Street Dust Heavy Metal Pollution Source Apportionment and Sustainable Management in A Typical City—Shijiazhuang, China
Abstract
:1. Introduction
- To determine the concentrations of seven heavy metals (Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in Shijiazhuang street dust.
- To study heavy metal spatial distribution characteristics in the study area, using its ring roads as markers.
- To assess the pollution level and enrichment degree for the targeted heavy metals by using the index of geoaccumulation (Igeo), and enrichment factor (EF) methods.
- To apply multivariate statistical analysis to determine street dust heavy metal sources in the study area, and to quantify the relative contribution from each source, using the APCS-MLR model.
- To identify heavy metal pollution control measures based on the metal distribution characteristics and source apportionments identified in this study.
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Chemical Analysis
2.4. Enrichment Factor
2.5. Geoaccumulation Index
2.6. APCS-MLR and CA
2.7. Statistical Methods
3. Results and Discussion
3.1. Heavy Metal Concentrations
3.2. Spatial Distribution
3.3. Enrichment Factors (EFs) and the Geoaccumulation Index (Igeo)
3.4. Source Apportionment
3.4.1. Correlation Coefficient Analysis
3.4.2. PCA and CA
3.5. Sustainable Management
3.5.1. Industrial Enterprises Accelerated Transformation and Upgrading
3.5.2. Improve the Urban Street Environment
3.5.3. Relieve POPULATION pressure
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shi, D.Q.; Lu, X.W. Accumulation degree and source apportionment of trace metals in smaller than 63 μm road dust from the areas with different land uses: A case study of Xi’an, China. Sci. Total. Environ. 2018, 636, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Furumai, H.; Kurisu, F.; Kasuga, I. Tracing source and distribution of heavy metals in road dust, soil and soakaway sediment through speciation and isotopic fingerprinting. Geoderma 2013, 211–212, 8–17. [Google Scholar] [CrossRef]
- Urrutia-Goyes, R.; Hernandez, N.; Carrillo-Gamboa, O.; Nigam, K.D.P.; Ornelas-Soto, N. Street dust from a heavily-populated and industrialized city: Evaluation of spatial distribution, origins, pollution, ecological risks and human health repercussions. Ecotoxicol. Environ. Saf. 2018, 159, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Hussain, K.; Rahman, M.; Prakash, A.; Hoque, R.R. Street dust bound PAHs, carbon and heavy metals in Guwahati city—Seasonality, toxicity and sources. Sustain. Cities Soc. 2015, 19, 17–25. [Google Scholar] [CrossRef]
- Lu, X.; Wang, L.; Li, L.Y.; Lei, K.; Huang, L.; Kang, D. Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. J. Hazard. Mater. 2010, 173, 744–749. [Google Scholar] [CrossRef]
- Lanzerstorfer, C. Heavy metals in the finest size fractions of road-deposited sediments. Environ. Pollut. 2018, 239, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Rachwał, M.; Kardel, K.; Magiera, T.; Bens, O. Application of magnetic susceptibility in assessment of heavy metal contamination of Saxonian soil (Germany) caused by industrial dust deposition. Geoderma 2017, 295, 10–21. [Google Scholar] [CrossRef]
- Kurt-Karakus, P.B. Determination of heavy metals in indoor dust from Istanbul, Turkey: Estimation of the health risk. Environ. Int. 2012, 50, 47–55. [Google Scholar] [CrossRef]
- Apeagyei, E.; Bank, M.S.; Spengler, J.D. Distribution of heavy metals in road dust along an urban-rural gradient in Massachusetts. Atmos. Environ. 2011, 45, 2310–2323. [Google Scholar] [CrossRef]
- Morman, S.A.; Plumlee, G.S. The role of airborne mineral dusts in human disease. Aeolian Res. 2013, 9, 203–212. [Google Scholar] [CrossRef]
- Amorello, D.; Barreca, S.; Orecchio, S.; Ferro, S. Platinum in indoor settled dust matter (homes and cars). Microchem. J. 2015, 123, 76–83. [Google Scholar] [CrossRef]
- Norouzi, S.; Khademi, H.; Faz Cano, A.; Acosta, J.A. Using plane tree leaves for biomonitoring of dust borne heavy metals: A case study from Isfahan, Central Iran. Ecol. Indic. 2015, 57, 64–73. [Google Scholar]
- Klos, A.; Ziembik, Z.; Rajfur, M.; Dolhanczuk-Srodka, A.; Bochenek, Z.; Bjerke, J.W.; Tommervik, H.; Zagajewski, B.; Ziolkowski, D.; Jerz, D.; et al. Using moss and lichens in biomonitoring of heavy-metal contamination of forest areas in southern and north-eastern Poland. Sci. Total Environ. 2018, 627, 438–449. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, Y.; Kang, D.; Wang, J.; Zhang, Y.; Du, D.; Pan, B.; Lin, Z.; Huang, C.; Dong, Q. Tetrabromobisphenol A and heavy metal exposure via dust ingestion in an e-waste recycling region in Southeast China. Sci. Total Environ. 2016, 541, 356–364. [Google Scholar] [PubMed]
- Du, Y.; Gao, B.; Zhou, H.; Ju, X.; Hao, H.; Yin, S. Health Risk Assessment of Heavy Metals in Road Dusts in Urban Parks of Beijing, China. Procedia Environ. Sci. 2013, 18, 299–309. [Google Scholar] [Green Version]
- Ma, J.; Singhirunnusorn, W. Distribution and Health Risk Assessment of Heavy Metals in Surface Dusts of Maha Sarakham Municipality. Procedia Soc. Behav. Sci. 2012, 50, 280–293. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Lu, X.; Lei, K. A comprehensive analysis of heavy metals in urban road dust of Xi’an, China: Contamination, source apportionment and spatial distribution. Sci. Total Environ. 2017, 609, 1361–1369. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Gao, B.; Wang, P.; Zhou, H.D.; Lu, J. Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China. Ecotoxicol. Environ. Saf. 2015, 112, 186–192. [Google Scholar] [CrossRef]
- Yang, Z.P.; Ge, H.K.; Lu, W.X.; Long, Y.Q. Assessment of Heavy Metals Contamination in Near-Surface Dust. Pol. J. Environ. Stud. 2015, 24, 1817–1829. [Google Scholar] [CrossRef]
- Wang, G.; Oldfield, F.; Xia, D.S.; Chen, F.H.; Liu, X.M.; Zhang, W.G. Magnetic properties and correlation with heavy metals in urban street dust: A case study from the city of Lanzhou, China. Atmos. Environ. 2012, 46, 289–298. [Google Scholar] [CrossRef]
- Yang, T.; Liu, Q.S.; Li, H.X.; Zeng, Q.L.; Chan, L.S. Anthropogenic magnetic particles and heavy metals in the road dust: Magnetic identification and its implications. Atmos. Environ. 2010, 44, 1175–1185. [Google Scholar] [CrossRef]
- Li, X.Y. Levels and spatial distribution of heavy metals in urban dust in China. Chin. J. Geochem. 2015, 34, 498–506. [Google Scholar] [CrossRef]
- Duan, Z.B.; Wang, J.; Zhang, Y.X.; Xuan, B. Assessment of Heavy Metals Contamination in Road Dust From Different Functional Areas in Guiyang, Southwest, China. Int. J. Environ. Sci. Educ. 2017, 12, 427–439. [Google Scholar]
- Jeong, H.Y.; Lee, J.H.; Kim, K.T.; Kim, E.S.; Ra, K.T. Identification on Metal Pollution Sources in Road Dust of Industrial Complex Using Magnetic Property Around Shihwa Lake Basin. J. Korean Soc. Mar. Environ. Energy 2019, 22, 18–33. [Google Scholar] [CrossRef]
- Wijaya, A.R.; Ouchi, A.K.; Tanaka, K.; Shinjo, R.; Ohde, S. Metal contents and Pb isotopes in road-side dust and sediment of Japan. J. Geochem. Explor. 2012, 118, 68–76. [Google Scholar] [CrossRef]
- Suryawanshi, P.V.; Rajaram, B.S.; Bhanarkar, A.D.; Chalapati Rao, C.V. Determining heavy metal contamination of road dust in Delhi, India. Atmósfera 2016, 29, 221–234. [Google Scholar] [CrossRef] [Green Version]
- Nazzal, Y.; Ghrefat, H.; Rosen, M.A. Heavy Metal Contamination of Roadside Dusts: A Case Study for Selected Highways of the Greater Toronto Area, Canada Involving Multivariate Geostatistics. Res. J. Environ. Sci. 2014, 8, 259–273. [Google Scholar] [CrossRef]
- Charlesworth, S.; Everett, M.; McCarthy, R.; Ordóñez, A.; de Miguel, E. A comparative study of heavy metal concentration and distribution in deposited street dusts in a large and a small urban area: Birmingham and Coventry, West Midlands, UK. Environ. Int. 2003, 29, 563–573. [Google Scholar] [CrossRef]
- Christoforidis, A.; Stamatis, N. Heavy metal contamination in street dust and roadside soil along the major national road in Kavala’s region, Greece. Geoderma 2009, 151, 257–263. [Google Scholar] [CrossRef]
- Sampson Atiemo, M.; Francis Ofosu, G.; Kuranchie-Mensah, H.; Osei Tutu, A.; Linda Palm, N.D.M.; Arthur Blankson, S. Contamination Assessment of Heavy Metals in Road Dust from Selected Roads in Accra, Ghana. Res. J. Environ. Earth Sci. 2011, 3, 473–480. [Google Scholar]
- Abdel-Latif, N.M.; Saleh, I.A. Heavy Metals Contamination in Roadside Dust along Major Roads and Correlation with Urbanization Activities in Cairo, Egypt. Am. J. Sci. 2012, 8, 379–389. [Google Scholar]
- Mafuyai, G.M.; Kamoh, N.M.; Kangpe, N.S.; Ayuba, S.M.; Eneji, I.S. Heavy metals contamination in roadside dust along major traffic roads in jos metropolitan area, Nigeria. Eur. J. Earthenviron. 2015, 2, 1–14. [Google Scholar]
- Lee, P.K.; Youm, S.J.; Jo, H.Y. Heavy metal concentrations and contamination levels from Asian dust and identification of sources: A case-study. Chemosphere 2013, 91, 1018–1025. [Google Scholar] [CrossRef] [PubMed]
- Naderizadeh, Z.; Khademi, H.; Ayoubi, S. Biomonitoring of atmospheric heavy metals pollution using dust deposited on date palm leaves in southwestern Iran. Atmósfera 2016, 29, 141. [Google Scholar] [CrossRef]
- Trujillo-Gonzalez, J.M.; Torres-Mora, M.A.; Keesstra, S.; Brevik, E.C.; Jimenez-Ballesta, R. Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses. Sci. Total Environ. 2016, 553, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Duong, T.T.; Lee, B.K. Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. J. Environ. Manag. 2011, 92, 554–562. [Google Scholar] [CrossRef]
- Jayarathne, A.; Egodawatta, P.; Ayoko, G.A.; Goonetilleke, A. Assessment of ecological and human health risks of metals in urban road dust based on geochemical fractionation and potential bioavailability. Sci. Total Environ. 2018, 635, 1609–1619. [Google Scholar] [CrossRef]
- CNEMC (China National Environmental Monitoring Centre). The Soil Background Value in China; China Environmental Science Press: Beijing, China, 1990. [Google Scholar]
- Müller, G. Index of geoaccumulation in sediments of the Rhine river. GeoJournal 1969, 2, 108–118. [Google Scholar]
- Hutson, N.D.; Krzyzynska, R.; Srivastava, R.K. Simultaneous Removal of SO2, NOX, and Hg from Coal Flue Gas Using a NaClO2-Enhanced Wet Scrubber. Ind. Eng. Chem. Res. 2008, 47, 5825–5831. [Google Scholar] [CrossRef]
- Xu, P.; Zhang, B.; Zeng, X.; Xu, Y.; Luo, G.; Yao, H. Influence of Hg occurrence in coal on accuracy of Hg direct measurement based on thermal decomposition. Int. J. Coal Geol. 2017, 170, 14–18. [Google Scholar] [CrossRef]
- Singh, K.P.; Malik, A.; Kumar, R.; Saxena, P.; Sinha, S. Receptor modeling for source apportionment of polycyclic aromatic hydrocarbons in urban environment. Environ. Monit. Assess. 2008, 136, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Wang, T.; Louie, P.K.K. Source apportionment of ambient non-methane hydrocarbons in Hong Kong: Application of a principal component analysis/absolute principal component sources (PCA/APCS) receptor model. Environ. Pollut. 2004, 129, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Lv, J. Multivariate receptor models and robust geostatistics to estimate source apportionment of heavy metals in soils. Environ. Pollut. 2018. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.J.; Peng, L.Q.; Feng, W.Z. A GIS-based study on the directional property of urban population density distribution: A case study with Shijiazhuang as working example. Areal Res. Dev. 2010, 29, 132–137. [Google Scholar]
Country | City | Pb | Zn | Cu | Ni | Cr | Cd | Hg | Size (μm) | Reference |
---|---|---|---|---|---|---|---|---|---|---|
China | Shijiazhuang | 154.78 | 496.17 | 91.06 | 40.99 | 131.70 | 1.86 | 0.29 | <74 | this study |
Xi’an | 97.4 | 169.2 | 46.6 | 29.3 | 177.5 | - | - | <74 | [17] | |
Beijing | 105 | 222 | 69.9 | 25.2 | 84.7 | 0.72 | - | <125 | [18] | |
Changchun | 93.6 | 465.35 | 68.4 | - | 95.98 | 0.62 | 0.24 | <74 | [19] | |
Lanzhou | 62.65 | 296.92 | 72.97 | - | 62.14 | - | - | <74 | [20] | |
Wuhan | 102.6 | 224.2 | 62.1 | 27.7 | 75.3 | - | - | - | [21] | |
Shanghai | 295 | 734 | 197 | 84 | 159 | 1.23 | - | [22] | ||
Chengdu | 375 | 1117 | 244 | 88.1 | 114 | 4.4 | <74 | [22] | ||
Guizhou | 67.81 | 185.98 | 129.80 | 61.07 | 131.23 | 0.62 | 0.38 | <149 | [23] | |
Korea | Seoul | 144 | 795 | 396 | - | 151 | - | - | - | [17] |
Shihwa | 612 | 1824 | 992 | 164 | 498 | 2.22 | 0.08 | - | [24] | |
Japan | Tokyo | 264 | 2200 | - | 43 | 73.9 | 1.4 | - | <50 | [25] |
Osaka | 229 | 1070 | 19 | 35.1 | 1.04 | - | <50 | [25] | ||
Kyoto | 156 | 2250 | 76.7 | 54.8 | 1.03 | - | <50 | [25] | ||
India | Delhi | 120.7 | 284.5 | 191.7 | 36.4 | 148.8 | 2.65 | - | <74 | [26] |
Canada | Toronto | 182.8 | 200.3 | 162 | 58.8 | 197.9 | 0.51 | - | <150 | [27] |
England | Birmingham | 48 | 534 | 467 | 41.1 | - | 1.62 | - | - | [28] |
Greece | Kavala | 301 | 272 | 124 | 58 | 196 | 0.2 | 0.1 | <63 | [29] |
Ghana | Accra | 58.66 | 161.43 | 48.25 | 15.88 | 166.80 | - | - | <40 | [30] |
Egypt | Cairo | 234.6 | 638.4 | - | 25.38 | 36.95 | 0.82 | - | <125 | [31] |
Nigeria | Jos | 61 | 72 | 56.5 | 1.23 | 2.0 | 1.54 | - | - | [32] |
n = 234 | Cd | Hg | Cr | Pb | Zn | Cu | Ni |
---|---|---|---|---|---|---|---|
Mean | 1.86 | 0.29 | 131.70 | 154.78 | 496.17 | 91.06 | 40.99 |
Median | 0.98 | 0.22 | 95.90 | 113.00 | 424.50 | 65.00 | 32.55 |
SD | 5.56 | 0.27 | 292.44 | 199.59 | 347.27 | 162.68 | 82.91 |
Variable Coefficient | 2.99 | 0.96 | 2.22 | 1.29 | 0.70 | 1.79 | 2.02 |
Skewness | 13.32 | 3.19 | 14.32 | 5.85 | 1.62 | 9.08 | 14.28 |
Kurtosis | 192.36 | 12.71 | 213.64 | 46.56 | 3.56 | 97.82 | 211.87 |
Range | 82.39 | 1.912 | 4437.60 | 2114.50 | 2074.70 | 2043.60 | 1256.90 |
Minimum | 0.11 | 0.04 | 49.40 | 17.50 | 37.30 | 11.40 | 16.10 |
Maximum | 82.50 | 1.95 | 4487.00 | 2132.00 | 2112.00 | 2055.00 | 1273.00 |
Background | 0.09 | 0.04 | 68.30 | 21.50 | 71.90 | 21.80 | 30.80 |
Rings (Samples) | The mean heavy metals values for samples from each ring | ||||||
1st (15) | 1.26 | 0.40 | 110.11 | 191.47 | 673.67 | 72.69 | 39.73 |
2nd (90) | 2.65 | 0.36 | 169.54 | 175.85 | 507.54 | 95.83 | 48.76 |
3rd (104) | 1.35 | 0.25 | 107.88 | 157.72 | 477.84 | 102.20 | 36.83 |
out of 3rd (25) | 1.43 | 0.17 | 96.63 | 72.86 | 444.63 | 47.88 | 32.46 |
Components | 1 | 2 | 3 |
---|---|---|---|
Cd | 0.822 | 0.201 | 0.012 |
Hg | 0.224 | 0.123 | 0.934 |
Cr | 0.246 | 0.827 | 0.085 |
Pb | 0.754 | 0.186 | 0.333 |
Zn | 0.817 | 0.202 | 0.248 |
Cu | 0.437 | 0.552 | 0.379 |
Ni | 0.124 | 0.910 | 0.079 |
Eigenvalues | 2.229 | 1.948 | 1.202 |
% of Variance | 31.842 | 27.824 | 17.175 |
Cumulative % | 31.842 | 59.666 | 76.841 |
Elements | Mixed | Natural | Burning Coal | X | R2 | S/P |
---|---|---|---|---|---|---|
Cd | 53.55 | 7.84 | 30.09 | 8.51 | 0.706 | 1.00 |
Hg | 17.33 | 11.62 | 63.38 | 7.67 | 0.933 | 1.00 |
Cr | 20.42 | 66.91 | 7.98 | 4.68 | 0.747 | 1.00 |
Pb | 59.70 | 24.61 | 13.41 | 2.27 | 0.676 | 1.00 |
Zn | 62.25 | 21.17 | 6.95 | 9.62 | 0.768 | 1.00 |
Cu | 14.13 | 58.01 | 12.01 | 15.84 | 0.678 | 1.00 |
Ni | 23.52 | 65.09 | 6.11 | 5.28 | 0.753 | 1.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, K.; Li, C. Street Dust Heavy Metal Pollution Source Apportionment and Sustainable Management in A Typical City—Shijiazhuang, China. Int. J. Environ. Res. Public Health 2019, 16, 2625. https://doi.org/10.3390/ijerph16142625
Cai K, Li C. Street Dust Heavy Metal Pollution Source Apportionment and Sustainable Management in A Typical City—Shijiazhuang, China. International Journal of Environmental Research and Public Health. 2019; 16(14):2625. https://doi.org/10.3390/ijerph16142625
Chicago/Turabian StyleCai, Kui, and Chang Li. 2019. "Street Dust Heavy Metal Pollution Source Apportionment and Sustainable Management in A Typical City—Shijiazhuang, China" International Journal of Environmental Research and Public Health 16, no. 14: 2625. https://doi.org/10.3390/ijerph16142625
APA StyleCai, K., & Li, C. (2019). Street Dust Heavy Metal Pollution Source Apportionment and Sustainable Management in A Typical City—Shijiazhuang, China. International Journal of Environmental Research and Public Health, 16(14), 2625. https://doi.org/10.3390/ijerph16142625