Mercury Exposure in Mother-Children Pairs in A Seafood Eating Population: Body Burden and Related Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Measurement of Variables
2.2.1. Exposure Measure: Total Mercury Concentrations
2.2.2. Variables
2.3. Data Collection Procedures
Hair Sample Collection, Storage, and Handling
2.4. Hair Sample Laboratory Analysis
2.5. Statistical Analysis
3. Results
Demographic Characteristics and Mercury Distribution
4. Discussion
4.1. Seafood Diet and Mercury Exposure
4.2. Demographic Factors (Ethnicity and Gender)
4.3. Health Outcomes (Smoking, Child Behavior, and Obesity)
4.4. Relationship Between Mother and Child Mercury Concentrations
4.5. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Reiko, K.; Zhang, J.J.; Eun-Hee, H.; Pau-Chung, C.; Ying, T.; Yankai, X.; Kenji J., T.; Kunihiko, N.; Sungkyoon, K.; Soo-Jong, H.; et al. Birth cohort consortium of Asia: Current and future perspectives. Epidemiology 2017, 28, S19–S34. [Google Scholar]
- Karatela, S.; Paterson, J.; Ward, N.I. Domain specific effects of postnatal toenail methylmercury exposure on child behaviour. J. Trace Elem. Med. Biol. 2017, 45, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Deth, R.; Muratore, C.; Benzecry, J.; Power-Charnitsky, V.A.; Waly, M. How environmental and genetic factors combine to cause autism: A redox/methylation hypothesis. NeuroToxicology 2008, 29, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Davidson, P.W.; Jean Sloane, R.; Myers, G.J.; Hansen, O.N.; Huang, L.S.; Georger, L.A.; Clarkson, T.W. Association between prenatal exposure to methylmercury and visuospatial ability at 10.7 years in the seychelles child development study. Neurotoxicology 2008, 29, 453–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, J.; Schettler, T.; Wallinga, D.; Valenti, M. In harm’s way: Toxic threats to child development. J. Dev. Behav. Pediatr. 2002, 23, S13–S22. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health. A Focus on Pacific Nutrition: Findings from the 2008/09 New Zealand Adult Nutrition Survey. 2012. Available online: http://www.health.govt.nz/publication/focus-nutrition-key-findings-2008-09-nz-adult-nutrition-survey (accessed on 11 January 2013).
- Hightower, J.M.; O’Hare, A.; Hernandez, G.T. Blood mercury reporting in NHANES: Identifying Asian, Pacific Islander, Native American, and multiracial groups. Environ. Health Perspect. 2006, 114, 173–175. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, P.; Heindel, J.J. In utero and early-life conditions and adult health and disease. N. Engl. J. Med. 2008, 359, 152. [Google Scholar]
- World Health Organisation. International Programme on Chemical Safety—Mercury. 2014. Available online: https://www.who.int/ipcs/assessment/public_health/mercury/en/ (accessed on 24 June 2019).
- Axelrad, D.A.; Bellinger, D.C.; Ryan, L.M.; Woodruff, T.J. Dose-response relationship of prenatal mercury exposure and IQ: An integrative analysis of epidemiologic data. Environ. Health Perspect. 2007, 115, 609–615. [Google Scholar] [CrossRef]
- Poulin, J.; Gibb, H. Mercury: Assessing the Environmental Burden of Disease at National and Local Levels; Prüss-Üstün, A., Ed.; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Paterson, J.; Percival, T.; Schluter, P.; Sundborn, G.; Abbott, M.; Carter, S.; Cowley-Malcolm, E.; Jim, B.; Wanzhen, G.; the PIF Study Group. Cohort profile: The Pacific Islands Families (PIF) study. Int. J. Epidemiol. 2008, 37, 273–279. [Google Scholar] [CrossRef]
- Paterson, J.; Tukuitonga, C.R.; Abbott, M.; Burrows, J.; Williams, M.; Schluter, P. Pacific Islands families first two years of life study: Design and methodology. N. Z. Med. J. 2006, 119, U1814. [Google Scholar]
- World Health Organisation. Guidance for Identifying Populations at Risk from Mercury Exposure. 2008. Available online: http://www.who.int/foodsafety/publications/chem/mercuryexposure.pdf (accessed on 24 June 2019).
- Srogi, K. Mercury content of hair in different populations relative to fish consumption. Rev. Environ. Contam. Toxicol. 2007, 189, 107–130. [Google Scholar] [PubMed]
- Oken, E.; Wright, R.O.; Kleinman, K.P.; Bellinger, D.; Amarasiriwardena, C.J.; Hu, H.; Gillman, M.W. Maternal fish consumption, hair Mercury, and infant cognition in a U.S. cohort. Environ. Health Perspect. 2005, 113, 1376–1380. [Google Scholar] [CrossRef] [PubMed]
- Magos, L.; Clarkson, T.W. The assessment of the contribution of hair to methyl mercury excretion. Toxicol. Lett. 2008, 182, 48–49. [Google Scholar] [CrossRef] [PubMed]
- Groth, E. Ranking the contributions of commercial fish and shellfish varieties to mercury exposure in the United States: Implications for risk communication. Environ. Res. 2010, 110, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Environmental Protection Agency. Mercury Study Report to Congress. Vol. IV: An Assessment of Exposure to Mercury in the United States (EPA-452/R-97-006. U.S.). 1997. Available online: http://www.epa.gov/ttn/oarpg/t3/reports/volume4.pdf (accessed on 24 June 2019).
- Cole, T.J.; Bellizzi, M.C.; Katherine, M.F.; William, H.D. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2000, 320, 1240. [Google Scholar] [CrossRef]
- Buszewski, B.; Piekoszewski, W.; Pomastowski, P.; Rafinska, K.; Sugajski, M.; Kowalkowski, T. Recent Advances in Trace Elements; Katarzyna, C., Agnieszka, S., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2018; p. 584. ISBN 978-1-119-13379-7. [Google Scholar]
- StataCorp. Stata Statistical Software: Release 10; StataCorp LP: College Station, TX, USA, 2007. [Google Scholar]
- Karatela, S.; Ward, N.I.; Zeng, S.I.; Paterson, J. Status and interrelationship of toenail elements in Pacific children. J. Trace Elem. Med. Biol. 2018, 46, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Kjelstrom, T.; Kennedy, P.; Wallis, S.; Mantell, C. Physical and Mental Development of Children with Prenatal Exposure to Mercury from Fish—Stage 1: Preliminary Tests at Age 4 National Swedish Environmental Protection Board Report 3080. Available online: https://ci.nii.ac.jp/naid/10011990877/ (accessed on 25 June 2019).
- Thomson, B.; Horn, B.; van Abel, N. Modelling Mercury in Fish Imported into New Zealand. ESR Client Report FW08010. 2009. Available online: http://www.foodsafety.govt.nz/elibrary/industry/Mercury_Content-Quantifies_Residues.pdf (accessed on 24 June 2019).
- New Zealand Total Diet Study. Agricultural Compound Residues, Selected Contaminant and Nutrient Elements. 2009. Available online: http://www.foodsafety.govt.nz/elibrary/industry/total-diet-study.pdf (accessed on 24 June 2019).
- Charlton, K.E.; Russell, J.; Gorman, E.; Hanich, Q.; Delisle, A.; Campbell, B.; Bell, J.D. Fish, food security and health in Pacific Island countries and territories: A systematic literature review. BMC Public Health 2016, 16, 285. [Google Scholar] [CrossRef] [PubMed]
- Karatela, S.; Paterson, J.; Schluter, P.; Anstiss, R. Methylmercury exposure through seafood diet and health in New Zealand: Are seafood eating communities at a greater risk? Australas. Epidemiol. 2011, 18, 21–25. [Google Scholar]
- Lavoie, R.A.; Jardine, T.D.; Chumchal, M.M.; Kidd, K.A.; Campbell, L.M. Biomagnification of mercury in aquatic food webs: A worldwide meta-analysis. Environ. Sci. Technol. 2013, 47, 13385–13394. [Google Scholar] [CrossRef]
- Davidson, P.W.; Myers, G.J.; Weiss, B. Mercury exposure and child development outcomes. Pediatrics 2004, 113, 1023–1029. [Google Scholar]
- Vahter, M.; Akesson, A.; Liden, C.; Ceccatelli, S.; Berglund, M. Gender differences in the disposition and toxicity of metals. Environ. Res. 2007, 104, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, P.; Weihe, P.; White, R.F.; Debes, F. Cognitive performance of children prenatally exposed to “safe” levels of methylmercury. Environ. Res. 1998, 77, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Mckeown-Eyssen, G.; Ruedy, J.; Neims, A. Methylmercury exposure in northern Quebec—Neurologic findings in children. Am. J. Epidemiol. 1998, 118, 470–479. [Google Scholar] [CrossRef] [PubMed]
- Canuel, R.; de Grosbois, S.B.; Atikesse, L.; Lucotte, M.; Arp, P.; Ritchie, C.; Anderson, R. New evidence on variations of human body burden of methylmercury from fish consumption. Environ Health Perspect. 2006, 114, 302–306. [Google Scholar] [CrossRef] [PubMed]
- Walsh, A.C.; Feulner, J.A.; Reilly, A. Evidence for functional significant polymorphism of human glutamate cysteine ligase catalytic subunit: Association with glutathione levels and drug resistance. Toxicol. Sci. 2001, 61, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, A.; Kato, H.; Yokoyama, T.; Tsujinaka, T.; Muto, M.; Omori, T.; Yoshimizu, H. Genetic polymorphisms of alcohol and aldehyde dehydrogenases and glutathione S-transferase M1 and drinking, smoking, and diet in Japanese men with esophageal squamous cell carcinoma. Carcinogenesis 2002, 23, 1851–1859. [Google Scholar] [CrossRef] [Green Version]
- Ballatori, N.; Wang, W.; Lieberman, M.W. Accelerated methylmercury elimination in gamma-glutamyl transpeptidase-deficient mice. Am. J. Pathol. 1998, 152, 1049–1055. [Google Scholar]
- Innis, S.M.; Palaty, J.; Vaghri, Z.; Lockitch, G. Increased levels of mercury associated with high fish intakes among children from Vancouver, Canada. J. Pediatr. 2006, 148, 759–763. [Google Scholar] [CrossRef]
- Perello, G.; Marti-Cid, R.; Llobet, J.M.; Domingo, J.L. Effects of various cooking processes on the concentrations of arsenic, cadmium, mercury, and lead in foods. J. Agric. Food Chem. 2008, 56, 11262–11269. [Google Scholar] [CrossRef]
- Moretto, M.B.; Funchal, C.; Zeni, G.; Rocha, J.B.; Pessoa-Pureur, R. Organoselenium compounds prevent hyperphosphorylation of cytoskeletal proteins induced by the neurotoxic agent diphenyl ditelluride in cerebral cortex of young rats. Toxicology 2005, 210, 213–222. [Google Scholar] [CrossRef]
- de Freitas, A.S.; Funck, V.R.; Rotta Mdos, S.; Bohrer, D.; Morschbacher, V.; Puntel, R.L.; Nogueira, C.W.; Farina, M.; Aschner, M.; Rocha, J.B. Diphenyl diselenide, a simple organoselenium compound, decreases methylmercury-induced cerebral, hepatic and renal oxidative stress and mercury deposition in adult mice. Brain Res. Bull. 2009, 79, 77–84. [Google Scholar] [PubMed]
- Thomson, C.D. Assessment of requirements for selenium and adequacy of selenium status: A review. Eur. J. Clin. Nutr. 2004, 58, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Berry, M.J.; Ralston, N.V. Mercury toxicity and the mitigating role of selenium. Ecohealth 2008, 5, 456–459. [Google Scholar] [CrossRef] [PubMed]
- Choi, A.L.; Budtz-Jorgensen, E.; Jorgensen, P.J.; Steuerwald, U.; Debes, F.; Weihe, P.; Grandjean, P. Selenium as a potential protective factor against mercury developmental neurotoxicity. Environ. Res. 2008, 107, 45–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahaffey, K.R.; Clickner, R.P.; Jeffries, R.A. Methylmercury and omega-3 fatty acids: Co-occurrence of dietary sources with emphasis on fish and shellfish. Environ. Res. 2008, 107, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, P.; Landrigan, P. Developmental neurotoxicity of industrial chemicals. Lancet 2006, 368, 2167–2178. [Google Scholar] [CrossRef]
- Choi, A.L.; Grandjean, P. Methylmercury exposure and health effects in humans. Environ. Chem. 2008, 5, 112–120. [Google Scholar] [CrossRef] [Green Version]
- Bradley, M.A.; Barst, B.D.; Basu, N. A review of Mercury bioavailability in humans and fish. Int. J. Environ. Res. Public Health 2017, 14, 169. [Google Scholar] [CrossRef] [PubMed]
- Caruso, R.V.; O’Connor, R.J.; Stephens, W.E.; Cummings, K.M.; Fong, G.T. Toxic metal concentrations in cigarettes obtained from US smokers in 2009: Results from the International Tobacco Control (ITC) United States survey cohort. Int. J. Environ. Res. Public Health 2014, 11, 202–217. [Google Scholar] [CrossRef] [PubMed]
- Adamu, C.A.; Bell, P.F.; Mulchi, C.L.; Chaney, R.L. Residual metal levels in soils and leaf accumulations in tobacco a decade following farmland application of municipal sludge. Environ. Pollut. 1989, 56, 113–126. [Google Scholar] [CrossRef]
- Bell, P.F.; Mulchi, C.L.; Chaney, R.L. Microelement levels in Maryland air-cured tobacco. Commun. Soil Sci. Plant Anal. 1992, 23, 1617–1628. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, A.; Jones, R.L.; Radcliffe, J.; Caldwell, K.L.; Dietrich, K.N.; Rogan, W.J. Does background post-natal methyl mercury exposure in toddlers affect cognition and behavior? Neurotoxicology 2010, 31, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Barbone, F.; Valent, F.; Pisa, F.; Daris, F.; Fajon, V.; Ing, D. Prenatal low-level methylmercury exposure and child development in an Italian costal area. Seychelles. Med. Dent. J. 2004, 7, 149–154. [Google Scholar]
- Cho, S.; Jacobs, D.R.; Park, K., Jr. Population correlates of circulating mercury levels in Korean adults: The Korea National Health and Nutrition Examination Survey IV. BMC Public Health 2014, 14, 527. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, A.C.; Jardim, W.; Dórea, J.G.; Fosberg, B.; Souza, J. Hair mercury speciation as a function of gender, age, and body mass index in inhabitants of the Negro River basin, Amazon, Brazil. Arch. Environ. Contam. Toxicol. 2001, 40, 439–444. [Google Scholar] [PubMed]
- Sherman, L.S.; Blum, J.D.; Franzblau, A.; Basu, N. New insight into biomarkers of human mercury exposure using naturally occurring mercury stable isotopes. Environ. Sci. Technol. 2013, 47, 3403–3409. [Google Scholar] [CrossRef] [PubMed]
- Den Hond, E.; Govarts, E.; Willems, H.; Smolders, R.; Casteleyn, L.; Kolossa-Gehring, M.; Schwedler, G.; Seiwert, M.; Fiddicke, U.; Castaño, A.; et al. First steps toward harmonized human biomonitoring in Europe: Demonstration project to perform human biomonitoring on a European scale. Environ. Health Perspect. 2015, 123, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Monrroy, R.W.; Lopez, M.; Roulet, E. Benefice lifestyle and mercury contamination of Amerindian populations along the Beni River (Lowland Bolivia). J. Environ. Health 2008, 71, 44–50. [Google Scholar]
- Murata, K.; Sakamoto, M.; Nakai, K.; Weihe, P.; Dakeishi, M.; Iwata, T.; Xiao-Jie, L.; Tomoko, O.; Tomoko, K.; Kazuko, K.; et al. Effects of methymercury on neurodevelopment in Japanese children in relation to the Madeiran study. Int. Arch. Occup. Environ. Health 2004, 77, 571–579. [Google Scholar] [CrossRef]
- Lee, J.B.; Winstead, P.S.; Cook, A.M. Pharmacokinetic alterations in obesity. Orthopedics 2006, 29, 984–988. [Google Scholar]
- Hackshaw, A. Small studies: Strengths and limitations. Eur. Respir. J. 2008, 32, 1141–1143. [Google Scholar] [CrossRef] [PubMed]
- Mahaffey, K.R. Mercury exposure: Medical and public health issues. Trans. Am. Clin. Climatol. Assoc. 2005, 116, 127–154. [Google Scholar] [PubMed]
- Mahaffey, K.R.; Clickner, R.P.; Bodurow, C.C. Blood organic Mercury and dietary Mercury intake: National Health and nutrition examination survey, 1999 and 2000. Environ. Health Perspect. 2004 2003, 112, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Morrissette, J.; Takser, L.; St-Amour, G.; Smargiassi, A.; Lafond, J.; Mergler, D. Temporal variation of blood and hair mercury levels in pregnancy in relation to fish consumption history in a population living along the St. Lawrence River Environ. Res. 2004, 95, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.L.; James, R.C.; Roberts, S.M. Principles of Toxicology: Environmental and Industrial Application, 2nd ed.; John Wiley: New York, NY, USA, 2000. [Google Scholar]
- Burrows, T.L.; Martin, R.J.; Collins, C.E. A systematic review of the validity of dietary assessment methods in children when compared with the method of doubly labeled water. J. Am. Diet. Assoc. 2010, 110, 1501–1510. [Google Scholar] [CrossRef] [PubMed]
- Trabulsi, J.; Schoeller, D.A. Evaluation of dietary assessment instruments against doubly labeled water, a biomarker of habitual energy intake. Am. J. Physiol. Cell Physiol. 2001, 281, E891–E899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rush, E.; Plank, L.D.; Laulu, M.; Mitchelson, E.; Coward, W.A. Accuracy of dietary energy reporting in young New Zealand men and women: Relationships to body composition, physical activity level and ethnicity. Int. J. Body Compos. Res. 2004, 2, 125–130. [Google Scholar]
Variables | ⩽1 µg/g Hg n (%) | >1 µg/g Hg n (%) |
---|---|---|
Children | 36 (78) | 10 (22) |
Mothers | 18 (39) | 28 (61) |
Variables | n (%) | Median (25th, 75th) | p-Value a |
---|---|---|---|
Children | 46 | 0.32 (0.2, 0.6) | |
Gender | 0.3 ^ | ||
Girls | 26 (57) | 0.3 (0.2, 0.5) | |
Boys | 20 (43) | 0.3(0.2, 0.4) | |
IOTF obesity | 0.04 * | ||
Normal | 14 (30.4) | 0.3 (0.3, 0.6) | |
Overweight | 18 (39.1) | 0.4 (0.2, 0.7) | |
Obese | 14 (30.4) | 0.6 (0.5, 0.8) | |
Child behavior | 0.7 ^ | ||
Yes | 7 (15) | 0.4 (0.2, 0.6) | |
No | 39 (85) | 0.3 (0.2, 0.7) | |
Ethnicity | 0.3 * | ||
Samoan | 29 (63) | 0.3 (0.2, 0.5) | |
Tongan | 14 (30) | 0.3 (0.1, 1.2) | |
Others | 3 (7) | 1.03 (0.2, 2) | |
Type of fish eaten | 0.5 * | ||
Snapper | 11 (23.9) | 0.4 (0.2, 1.02) | |
Mullet | 19 (41.3) | 0.3 (0.2, 0.7) | |
Salmon/Tuna | 16 (34.9) | 0.3 (0.2, 0.5) | |
Frequency of fish eaten | <0.05 ^ | ||
<3 times per week | 6 (13) | 0.4 (0.2, 1.3) | |
>3 times per week | 40 (87) | 0.3 (0.03, 1.7) | |
Fish and chips | 0.23 ^ | ||
<3 times per week | 21 (46) | 0.4(0.2, 0.7) | |
>3 times per week | 25 (54) | 0.3 (0.2, 0.6) | |
Fish cakes and sticks | 0.24 ^ | ||
<3 times per week | 33 (71.7) | 0.3 (0.2, 0.5) | |
>3 times per week | 13 (28.3) | 0.3 (0.2, 1.1) | |
Fish raw | 0.3 ^ | ||
<3 times per week | 25 (54.4) | 0.2 (0.2, 0.6) | |
>3 times per week | 21 (45.7) | 0.3 (0.2, 0.8) | |
Maternal smoking | 0.04 ^ | ||
Yes | 22 (48) | 0.2 (0.1, 0.5) | |
No | 24 (52) | 0.6 (0.2, 0.5) | |
Annual household income | 0.04 * | ||
<$20,000 | 12 (26) | 0.2 (0.2, 1.2) | |
$20,000 to $40,000 | 19 (41) | 0.4 (0.2, 0.5) | |
>$40,000 | 8 (17.4) | 0.7 (0.4, 0.8) |
Variables | n (%) | Median (25th, 75th) | p-Value a |
---|---|---|---|
Mothers | 46 | 0.43 (0.21, 0.8) | |
Age category | 0.04 * | ||
20 to 29 | 7 (15) | 0.4 (0.3, 1.4) | |
30 to 39 | 30 (65) | 0.4 (0.2, 1.6) | |
40 to 49 | 9 (20) | 0.6 (0.3, 1.8 | |
Ethnicity | 0.7 * | ||
Samoan | 29 (63) | 0.5 (0.2, 1.6) | |
Tongan | 14 (30) | 0.4 (0.3, 1.2) | |
Others | 3 (7) | 0.4 (0.3, 1.2) | |
Annual household income | 0.6 * | ||
<$20,000 | 12 (26) | 1.0 (0.2, 1.8) | |
$20,001–$40,000 | 19 (41) | 0.5 (0.2, 1.4) | |
>$40,000 | 8 (17) | 0.4 (0.3, 1.2) | |
Maternal smoking status | 0.5 ^ | ||
Smoking | 22 (48) | 0.5 (0.2, 1.8) | |
Non-smoking | 24 (52) | 0.4 (0.2, 1.5) | |
Fishing | 0.03 ^ | ||
Yes | 18 (39) | 0.5 (0.3, 1.6) | |
No | 28 (61) | 0.34 (0.2, 1.6) | |
Type of fish eaten | 0.3 * | ||
Tuna/Salmon | 9 (20) | 0.2 (0.2, 1.3) | |
Snapper | 10 (22) | 0.3 (0.4, 1.6) | |
Mullet | 27 (59) | 0.5 (0.3, 1.7) | |
Frequency of fish eaten | 0.02 ^ | ||
<3 times per week | 14 (30) | 0.3 (0.2, 1.7) | |
>3 times per | 32 (70) | 0.6 (0.4, 1.6) | |
Fish and chips | 0.2 ^ | ||
<1 times per week | 16 (17) | 0.4 (0.2, 0.9) | |
>3 times per week | 30 (33) | 0.7 (0.3, 2) | |
Fish cakes and sticks | 0.4 ^ | ||
<3 times per week | 34 (37) | 0.5 (0.2, 1.6) | |
>3 times per week | 12 (13) | 0.3 (0.2, 1.3) | |
Fish raw | 0.4 ^ | ||
<3 times per week | 24 (26) | 0.5 (0.2, 1.4) | |
>3 times per week | 22 (24) | 0.5 (0.3, 1.6) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karatela, S.; Ward, N.; Paterson, J. Mercury Exposure in Mother-Children Pairs in A Seafood Eating Population: Body Burden and Related Factors. Int. J. Environ. Res. Public Health 2019, 16, 2238. https://doi.org/10.3390/ijerph16122238
Karatela S, Ward N, Paterson J. Mercury Exposure in Mother-Children Pairs in A Seafood Eating Population: Body Burden and Related Factors. International Journal of Environmental Research and Public Health. 2019; 16(12):2238. https://doi.org/10.3390/ijerph16122238
Chicago/Turabian StyleKaratela, Shamshad, Neil Ward, and Janis Paterson. 2019. "Mercury Exposure in Mother-Children Pairs in A Seafood Eating Population: Body Burden and Related Factors" International Journal of Environmental Research and Public Health 16, no. 12: 2238. https://doi.org/10.3390/ijerph16122238
APA StyleKaratela, S., Ward, N., & Paterson, J. (2019). Mercury Exposure in Mother-Children Pairs in A Seafood Eating Population: Body Burden and Related Factors. International Journal of Environmental Research and Public Health, 16(12), 2238. https://doi.org/10.3390/ijerph16122238