Polymorphic Variants of V-Maf Musculoaponeurotic Fibrosarcoma Oncogene Homolog B (rs13041247 and rs11696257) and Risk of Non-Syndromic Cleft Lip/Palate: Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection
2.3. Eligibility Criteria
2.4. Data Extraction
2.5. Quality Assessment
2.6. Qualitative Synthesis
2.7. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Meta-Analysis Results
3.4. Subgroup Analysis
3.5. Quality Assessment
3.6. Sensitivity Analysis
3.7. Meta-Regression
3.8. Publication Bias
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Soghani, B.; Ebadifar, A.; Khorram Khorshid, H.R.; Kamali, K.; Hamedi, R.; Aghakhani Moghadam, F. The study of association between reduced folate carrier 1 (RFC1) polymorphism and non-syndromic cleft lip/palate in Iranian population. Bioimpacts 2017, 7, 263–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.Y.; Qin, C.Q.; Deng, M.H.; Niu, Y.M.; Long, X. Association between BMP4 rs17563 polymorphism and NSCL/P risk: A meta-analysis. Dis. Markers 2015, 2015, 763090. [Google Scholar] [CrossRef] [PubMed]
- Indencleef, K.; Roosenboom, J.; Hoskens, H.; White, J.D.; Shriver, M.D.; Richmond, S.; Peeters, H.; Feingold, E.; Marazita, M.L.; Shaffer, J.R.; et al. Six NSCL/P Loci Show Associations with Normal-Range Craniofacial Variation. Front. Genet. 2018, 9, 502. [Google Scholar] [CrossRef] [PubMed]
- Mossey, P.A.; Little, J.; Munger, R.G.; Dixon, M.J.; Shaw, W.C. Cleft lip and palate. Lancet 2009, 374, 1773–1785. [Google Scholar] [CrossRef]
- Imani, M.M.; Mozaffari, H.R.; Sharifi, R.; Sadeghi, M. Polymorphism of reduced folate carrier 1 (A80G) and non-syndromic cleft lip/palate: A systematic review and meta-analysis. Arch. Oral Biol. 2019, 98, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; He, D.; Chen, L.; Mang, Y.; Yang, M.; Yang, K. Transforming Growth Factor Alpha Taq I Polymorphisms and Nonsyndromic Cleft Lip and/or Palate Risk: A Meta-Analysis. Cleft Palate Craniofac. J. 2018, 55, 814–820. [Google Scholar]
- Li, Y.H.; Yang, J.; Zhang, J.L.; Liu, J.Q.; Zheng, Z.; Hu, D.H. BMP4 rs17563 polymorphism and nonsyndromic cleft lip with or without cleft palate: A meta-analysis. Med. Baltim. 2017, 96, e7676. [Google Scholar] [CrossRef] [PubMed]
- Bakri, Y.; Sarrazin, S.; Mayer, U.P.; Tillmanns, S.; Nerlov, C.; Boned, A.; Sieweke, M.H. Balance of MafB and PU.1 specifies alternative macrophage or dendritic cell fate. Blood 2005, 105, 2707–2716. [Google Scholar] [CrossRef]
- Yang, Y.; Cvekl, A. Large Maf transcription factors: Cousins of AP-1 proteins and important regulators of cellular differentiation. Einstein J. Biol. Med. 2007, 23, 2–11. [Google Scholar] [CrossRef]
- Suda, N.; Itoh, T.; Nakato, R.; Shirakawa, D.; Bando, M.; Katou, Y.; Kataoka, K.; Shirahige, K.; Tickle, C.; Tanaka, M. Dimeric combinations of MafB, cFos and cJun control the apoptosis-survival balance in limb morphogenesis. Development 2014, 141, 2885–2894. [Google Scholar] [CrossRef] [Green Version]
- Tsuchiya, M.; Misaka, R.; Nitta, K.; Tsuchiya, K. Transcriptional factors, Mafs and their biological roles. World J. Diabetes 2015, 6, 175–183. [Google Scholar] [CrossRef]
- Gemelli, C.; Montanari, M.; Tenedini, E.; Zanocco Marani, T.; Vignudelli, T.; Siena, M.; Zini, R.; Salati, S.; Tagliafico, E.; Manfredini, R.; et al. Virally mediated MafB transduction induces the monocyte commitment of human CD34+ hematopoietic stem/progenitor cells. Cell Death Differ. 2006, 13, 1686–1696. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Zhang, W.; Du, Y.; Tong, N.; Han, Y.; Zhang, H.; Wang, M.; Ma, J.; Wan, L.; Wang, L. Different roles of two novel susceptibility loci for nonsyndromic orofacial clefts in a Chinese Han population. Am. J. Med. Genet. A 2011, 155A, 2180–2185. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Wells, G.A.; Shea, B.; O’Connell, D.; Robertson, J.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P.; The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Non-Randomised Studies in Meta-Analyses. Ottawa: Ottawa Hospital Research Institute. 2011. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 12 January 2016).
- Lei, S.; Huang, L.; Liu, Y.; Xu, L.; Wang, D.; Yang, L. Association between polymorphisms of heat-shock protein 70 genes and noise-induced hearing loss: A meta-analysis. PLoS ONE 2017, 12, e0188539. [Google Scholar] [CrossRef] [PubMed]
- Mantel, N.; Haenszel, W. Statistical Aspects of the Analysis of Data from Retrospective Studies of Disease. J. Natl. Cancer Inst. 1959, 15, 639–640. [Google Scholar]
- DerSimonian, R.; Kacker, R. Random-effects model for meta-analysis of clinical trials: An update. Contemp. Clin. Trials 2007, 28, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [Green Version]
- Huang, E.; Cheng, H.; Xu, M.; Shu, S.; Tang, S. Association between single-nucleotide polymorphisms on chromosome 1p22 and 20q12 and nonsyndromic cleft lip with or without cleft palate: New data in Han Chinese and meta-analysis. Birth Defects Res. Part A Clin. Mol. Teratol. 2012, 94, 469–476. [Google Scholar] [CrossRef]
- Mi, N.; Hao, Y.; Jiao, X.; Zheng, X.; Song, T.; Shi, J.; Dong, C. Association study of single nucleotide polymorphisms of MAFB with non-syndromic cleft lip with or without cleft palate in a population in Heilongjiang Province, northern China. Br. J. Oral Maxillofac. Surg. 2014, 52, 746–750. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, Y.; Yin, A.; Pan, Y.; Wang, Y.; Wang, C.; Du, Y.; Wang, M.; Lan, F.; Hu, Z.; et al. Genome-wide association study identifies a new susceptibility locus for cleft lip with or without a cleft palate. Nat. Commun. 2015, 6, 6414. [Google Scholar] [CrossRef] [Green Version]
- Fontoura, C.; Silva, R.M.; Granjeiro, J.M.; Letra, A. Further evidence of association of the ABCA4 gene with cleft lip/palate. Eur. J. Oral Sci. 2012, 120, 553–557. [Google Scholar] [CrossRef]
- Babu Gurramkonda, V.; Hussain Syed, A.; Murthy, J.; Chaubey, G.; Bhaskar Lakkakula, V.K. Polymorphic variants near 1p22 and 20q11.2 loci and the risk of non-syndromic cleft lip and palate in South Indian population. Int. J. Pediatr. Otorhinolaryngol. 2015, 79, 2389–2393. [Google Scholar] [CrossRef]
- Reiter, R.; Brosch, S.; Goebel, I.; Ludwig, K.U.; Pickhard, A.; Högel, J.; Schlömer, G.; Mangold, E.; Kubisch, C.; Borck, G. A post GWAS association study of SNPs associated with cleft lip with or without cleft palate in submucous cleft palate. Am. J. Med. Genet. A 2015, 167A, 670–673. [Google Scholar] [CrossRef]
- Ludwig, K.U.; Wahle, P.; Reutter, H.; Paredes-Zenteno, M.; Muñoz-Jimenez, S.G.; Ortiz-Lopez, R.; Böhmer, A.C.; Tessmann, P.; Nowak, S.; Nöthen, M.M.; et al. Evaluating eight newly identified susceptibility loci for nonsyndromic cleft lip with or without cleft palate in a Mesoamerican population. Birth Defects Res. Part A Clin. Mol. Teratol. 2014, 100, 43–47. [Google Scholar] [CrossRef]
- do Rego Borges, A.; Sá, J.; Hoshi, R.; Viena, C.S.; Mariano, L.C.; de Castro Veiga, P.; Medrado, A.P.; Machado, R.A.; de Aquino, S.N.; Messetti, A.C.; et al. Genetic risk factors for nonsyndromic cleft lip with or without cleft palate in a Brazilian population with high African ancestry. Am. J. Med. Genet. A 2015, 167A, 2344–2349. [Google Scholar] [CrossRef]
- Butali, A.; Mossey, P.A.; Adeyemo, W.L.; Jezewski, P.A.; Onwuamah, C.K.; Ogunlewe, M.O.; Ugboko, V.I.; Adejuyigbe, O.; Adigun, A.I.; Abdur-Rahman, L.O.; et al. Genetic studies in the Nigerian population implicate an MSX1 mutation in complex oral facial clefting disorders. Cleft Palate Craniofac. J. 2011, 48, 646–653. [Google Scholar] [CrossRef]
- Beaty, T.H.; Murray, J.C.; Marazita, M.L.; Munger, R.G.; Ruczinski, I.; Hetmanski, J.B.; Liang, K.Y.; Wu, T.; Murray, T.; Fallin, M.D.; et al. A genome-wide association study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4. Nat. Genet. 2010, 42, 525–529. [Google Scholar] [CrossRef]
- Rahimov, F.; Jugessur, A.; Murray, J.C. Genetics of nonsyndromic orofacial clefts. Cleft Palate Craniofac. J. 2012, 49, 73–91. [Google Scholar] [CrossRef]
- Zhang, B.; Duan, S.; Shi, J.; Jiang, S.; Feng, F.; Shi, B.; Jia, Z. Family-based study of association between MAFB gene polymorphisms and NSCL/P among Western Han Chinese population. Adv. Clin. Exp. Med. 2018, 27, 1109–1116. [Google Scholar]
- Li, Q.; Kim, Y.; Suktitipat, B.; Hetmanski, J.B.; Marazita, M.L.; Duggal, P.; Beaty, T.H.; Bailey-Wilson, J.E. Gene-gene interaction among WNT genes for oral cleft in trios. Genet. Epidemiol. 2015, 39, 385–394. [Google Scholar] [CrossRef]
- Nishikawa, K.; Nakashima, T.; Hayashi, M.; Fukunaga, T.; Kato, S.; Kodama, T.; Takahashi, S.; Calame, K.; Takayanagi, H. Blimp1-mediated repression of negative regulators is required for osteoclast differentiation. Proc. Natl. Acad. Sci. USA 2010, 107, 3117–3122. [Google Scholar] [CrossRef] [Green Version]
- Artner, I.; Blanchi, B.; Raum, J.C.; Guo, M.; Kaneko, T.; Cordes, S.; Sieweke, M.; Stein, R. MafB is required for islet b cell maturation. Proc. Natl. Acad. Sci. USA 2007, 104, 3853–3858. [Google Scholar] [CrossRef]
- Sarrazin, S.; Mossadegh-Keller, N.; Fukao, T.; Aziz, A.; Mourcin, F.; Vanhille, L.; Kelly Modis, L.; Kastner, P.; Chan, S.; Duprez, E.; et al. MafB restricts M-CSF-dependent myeloid commitment divisions of hematopoietic stem cells. Cell 2009, 138, 300–313. [Google Scholar] [CrossRef]
- Yang, Q.; Yin, R.X.; Zhou, Y.J.; Cao, X.L.; Guo, T.; Chen, W.X. Association of polymorphisms in the MAFB gene and the risk of coronary artery disease and ischemic stroke: A case-control study. Lipids Health Dis. 2015, 14, 79. [Google Scholar] [CrossRef]
First Author, Publication Year | Ethnicity | Source of Controls | NSCL/P | Control | Genotyping Method | p-Value for HWE in Controls | ||
---|---|---|---|---|---|---|---|---|
TT/TC/CC | AA/Aa/aa | TT/TC/CC | AA/Aa/aa | |||||
Butali, 2011 [28] | African | PB | 4/30/54 | - | 6/35/47 | - | PCR | 0.880 |
Pan, 2011 [13] | Asian | HB | 158/159/50 | - | 91/202/89 | - | PCR | 0.260 |
Fontoura, 2012 [23] | “Caucasian” | HB | 182/165/38 | 185/163/32 | 166/180/42 | 181/185/41 | TaqMan | 0.511/0.530 |
Huang, 2012 [20] | Asian | PB | 118/149/33 | - | 105/19/70 | - | Mass spectrometry | 0.689 |
Ludwig, 2014 [26] | Mixed | PB | 66/67/15 | - | 129/139/51 | - | PCR-RFLP | 0.192 |
Mi, 2014 [21] | Asian | HB | 84/162/78 | 85/162/77 | 112/168/63 | 103/170/71 | Mini-sequencing | 1.000/0.956 |
Babu Gurramkond, 2015 [24] | “Caucasian” | HB | 75/65/4 | 75/65/4 | 79/77/20 | 79/77/20 | KASPar | 0.850/0.850 |
do Rego Borges, 2015 [27] | Mixed | PB | 164/100/29 | - | 190/137/25 | - | Real-Time PCR | 0.964 |
Reiter, 2015 [25] | “Caucasian” | PB | 53/46/20 | - | 161/176/46 | - | PCR | 0.843 |
Sun, 2015 (I) * [22] | Asian | PB | 203/250/77 | - | 151/258/110 | - | Affymetrix Genome-Wide | 0.991 |
Sun, 2015 (II) ** [22] | Asian | PB | 121/189/74 | - | 216/399/185 | - | Affymetrix Genome-Wide | 0.977 |
Subgroup Analysis (n) | C vs. T | CC vs. TT | TC vs. TT | TC + CC vs. TT | CC vs. TT + TC |
---|---|---|---|---|---|
OR (95% CI), I2 (%), Ph | OR (95% CI), I2 (%), Ph | OR (95% CI), I2 (%), Ph | OR (95% CI), I2 (%), Ph | OR (95% CI), I2 (%), Ph | |
Overall (11) | 0.88 (0.75, 1.02), 78, <0.00001 | 0.68 (0.48, 0.97), 80, <0.00001 | 0.81 (0.69, 0.95), 51, 0.02 | 0.79 (0.65, 0.95), 70, 0.0003 | 0.82 (0.62, 1.07), 74, <0.0001 |
Ethnicity | |||||
Asian (5) | 0.78 (0.60, 1.01), 88, <0.00001 | 0.59 (0.35, 1.01), 88, <0.00001 | 0.76 (0.56, 1.03), 78, 0.001 | 0.72 (0.51, 1.03), 86, <0.0001 | 0.72 (0.51, 1.02), 79, 0.0009 |
“Caucasian” (3) | 0.95 (0.81, 1.11), 0, 0.62 | 0.70 (0.32, 1.56), 75, 0.02 | 0.84 (0.67, 1.04), 0, 0.94 | 0.83 (0.68, 1.02), 0, 0.83 | 0.77 (0.34, 1.73), 78, 0.01 |
Mixed (2) | 0.92 (0.76, 1.11), 34, 0.22 | 0.76 (0.49, 1.16), 24, 0.25 | 0.88 (0.68, 1.14), 0, 0.69 | 0.86 (0.69, 1.06), 0, 0.75 | 0.93 (0.39, 2.22), 77, 0.04 |
Source of controls | |||||
Hospital-based (4) | 0.89 (0.60, 1.31), 91, <0.00001 | 0.59 (0.25, 1.42), 91, <0.00001 | 0.81 (0.52, 1.25), 84, 0.0004 | 0.77 (0.47, 1.28), 89, <0.00001 | 0.70 (0.38, 1.30), 84, 0.0002 |
Population-based (7) | 0.85 (0.74, 0.99), 57, 0.03 | 0.69 (0.49, 0.97), 64, 0.01 | 0.80 (0.70, 0.92), 0, 0.91 | 0.78 (0.68, 0.88), 0, 0.47 | 0.86 (0.63, 1.17), 69, 0.004 |
Genotyping method | |||||
PCR-based (5) | 0.89 (0.65, 1.21), 83, 0.0001 | 0.76 (0.41, 1.43), 79, 0.0007 | 0.74 (0.53, 1.03), 63, 0.03 | 0.77 (0.52, 1.14), 77, 0.002 | 0.96 (0.59, 1.58), 77, 0.002 |
Others (6) | 0.88 (0.73, 1.05), 78, 0.0005 | 0.63 (0.40, 1.01) 83, <0.0001 | 0.85 (0.74, 0.97), 31, 0.20 | 0.81 (0.66, 1.01), 65, 0.01 | 0.73 (0.51, 1.03), 76, 0.001 |
First Author (year) | Selection | Comparability | Exposure | Total Points |
---|---|---|---|---|
Butali, 2011 [28] | *** | * | *** | 7 |
Pan, 2011 [13] | *** | ** | *** | 8 |
Fontoura, 2012 [23] | ** | * | ** | 5 |
Huang, 2012 [20] | **** | * | *** | 8 |
Ludwig, 2014 [26] | **** | - | *** | 7 |
Mi, 2014 [21] | *** | ** | *** | 8 |
Babu Gurramkond, 2015 [24] | *** | ** | *** | 8 |
do Rego Borges, 2015 [27] | **** | - | *** | 7 |
Reiter, 2015 [25] | *** | * | *** | 7 |
Sun, 2015 [22] | **** | * | *** | 8 |
Variable | C vs. T | CC vs. TT | TC vs. TT | TC + CC vs. TT | CC vs. TT + TC |
---|---|---|---|---|---|
Year of publication | r = 0.153 (p = 0.652) | r = 0.070 (p = 0.837) | r = 0.026 (p = 0.939) | r = 0.068 (p = 0.842) | r = 0.067 (p = 0.844) |
sample size | r = −0.531 (p = 0.093) | r = −0.305 (p = 0.362) | r = −0.447 (p = 0.168) | r = −0.465 (p = 0.149) | r = −0.179 (p = 0.599) |
p-value of the HWE in controls | r = 0.548 (p = 0.081) | r = 0.408 (p = 0.212) | r = 0.411 (p = 0.209) | r = 0.439 (p = 0.176) | r = 0.434 (p = 0.182) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imani, M.M.; Lopez-Jornet, P.; Pons-Fuster López, E.; Sadeghi, M. Polymorphic Variants of V-Maf Musculoaponeurotic Fibrosarcoma Oncogene Homolog B (rs13041247 and rs11696257) and Risk of Non-Syndromic Cleft Lip/Palate: Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2019, 16, 2792. https://doi.org/10.3390/ijerph16152792
Imani MM, Lopez-Jornet P, Pons-Fuster López E, Sadeghi M. Polymorphic Variants of V-Maf Musculoaponeurotic Fibrosarcoma Oncogene Homolog B (rs13041247 and rs11696257) and Risk of Non-Syndromic Cleft Lip/Palate: Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health. 2019; 16(15):2792. https://doi.org/10.3390/ijerph16152792
Chicago/Turabian StyleImani, Mohammad Moslem, Pia Lopez-Jornet, Eduardo Pons-Fuster López, and Masoud Sadeghi. 2019. "Polymorphic Variants of V-Maf Musculoaponeurotic Fibrosarcoma Oncogene Homolog B (rs13041247 and rs11696257) and Risk of Non-Syndromic Cleft Lip/Palate: Systematic Review and Meta-Analysis" International Journal of Environmental Research and Public Health 16, no. 15: 2792. https://doi.org/10.3390/ijerph16152792
APA StyleImani, M. M., Lopez-Jornet, P., Pons-Fuster López, E., & Sadeghi, M. (2019). Polymorphic Variants of V-Maf Musculoaponeurotic Fibrosarcoma Oncogene Homolog B (rs13041247 and rs11696257) and Risk of Non-Syndromic Cleft Lip/Palate: Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health, 16(15), 2792. https://doi.org/10.3390/ijerph16152792