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Abstract: The paper presents a new method of measuring a motorcycle driver’s exposure to vibration
and noise. This method uses the simultaneous measurement of vibration and noise at the points
of their direct influence on the motorcycle driver, and the measurement is carried out in real traffic
conditions. The vibration of the motorcycle’s handlebars, footrest and seat as well as the noise reaching
the beginning of the motorcyclist’s ear canal are recorded. These signals correspond to the direct
impact of vibration energy on the upper and lower limbs as well as the torso of a motorcycle driver
and the acoustic energy reaching the motorcyclist’s hearing organs. The paper also proposes a signal
processing method which enables determination of vibroacoustic effects on the motorcyclist without
frequency correction of signals and with taking into account the current standards, and therefore
with the use of appropriate frequency corrections. The measurement section of the paper presents
examples of results of measurements of the actual exposure of the motorcycle driver to vibration
and noise.

Keywords: exposure; motorcycle; motorcyclist; noise; vibration; signal processing

1. Introduction

Vibration and noise are among the most negative impacts of means of transport on people [1–3]
and the environment [4–8].

The sources of vibration present in the means of transport include, inter alia, engines, drive
train, suspension, tyre contact with the road pavement as well as wear and clearances [9–12]. Direct
human contact with a vibrating machine can lead to changes in the human body, including long-term
illness [1,2,13–15]. The cause-and-effect relationship between vibration and illness is often not directly
evident, e.g., due to the passage of time [1,2,16]. The exposure of humans and their organs to vibration
depends on the area where vibration penetrates into the body [2,14,15].

Noise pollution represents a major health problem in modern society, leading to a whole host of
health effects if not properly monitored and assessed: sleep disorders with awakenings [17], learning
impairment [18–20], ischemic heart disease [21,22] and annoyance [23–25]. Noise impact of means of
transport may have direct effects on the driver and passengers and indirect effects on people [24,26,27]
and the environment in their immediate vicinity [28–32]. In order to attenuate it, studies and mitigation
have been conducted worldwide in the last decades as action plans [33–35] for the main transportation
sources of noise affecting the modern human life style: road traffic [36–39], railway traffic [40,41],
airport [42,43] and port noise [44].

Vibroacoustic interactions have a significant impact on assessment of the quality and comfort
of means of transport. Research in this area is carried out as part of the development of means
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of transport [25,45–47] and as part of the assessment of their impact on users [8,14,26,34,35,48].
Measurements of the so-called workplace exposure are also carried out in accordance with the
guidelines set out in the relevant standards [15,49]. In the latter case, the vibroacoustic effects mainly
affect the comfort of life and the condition of the transport infrastructure as well as infrastructure in
the vicinity. In this case, the standards and test methods developed for this impact [50] are used and
methods for its reduction are defined [39,51–53].

Motorcycles belong to a group of means of transport whose negative impact on people and the
environment is significant and can take on different formats. The research carried out in this area can
be found, among others, in References [6,54–56]. The direct impact of noise and vibration is related to
the construction of motorcycles and the close proximity of the driver and passenger to the sources
of vibration and noise [10,57–61]. As presented in the papers [62–64], professional motorcyclists
and frequent users of these means of transport are at risk of hearing loss. The studies presented in
Reference [65] indicate that motorcycle users are very likely to lose their hearing even when using
very noisy motorcycles only once. The problem of hearing loss and/or tinnitus is present in many
motorcycle users [6]. The sources of this exposure are both engine and drive train noise, noise related
to the aerodynamics of the motorcycle and its occupants, and air turbulence. Tests carried out in
Reference [64] showed a much greater hearing loss in police officers using motorcycles on duty than in
police officers performing typical office work.

Vibration interactions include primarily the transmission of vibration through the structure of the
motorcycle from its sources, i.e., the engine, drive train and tyre-pavement contact, to the place of their
reception, i.e., the upper limbs, lower limbs and trunk of the motorcyclist and passenger. The exposure
to lower back pain is discussed in Reference [3] and problems with finger and shoulder diseases in
References [61,66] The studies on exposure of motorcyclists to general vibration were carried out,
among others, in Reference [57]. These studies assessed typical motorcycles used in Taiwan, which are
often the main transport vehicle. These studies have shown instances where vibration can be exceeded,
adversely affecting the drivers’ health.

Motorcycle handlebar vibration tests carried out in Reference [67] led to the conclusion
that prolonged use of a motorcycle may cause significant adverse effects on the drivers’ health.
In Reference [13], a high exposure of the health of motorcyclists to both hand-arm vibration and general
vibration was demonstrated.

On the other hand, the vibration impact of motorcycle traffic on the surrounding environment is
low, while an important role may be played by noise generated by these means of transport. As the
authors’ research presented in Reference [8] shows, the noise level is highly dependent on the type of
motorcycle and the exhaust system used [45]. Examples of test results in Figure 1 indicate that the level
of noise generated by motorcycles is similar or even higher than noise generated by passenger cars.

Figure 1. Influence of different means of transport and their travelling speed on the maximum sound
level near the roadway (measured at a distance of 7.5 m from the vehicle movement axis) [8].
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The use of different types of exhaust systems in motorcycles significantly contributes to the change
in the generated sound level [45]. The results of the tests in Figure 2 indicate that the motorcycle
noise recorded near the area of the motorcyclist’s head, regardless of the silencer used (R1–R4),
was above 80 dB(A). Therefore, if a motorcycle is used for a longer period of time, it can affect the
motorcyclist’s hearing.

Figure 2. Influence of the type of motorcycle exhaust system on the sound level in the area of the
motorcyclist’s head [45].

The use of means of transport also involves the possibility of their involvement in various road
situations. The research presented in papers [68–71] discusses how motorcyclists and other drivers
perceive and behave in different situations on the road. The factors, presented in papers [72,73],
that describe the sensory and cognitive visibility of motorcycles may also be disturbed by noise and
vibration occurring in the means of transport. Noise and vibration to which motorcyclists are exposed
can also reduce their concentration and alertness when driving a motorcycle, which can consequently
lead to greater risk-taking by the drivers.

The paper presents a new method of measuring and processing signals during tests of a motorcycle
driver’s exposure to vibration and noise. The measurement method uses simultaneous measurement
of vibration and noise in places where they directly affect the motorcycle driver, and in the signal
processing method two ways of determining the effects of vibrations and noise on motorcycle drivers
were proposed. The methods were tested during the measurements of the motorcyclist’s exposure to
vibration and noise in real traffic conditions, where the basic vibroacoustic effects on the motorcyclist
were determined.

2. Method of Measuring the Impact of Vibration and Noise on a Motorcyclist

So far, the assessment of the vibration impact has been carried out with the use of devices which,
in separate measurements, recorded significant vibration acceleration values in different locations on
the motorcycle. The measurement of the noise reaching the motorcycle’s hearing organ when travelling
in real conditions—the measurement of the sound level under the helmet in the area of the auricle and
the beginning of the external auditory canal—has not yet been analysed in detail.

At present, there are known devices for measuring vibration and noise of machines and devices,
as well as their impact on humans, which are used to study the level of vibroactivity and noisiness
and to analyse the technical condition and environmental hazards. Local vibration can be measured
with single-axis and three-axis vibration acceleration transducers, which allow the vibration level to
be determined depending on, for example, the current technical condition of the machine or device,
but also, for instance, depending on the condition of the road surface. Noise measurements use
microphones with sound analysers which enable, for example, the measurement of the sound level at
workstations, and binaural microphones, which enable the measurement of sound directly reaching the
human ear and which are used, e.g., to record music. The presented test methods have been described,
among others, in PN-EN ISO 5349–1: 2004 [74], PN-EN ISO 5349–2: 2004 [75], PN-EN 14253 + A1:
2011 [76], ISO 2631–1: 1997 [77], PN-N-01307:1994 [78] and PN-EN-ISO 9612: 2011 [79].

As part of the paper a new method of measuring a motorcycle driver’s exposure to vibration and
noise was developed [80]. This method uses the simultaneous measurement of vibration and noise at
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the points of their direct influence on the motorcycle driver. The method was used to measure the
motorcyclist’s exposure to vibration and noise in real traffic conditions.

Parallel recording and analysis of vibration and noise using the proposed method enables global
assessment of the motorcyclist’s exposure to vibration and noise. By analysing, among others, time
and frequency waveforms of the recorded values, it is possible to assess the process of influence of
vibration and noise on humans, taking into account the propagation of noise and vibration energy and
identification of places where this impact causes the greatest nuisance. Knowledge of this information
can help to assess a motorcyclist’s local and global exposure to vibration and noise, and is a valuable
source of information on the vibroacoustic characteristics of the area where vibration and noise are
transmitted, as well as on the possibilities of designing new solutions with reduced vibration and
noise levels.

The method of measurement is based on the fact that, unlike the methods used so far, the actual
assessment of the impact of vibration and noise on a motorcyclist is performed by using parallel
measurements of vibration affecting the upper and lower limbs of a person and his torso together
with internal organs in three mutually perpendicular directions, as well as the measurement of noise
reaching the human hearing organ. The advantage of this method of measurement is the fact that
on the basis of the recorded vibration and noise signals it is possible to conduct a parallel analysis
of the recorded values, obtain characteristics of noise and vibration energy propagation to a person,
and assess the level of global exposure of a person to vibration and noise, while taking into account
their different propagation paths.

In the developed method, the measuring device used is characterised by the fact that it consists
of a set of measuring instruments comprising two three-axis vibration acceleration transducers and
a measuring pad equipped with one three-axis transducer, as well as binaural microphones and a
data acquisition system. Transducer 1 is attached to the handlebars of the motorcycle, in the handle,
in the area immediately adjacent to the position where the motorcyclist’s hand is located. Transducer
2 is attached to the footrest in the area where the motorcyclist’s foot is located. The measuring pad
with Transducer 3 is mounted on the motorcycle’s seat, in the place occupied by the motorcyclist
during normal use. Binaural Microphones 4 are mounted in the area of the motorcyclist’s auricle at the
beginning of the external auditory canal under the helmet. Measuring Transducers 1 and 2, measuring
Pad 3 and Microphones 4 are connected to the Data Acquisition System 5, in which the measured
values can be recorded or transmitted to the next recording device.

The reference diagram of the mounted device is shown in Figure 3 in a system with and without
the motorcycle driver.

Figure 3. Diagram of the arrangement of the sensors in a system without (a) and with the motorcyclist
(b), where [80]: 1–2—3-axis transducers, 3—measuring pad with a 3-axis transducer, 4—4’-binaural
microphones, 5—recording system.
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The proposed method is an optimal solution for assessing a motorcyclist’s global exposure to
vibration and noise, both in real traffic measurements and in laboratory conditions. It is characterised
by full information on the characteristics of vibration and noise in areas where they affect people, which
in turn makes it possible to obtain a full picture of the vibroacoustic hazards to which a motorcyclist is
exposed. This method also makes it possible to eliminate errors resulting from vibration measurements
which so far have been carried out separately and which do not take into account exposure to noise
among the motorcyclist’s health risks.

3. Application of the Developed Measurement Method

The measuring system selected for active experiments is presented in this section on the basis
of the theoretical method for measuring vibration and noise affecting a motorcyclist in real traffic
conditions, developed and presented in Section 2. Preliminary tests were carried out in order to validate
the measuring system for road tests, and then measurements were made on selected motorcycle.

The test experiment was conducted on one tourist motorcycle equipped with an engine with a
cylinder capacity of 599 cm3, maximum power of 57 kW (76 hp) at 10,500 min−1 and torque of 58 Nm
at 8000 min−1. It was a used motorcycle in a good technical condition.

The motorcycle was driven by a man with a height of 183 cm and a weight of 80 kg. The research
was carried out on a straight section of a road with an undamaged asphalt pavement. In the experiments,
the following assumptions were made regarding the speed of the motorcycle and the selected gear of
the drive train:

* tests at a constant motorcycle travelling speed:
- travelling speed of 50, 70, 90 and 110 km/h,
- the selected gear: 2, 3, 4 and 5 (selecting the gear at low motorcycle travelling speeds was

supposed to ensure stable engine operation),
* examinations during the acceleration test:
- change of speed in the 45–110 km/h range,
- selected gear 3—gear selection ensured a wide range of motorcycle engine rotation changes.
The research assumes that the influence of the motorcycle on the driver is a typical influence of a

motorcycle on the motorcyclist and therefore does not require any additional ethical approvals.
The measurements were carried out using a measurement system consisting of:
- two 3-axis PSB transducers, model 356A02,
- two OKM II Rock-Klassik Studio Version binaural microphones made by Soundman,
- measuring pad with a Svantek 3-axis transducer, type SV 39,
- LMS Scadas XS recording system from Siemens, which enables simultaneous recording of the

motorcycle’s GPS position together with the dedicated measurement control software—installed on a
tablet type portable computer.

Figure 4 shows the diagram of the measuring system and Figure 5 shows the locations where the
measuring system’s elements were installed on the selected measurement motorcycle.

Figure 4. Measuring system diagram.
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Figure 5. Arrangement of the measuring system’s elements: (a) signal recording system, (b) three-axis
transducer installed on the handlebars of the motorcycle, (c) three-axis transducer installed on the
footrest of the motorcycle, (d) binaural microphone placed in the motorcyclist’s ear, (e) measuring pad
with a three-axis transducer.

4. Signal Processing Method

The developed method enables the analysis of acceleration of vibration recorded in different
locations on the motorcycle—points of direct contact between the driver and the motorcycle—and
the level of sound pressure present in the motorcycle helmet at the beginning of the driver’s ear
canal. Since the impact of vibration and noise on people is one of the constantly recognised methods
of research in the field of occupational health and safety, as well as medical research, it has been
assumed that the signal processing methods should enable two types of analysis to be carried out.
In the former case in the entire frequency band of the recorded signals not previously subjected to
corrective filtering, and in the latter case for signals subjected to the frequency correction according
to the recommendations of the relevant national and European standards PN-EN ISO 5349-1:2004,
PN-EN ISO 5349-2:2004, PN-EN 14253+A1:2011, ISO 2631-1:1997, PN-N-01307:1994 and PN-EN-ISO
9612:2011. See References [81–83] for the threshold and limit values of the recorded signals.

Figure 6 shows a diagram of the method of determining signals for further analyses. The most
important symbols on the diagram:
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Figure 6. Method of determining signals for analyses.

Wh, Wd, Wk, WA—frequency weighing characteristics,
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x, y, z—vibration measurement directions,
fft—fast Fourier transform,
rms—root mean square of the signal.

5. Results and Discussion

5.1. Research in the Time Domain

The real levels of vibration and noise, which are present during the operation of a motorcycle
and to which the motorcyclist is exposed, were analysed on the basis of the signals recorded during
road measurements. In these tests, the directional distribution and the effective value of vibration
at selected measurement points (their impact on humans), recorded at a constant travelling speed
of 50 km/h, were evaluated. The levels of the sound in the helmet recorded at that time were also
analysed. The results of these calculations are shown in Figure 7.

Figure 7. Values of recorded vibration acceleration depending on the direction of measurement and
noise: (a) signals not frequency corrected, (b) frequency corrected signals

These tests show that the greatest human exposure to vibration occurs from the handlebars to
the upper limbs, smaller from the footrest of the motorcycle to the lower limbs, and the smallest from
the seat to the torso (i.e., exposure to general vibration). The tests were carried out in three mutually
perpendicular directions. When analysing the distribution of vibration energy in each of the directions
considered, it can be observed that the highest vibration acceleration values were recorded in the Y
and Z direction, i.e., perpendicular to the direction of motion. Direction X—parallel to the direction of
motion—was characterised by the lowest level of vibration amplitude for interaction from the seat
and handlebars.

In the next stage of the research signals recorded at various quasi-stationary values of motorcycle
travelling speeds were analysed. During these measurements, the motorcycle travelled at speeds of 50,
70, 90 and 110 km/h in gear 2, 3, 4 and 5 respectively. The aim of these experiments was to analyse the
influence of such factors as travelling speed, engine speed and motion resistance on vibration and
noise affecting the motorcyclist.

Figures 8 and 9 show values calculated without using correction curves as well as frequency
corrected values.
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Figure 8. Change of noise and vibration acceleration depending on the travelling speed and the selected
gear—signals not frequency corrected: (a) measuring point—seat, (b) measuring point—footrest,
(c) measuring point—handlebars, (d) measuring point—helmet.

The general vibration acting on the driver’s torso is significantly lower than vibration present on
the footrest and handlebars. The vibration levels are in the range of 1.7–28.83 m/s2 for the seat and
11.2–119.47 m/s2 for the footrest and handlebars. With unadjusted measurements of the sound pressure
level—linear measurement in the entire band—the value of noise increases non-linearly with the
increase in motorcycle travelling speed and ranges from 98.18 dB to nearly 119.35 dB. When analysing
the test results, it can be observed that in order to reduce the negative impact of the motorcycle on
the driver the highest operationally viable gear ratio of the motorcycle gearbox should be used for
propulsion as quickly as possible.

Carrying out vibration acceleration processing using appropriate corrective characteristics Wd,
Wk and Wh and application of weight coefficients k made it possible to calculate levels of vibration
acting on the driver through the seat, footrest and handlebars of the motorcycle, and application of
correction A enabled calculation of noise reaching his hearing organ.

The calculated vibration accelerations indicate significant non-linear changes in their values
regardless of the motorcycle’s exposure point. The recorded vibration values are in the range of
0.39–1.43 m/s2 for the motorcycle seat and 0.21–0.52 m/s2 for the footrest. The recorded vibration
acceleration values for the seat in most cases exceed the daily mechanical vibration exposure limit
values (A(8)limit = 0.8 m/s2), but are lower than the short-duration mechanical vibration exposure limit
value (aw,30 min, limit = 3.2 m/s2).
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The values of local hand-arm vibration acceleration, i.e., values recorded on the handlebars, were
each time higher than the daily mechanical vibration exposure limit value (A(8)limit = 2.8 m/s2) and
at a higher engine speed they were higher than the short-duration mechanical vibration exposure
limit value (aw,30min, limit = 11.2 m/s2). Measurements of the sound level in the helmet using correction
curve A indicate that sound level 84 dB(A) is exceeded already at a motorcycle speed of 70 km/h.
The recorded maximum values were above 94 dB(A).

Figure 9. Change of vibration acceleration and noise depending on the travelling speed and the
selected gear—frequency corrected signals: (a) measuring point—seat, (b) measuring point—footrest,
(c) measuring point—handlebars, (d) measuring point—helmet.

5.2. Research in the Frequency Domain

The impact of vibration and noise generated by means of transport on users and the environment
should also be considered in the frequency aspect. This approach allows identification on the basis
of the recorded vibroacoustic signals, their main components and their frequency distributions.
The assessment of the phenomenon of generation, propagation and influence of vibration and noise
carried out based on this is the basis for conclusions on the impact of these signals on the health and
comfort when using means of transport.

A frequency analysis of the influence of the change of motorcycle travelling speed (engine speed)
on the structure of signal spectra and their influence on the motorcyclist was carried out. Signal
processing was performed for signals that were not frequency corrected. The calculation used signals
recorded at a constant motorcycle speed of 50, 70 or 90 km/h in the third gear, which allowed the use of
low, medium and high internal combustion engine revolutions. The calculated spectra for the recorded
signals are shown in Figures 10–13.
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The determined signal spectra indicate that the dominant frequencies of vibration and noise
signals are those associated with the combustion process in the engine. They occur in the frequency
range above 100 Hz and increase with the motorcycle’s speed and therefore with the engine speed. At a
travelling speed of 70 km/h and 90 km/h, in the spectrum of signals recorded for the seat and footrest
of the motorcycle, there are additional frequencies that are significantly lower than the dominant
frequency. When analysing the noise spectrum, in addition to the combustion frequency in the engine,
an increase in noise can also be observed at increasing travelling speeds in the low frequency ranges.

Figure 10. Frequency analysis of general vibration (seat) in the X, Y and Z directions: (a) speed 50 km/h,
(b) speed 70 km/h, (c) speed 90 km/h.

Figure 11. Cont.
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Figure 11. Frequency analysis of general vibration (footrest) in the X, Y and Z directions: (a) speed
50 km/h, (b) speed 70 km/h, (c) speed 90 km/h.

Figure 12. Frequency analysis of general vibration (handlebars) in the X, Y and Z directions: (a) speed
50 km/h, (b) speed 70 km/h, (c) speed 90 km/h.

In further studies, the change in the structure of the spectra of the recorded vibration and noise
was evaluated. This test type makes it possible to examine the main components present in the signals
and their impact on motorcyclists at a variable motorcycle travelling speed (motorcycle engine speed).
Time and frequency distributions of signals recorded during the acceleration of the motorcycle were
calculated. Short-duration spectra were calculated using a fast Fourier transform (fft). The signals
recorded during the rapid acceleration of the motorcycle from the speed of about 45 km/h to about
100 km/h in the third gear, frequency corrected and not, were used for the calculations.

Figure 14 shows the calculated time and frequency distributions of vibration affecting the driver
through the seat and lower and upper limbs in the Z direction, as well as the recorded sound pressure
level in the helmet.
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Figure 13. Frequency analysis of sound pressure in the helmet: (a) speed 50 km/h, (b) speed 70 km/h,
(c) speed 90 km/h.

Time and frequency distributions of vibration enable identification of changes in spectrum
components depending on the motorcycle travelling speed and, therefore, its engine speed. In these
distributions, a significant increase in signal amplitudes can be observed due to the combustion process
and its harmonics in the range from about 100 Hz to about 250 Hz. The bands of these frequencies
are predominant in the spectrum regardless of the measuring point and overlap in the selected speed
ranges with the natural vibration of the selected organs of the human body.

The change of the spectrum structure in the low-frequency range—up to 80 Hz—is characterised
by low energy values of vibration levels. As the speed increases, an increase in amplitude of these
frequencies is also observed, but their value is significantly lower than the frequency of the combustion
process in the engine. The signal processing carried out with the use of band-pass filters made it
possible to analyse the exposure to vibration transmitted by the human body with general and local
effects. In this case, increases in the amplitude of low-frequency vibration, and therefore an increase
in exposure of humans to these effects, was observed. It can be noted, however, that the application
of these filters leaves in the vibration signal a strongly energetic component associated with the
combustion process.

Measurements and processing of noise signals not subjected to frequency filtration tests
indicate strongly energetic changes in the amplitude of sound pressure in the low-frequency range.
The amplitude value increases as the rotational speed increases. When using correction Filter A, this
noise becomes significantly lower energetically in the low-frequency range and therefore, despite the
increase in its amplitude, it does not create a significant nuisance for the motorcycle driver. However,
local increases in sound amplitude can be observed in this signal at a higher engine speed, which is
caused by the fact that filtration A leaves the components associated with the combustion process,
i.e., frequencies above 200 Hz.
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Figure 14. Time-frequency distributions of acceleration of vibration in the Z direction and
noise—frequency corrected and not: (a) measuring point—seat, (b) measuring point—footrest,
(c) measuring point—handlebars, (d) measuring point—helmet.

6. Conclusions

At present, means of road transport are subject to increasingly higher requirements in terms
of minimising their negative impact on the environment and ensuring high comfort of use. These
requirements mean that the development of means of transport requires the use of highly advanced
design methods and complex systems for testing prototypes.
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The emission of vibration and noise is among the significant impacts of means of transport on
the environment and their users. In vehicles, this problem can be considered as an aspect of ensuring
a sufficiently high level of comfort of use, and also as a factor contributing to health deterioration.
While analysing the literature, it was found that motorcycles belong to the group of means of transport
which have a negative impact on their users. The main problem here is the exposure of motorcyclists
to vibroacoustic signals penetrating the human body through the upper limbs, lower limbs, trunk and
hearing organs.

The method of measurement of vibroacoustic signals proposed in the paper, which takes into
consideration general vibration, vibration affecting lower and upper limbs as well as noise present in the
helmet, is a new approach to the possibility of assessing vibroacoustic effects on motorcyclists. It also
allows a broader look on the motorcycle as an object that generates vibration and noise. The use of the
measurement system proposed in the publication, which carries out the measurement simultaneously
in various areas of the motorcyclist’s exposure, enables a later analysis of specific cases of interactions.
This type of measurement system also enables analyses with high sampling rates, which is particularly
important when analysing fast changing phenomena. In this case, traditional signal analysers, such as
those that determine the equivalent sound level or the maximum sound level, are not sufficient.

In the paper this method was used to evaluate the exposure of motorcyclists to vibration and noise
and to compare the level of this exposure using different types of motorcycles. The developed method
can also be used to evaluate the motorcycle itself as a source of vibroacoustic signals, the reduction of
which is one of the most important tasks pursued in research and development centres dealing with
the comfort of this type of means of transport.

The conducted identification tests of the proposed method of measurements in real traffic made
it possible to record the waveforms of vibration signals of selected elements of the motorcycle and
noise present in the motorcyclist’s helmet. This therefore confirmed the practical utility of the method
for testing motorcycles and their vibroacoustic impact on users in real traffic, as proposed in the
patent application.

In connection with the information contained in numerous scientific papers on possible negative
impacts of vibration and noise on humans in a wider frequency range than previously considered
in the standards, the paper analyses signals in the entire frequency range of signals not subjected
previously to the recommended corrections, and applies recommendations of standards for the relevant
interactions. These studies show that vibration and noise not subjected to frequency correction were
characterised by significantly higher values than frequency corrected signals. Consequently, significant
vibroacoustic effects on motorcyclists occur in frequency bands which are omitted from the standards
or which are in a near range of frequency bands recommended by them.

When comparing the test results, it can be concluded that the level of vibration affecting the driver
through the motorcycle’s seat is the lowest among those recorded. Vibration affecting the lower and
upper limbs is significantly higher than for the seat. When analysing the vibration and noise values,
it can also be concluded that the vibration levels of the seat and footrest do not exceed the limit values
currently adopted in the standards, while the handlebar vibration and the sound level in the helmet
may exceed these values. This depends mainly on the way the motorcycle is used and on its type.
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80. Figlus, T.; Szafraniec, P.; Żuradzki, K.; Skrucany, T. Method for measuring vibrations and noise in motorcycle,
involves connecting binaural microphones to data acquisition system, connecting ear mantle to external auditory duct,
and connecting helmet to data acquisition system. PL419787-A1, 13 December 2016.

81. The Regulation of the Minister of Labour and Social Policy. The highest acceptable concentrations and intensities of
factors harmful to health in the working environment. The Journal of Laws No. 217, item 1833, 29 November 2002.

82. The Regulation of the Minister of Economy and Labour. Amending the regulation on the highest acceptable
concentrations and intensities of factors harmful to health in the working environment. The Journal of Laws, no.
212, item. 1769, 10 October 2005.

83. The Regulation of the Minister of Economy and Labour. Occupational health and safety during works with
exposure to noise or mechanical vibrations. The Journal of Laws of, No. 157, item 118, 5 August 2005.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Method of Measuring the Impact of Vibration and Noise on a Motorcyclist 
	Application of the Developed Measurement Method 
	Signal Processing Method 
	Results and Discussion 
	Research in the Time Domain 
	Research in the Frequency Domain 

	Conclusions 
	References

