(2,1,1) for Mopani and Vhembe district municipalities, respectively. The
estimate of ARIMA(5,1,4) model for Mopani district are φ1 = −0.1991, φ2 = 0.5385, φ3 = −0.2459,
φ4 = −0.2614, φ5 = 0.0716, θ1 = −0.0854, θ2 = −0.6160, θ3 = 0.4068 and θ4 = 0.2872. The estimates
of ARIMA(2,1,1) model for Vhembe district are φ1 = 0.1252, φ2 = 0.0915 and θ1 = −0.5565.Int. J. Environ. Res. Public Health 2019, 16, x  14 of 19 
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Figure 6 presents the correlograms of the autocorrelation function and partial autocorrelation
function on the residuals of ZINB+ARIMA model on malaria incidence counts. The figure shows that
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residuals of the fitted ZINB+ARIMA model are not correlated. The Ljung–Box test confirms that the
residuals of models for Mopani district (p-value = 0.9946) and Vhembe district (p-value = 0.9477) are
not correlated. Figures 7 and 8 present the comparison between the observed and fitted malaria counts
over Mopani and Vhembe, respectively.
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Figure 7. Comparison between fitted and observed malaria count for Mopani District.
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Figure 8. Comparison between fitted and observed malaria count for Vhembe District.

3.4. Mosquito Abundance and Malaria Cases of Mopani and Vhembe

Findings further highlight the importance of mosquitoes in the transmission of malaria (Figure 9).
Results also show that abundance of An. arabiensis is positively correlated with malaria transmission
over the two study regions (Figure 9). The measure of the correlation (Spearman’s rank correlation
coefficients) between mosquito abundance and malaria count is 0.0835 (p-value = 9.515 × 10−13) in
Mopani district while the measure of the correlation between mosquito abundance and malaria count
is 0.1655 (p-value < 2.2 ×10−16) in Vhembe district. However, findings show that transmission is
possible over the study regions even with temperate amount of An. arabiensis. For instance, over
Mopani, malaria cases maintain a steady increase from 0 to almost 250 even below estimated 60,000
An. arabiensis (Figure 9a). Similarly, with just about 50,000 An. arabiensis, malaria cases went up to 350
in Vhembe (Figure 9b). This is also an indication that the impact of other malaria vectors over the
study regions cannot be overlooked. In other words, all control measures to eradicate malaria over
these regions should target An. arabiensis and other malaria-transmitting vectors. Although it has been
established that An. arabiensis is the primary malaria vector in South Africa [32], the findings here
suspect the presence of additional mosquito species transmitting malaria over the study regions as
recently found in KwaZulu-Natal and Mpumalanga province [32]. This is also in line with the findings
of [5] where several other mosquito species were found across five different regions in Limpopo
province [5].
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4. Conclusions

In this study, the importance of climate variables on population dynamics of An. arabiensis and
malaria transmission over Mopani and Vhembe (two epidemic regions in Limpopo) was investigated.
In particular, a zero-inflated negative binomial regression model was formulated for predicting daily
counts of malaria incidence in the two regions as a function of these variables. Results from the study
show that daily average temperature, rain amount and simulated daily mosquito population at various
lags affects the probability of having malaria count in the Mopani and Vhembe district municipalities.
The time series structure of the data from the two district municipalities makes each of the malaria
incidence count, simulated daily mosquito population and climate variables autocorrelated. Time
series models based on autoregressive integrated moving average (ARIMA) are employed on the
residuals of zero-inflated negative binomial models as a remedial measure. This gives better predictive
models and the associated residuals are not autocorrelated, as supported by the Ljung–Box test.

In general, since there are no exceptional variations in the climate variables in 2017 (for example,
daily average temperature (p-value = 0.0868), daily rain amount (p-value = 0.0867)), the sudden increase
of the cases might not totally depend on climate. There could be other factors associated with the
increase around this period. It could also be that malaria control activities were relaxed during this
period as suggested by the National Institute for Communicable Diseases (NICD) (NICD update, 2017).
A further reason could be that malaria transmission started in more areas in both study regions.
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Due to unavailability of actual mosquito data over the study regions, the present study considered
simulated mosquito data for its analyses. It is envisaged that actual data would produce more precise
results in this type of study.
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